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Abstract

Medical named entity recognition (NER) and
normalization (NEN) are fundamental for con-
structing knowledge graphs and building QA
systems. Existing implementations for medi-
cal NER and NEN are suffered from the er-
ror propagation between the two tasks. The
mispredicted mentions from NER will directly
influence the results of NEN. Therefore, the
NER module is the bottleneck of the whole
system. Besides, the learnable features for
both tasks are beneficial to improving the
model performance. To avoid the disadvan-
tages of existing models and exploit the gener-
alized representation across the two tasks, we
design an end-to-end progressive multi-task
learning model for jointly modeling medical
NER and NEN in an effective way. There are
three level tasks with progressive difficulty in
the framework. The progressive tasks can re-
duce the error propagation with the incremen-
tal task settings which implies the lower level
tasks gain the supervised signals other than
errors from the higher level tasks to improve
their performances. Besides, the context fea-
tures are exploited to enrich the semantic infor-
mation of entity mentions extracted by NER.
The performance of NEN profits from the en-
hanced entity mention features. The stan-
dard entities from knowledge bases are intro-
duced into the NER module for extracting cor-
responding entity mentions correctly. The em-
pirical results on two publicly available med-
ical literature datasets demonstrate the superi-
ority of our method over nine typical methods.

1 Introduction

To dig into the large amount of electronic medical
records, there has been an increasing interest in
applying information extraction to them. These
techniques can generate tremendous benefit for cor-
responding research and applications, such as med-
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Figure 1: The overall frameworks for medical named
entity recognition and normalization.

ical knowledge graph (Wu et al., 2019) and QA
systems (Lamurias and Couto, 2019). Among the
medical text mining tasks, medical named entity
recognition and normalization are the most funda-
mental tasks.

Named entity recognition tries to find the bound-
aries of mentions from the medical texts. And
named entity normalization maps mentions ex-
tracted from the medical text to standard identifiers,
such as MeSH and OMIM (Zhao et al., 2019). The
initial pipeline implementations for medical NER
and NEN have a main limitation: error extractions
from NER cascade into NEN which result in nor-
malization errors. Besides, the mutual use between
recognition and normalization is not utilized in the
pipeline models. To alleviate the limitations and
achieve a higher performance, some researchers fo-
cused on jointly modeling these two tasks. Leaman
and Lu (2016) proposed a joint scoring function for
medical NER and NEN. Lou et al. (2017) casted
the output construction process of the two tasks
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as a state transition process to perform medical
named entity recognition and normalization. To
capture the semantic features of two tasks, Zhao
et al. (2019) proposed a multi-task learning frame-
work with an explicit feedback strategy for medical
NER and NEN.

As shown in Figure 1, there are two common
frameworks: pipeline and parallel multi-task frame-
work. The former one is formulated to maxi-
mize the posterior probabilities p(yNER |x) and
p(yNEN |m, e) where x is the medical text, m is
the medical mentions extracted by a recognition
model, e is the standard entity, yNER and yNEN are
the labels. The latter one tries to maximize the pos-
terior probabilities p(yNER, yNEN |x) (Zhao et al.,
2019). Both of these are struggled with the bot-
tleneck that is named entity recognition. In the
above frameworks, the NER module is trained to
memorize the medial mentions in the training set.
However, the medical mentions are various and
there is a gap between the training and test set. It is
natural that the unseen mentions in training set are
hard to recognize during the testing phase. There-
fore, the conventional frameworks do not gain more
ideal generalization ability.

To overcome the disadvantage mentioned above,
we reconsidered the process of medical named en-
tity recognition and normalization. The ultimate
goal is to map the extracted medical mentions to the
standard entity base. Therefore, the target standard
entity base can be regarded as a dictionary. The ini-
tial process of NEN and NER can be reconsidered
as detecting whether the medical text contains the
candidate standard entity and finding the mentions
should be replaced. Based on this idea, we pro-
pose an end-to-end progressive multi-task learning
framework for medical named entity recognition
and normalization (E2EMERN1). Compared with
ordinary multi-task learning, progressive multi-task
learning focuses on the aggregation logic of tasks’
specific features (Hong et al., 2020). A difficult
target is divided into a few tasks that are intercon-
nected through the combination of features. To take
full advantage of the data attributes, we propose the
framework including three tasks with progressive
difficulty extended from the conventional NER and
NEN tasks. The low-level task is the traditional
NER which tries to extract all entities in the med-
ical text. The mid-level task is defined to iden-

1When ready, the code will be published at https://
github.com/zhoubaohang/E2EMERN

tify whether there exist medical mentions in the
text that should be mapped to the candidate stan-
dard entity. The high-level task combines the first
two level tasks, and targets to extract the mentions
which should be mapped to the candidate standard
entity.

Unlike the existing frameworks, E2EMERN ex-
ploits the progressive tasks to learn the fine-grained
representations. The mid-level and high-level tasks
facilitate the framework learning the correspond-
ing features between the medical mentions and
standard entities. The low-level task can gain the
supervised signals from the higher level tasks to
extract medical mentions corresponded to standard
entities in the knowledge bases more exactly. Our
contributions in this manuscript can be summarized
as follows:

1. We reconsider the process of the NER and
NEN tasks, and firstly propose to exploit the
three tasks with progressive difficulty to train
the end-to-end medical named entity recogni-
tion and normalization framework.

2. The experimental results on two medical
benchmarks demonstrate that our framework
outperforms the existing medical named entity
recognition and normalization models. And
we conducted detailed analysis on the frame-
work to represent its superiority.

2 Related Work

2.1 Medical Named Entity Recognition and
Normalization

Medical named entity recognition and normaliza-
tion are two basic tasks for the medical text mining.
The conventional pipeline frameworks contains the
NER model and NEN one separately (Vázquez
et al., 2008; Leaman and Lu, 2014; Sahu and
Anand, 2016; Zhou et al., 2020). NER models
extract medical mentions in texts and then NEN
models map these mentions to standard entity iden-
tifiers. To reduce the error propagation in the
pipeline frameworks, some researchers proposed to
model NER and NEN jointly. Leaman et al. (2015)
combined two traditional machine learning models
as an ensemble NER and NEN model. And to learn
the joint probability distribution of the NER and
NEN tasks, a semi-markov based model was pro-
posed by Leaman and Lu (2016). However, tradi-
tional methods depend on the human-based feature
engineering. With the development of the deep

https://github.com/zhoubaohang/E2EMERN
https://github.com/zhoubaohang/E2EMERN
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learning, recurrent neural networks (RNN) have
replaced human effort and been utilized to extract
features of raw texts. Zhao et al. (2019) designed
an RNN-based network architecture with feedback
strategy to model the two tasks jointly. Recently,
the pre-trained models, such as BERT (Devlin et al.,
2019), BioBERT (Lee et al., 2020), make impres-
sive progress in the natural language processing
(NLP) area. Xiong et al. (2020) used BERT as the
base module and proposed a machine reading com-
prehension framework to solve the NER and NEN
problems jointly.

2.2 Sequence Labeling
Named entity recognition can be regarded as a
sequence labeling problem. Sequence labeling
was explored extensively as a basic task in NLP.
Probabilistic graphical models, such as: hidden
markov model (Xiao et al., 2005) and conditional
random fields (CRF) (Lafferty et al., 2001) are
the typical methods to solve the problem. With
deep learning modules gradually replacing man-
ual feature engineering, long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997) net-
work stacked with CRF (Xu et al., 2008) has been
a benchmark model for sequence labeling (Lample
et al., 2016). Some researchers utilized multi-task
learning to model relevant NLP tasks and gained
better performances on these tasks including se-
quence labeling (Aguilar et al., 2017; Cao et al.,
2018). Besides, the attributes of the data them-
selves are used to design the multi-task learning
model. Considering whether sentences contain
entities, Wang et al. (2019) proposed the multi-
task learning model to predict whether input data
have entities and then extract corresponding enti-
ties. Kruengkrai et al. (2020) exploited sentence-
level labels and token-level labels to propose a joint
model supporting multi-class classification.

2.3 Short Text Matching
Named entity normalization is formulated as a short
text matching problem. The information retrieval
method, such as: BM25 (Robertson et al., 1994),
is a universal model to solve this problem. With
the development of neural language model, text se-
mantic is exploited to model the similarity between
two short texts. The distributed representations of
texts, such as: Word2Vec (Mikolov et al., 2013)
and GloVe (Pennington et al., 2014), are utilized to
calculate the similarity distance between two texts.
Some medical named entity normalization models

are based on this method (Leaman and Lu, 2014;
Zhou et al., 2020). Considering local texts are more
important than global ones, some researchers uti-
lized convolution neural networks (CNN) to extract
local features and exploited interactive attention
mechanism to match the semantic similarity of two
texts (Yin et al., 2016; Chen et al., 2018).

3 Methodology

We introduce the notations about NER and NEN
before getting into the details of the framework.
For NER task, we denote {(Xi, yi)}N

s

i=1 as a train-
ing set with N s samples, where Xi is the medical
text and yi is the NER label. Given a sentence
withNw words, the medical text can be formulated
as X = {x1, x2, . . . , xNw} and the NER label is
y = {y1, y2, . . . , yNw}. To solve the NER task, we
try to maximize the posterior probability p(y |X).
According to the NER label, we can extract the
medical mentions {mi}N

m

i=1 from the medical text,
where Nm is the number of the mentions. For
NEN task, we need to map each mention m to a
standard entity e in the entity base B = {ei}N

e

i=1.
We formulate the object of NEN task as a posterior
probability p(e |m,B), and e is the standard entity
which the mention m should be mapped to.

3.1 Progressive Tasks

With the help of NER and NEN, we can map medi-
cal mentions in the raw texts to the corresponding
standard entities. Traditional pipeline implementa-
tions for the two tasks are composed of the individ-
ual NER and NEN models. The simple partitioning
of the two models leads to the error propagation be-
tween them. Considering the correlation between
the two tasks, Zhao et al. (2019) proposed the par-
allel task framework to improve the performance of
the model. However, the intuitive feedback strategy
for the output layers of two tasks is not beneficial
to modeling the fine-grained features between two
tasks. The above implementations lack thinking
about the learning process. The process of hu-
man learning often goes from easy to difficult (Xu
et al., 2020). Especially for the correlated tasks,
humans can dig into the hidden knowledge and
extract them from the easy tasks for completing
the hard ones. Based on this idea, we reconsider
the process of conventional NER and NEN tasks,
and propose three correlated tasks with progressive
difficulty. As shown in Figure 2, we take a medical
text from the real dataset NCBI (Dogan et al., 2014)
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Figure 2: The end-to-end progressive multi-task learning framework for medical named entity recognition and
normalization. The left part is the implementation details of the framework. The right part is the real example to
describe the three progressive tasks.

as an example to describe the tasks. The medical
text is “Familial Mediterranean fever is a reces-
sive disorder” and its corresponding NER label is
“B-Disease I-Disease I-Disease O O B-Disease I-
Disease”. Among the tokens, medical mentions
“Familial Mediterranean fever” and “recessive dis-
order” are mapped to the standard entity identifiers
“D010505” and “D030342” respectively.

Low-level task is defined to memorize all medi-
cal mentions seen in training set. Given the medi-
cal text mentioned above, this task needs to predict
the NER label and extract the mentions “Famil-
ial Mediterranean fever” and “recessive disorder”.
Similar to the process of human learning vocab-
ulary, the low-level task forces the framework to
learn the medical mentions indiscriminantly. How-
ever, the final target is to map mentions to standard
entities. We should continue to bridge the gap be-
tween medical mentions in raw texts and standard
entities in the database.

Mid-level task targets to determine whether
medical texts implicit the query standard entities.
With the above medical text and the standard en-
tity “D010505” as input, this task should inference
the text contains this entity. Through this task, the
framework establishes the coarse-grained relation-
ship between the mentions with contexts and the
query standard entities. However, the mentions are
incomplete correspondence to the query standard
entities. Because there is more than one mention in
the raw text which should be extracted and mapped

to the corresponding standard entities. We need
to specify which mention in the text should be
mapped to the input standard entity.

High-level task is proposed to extract the men-
tions which should be mapped to the query standard
entity. After acquiring the above medical text and
the standard entity “D030342”, this task should
extract the mention “recessive disorder”. If the
input text contains no mention which should be
mapped to the query entity, the output of this task
is empty. The effect of this task is the same as that
of NEN, but it is harder than NEN. To accomplish
the high-level task, we need to build on the first two
tasks. The low-level task provides the representa-
tions of the medical mentions with contexts which
is beneficial to locating them in raw texts. The mid-
level task forces the model to learn the correlated
features between mentions with standard entities.
With the help of two pre-tasks, the high-level task
can be accomplished in an effective way.

3.2 Implementation Details

We build on the progressive tasks to implement
the framework E2EMERN as shown in Figure 2.
Considering the logic of feature aggregation and
the strategies for training different tasks, we need
to give detailed explanations by the level of tasks.

For a given sentence X = {x1, x2, . . . , xNw},
we need to map it to the dense vector representa-
tions. With the impressive performances of pre-
trained models, we utilize BERT (Devlin et al.,



6218

2019) as feature extractors to acquire the dis-
tributed representations of sentences. The BERT
architecture is composed by the transformer net-
works and its weights are trained with large number
of corpus. The feature extraction process is sim-
plified as BERT(X) = {h1,h2, . . . ,hNw}, where
h ∈ R1024×1. The low-level task is defined as
the same as NER, and we utilize the NER labels
as the target. The sentence features {hi}N

w

i=1 are
fed into the softmax layer, and we can compute
the prediction probabilities of low-level task as:
ŷi = softmax(Wlhi + bl) where Wl and bl are
trainable parameters. For training, we utilize the
cross-entropy loss as the objective function. The
loss function of low-level task is defined as follows:

Llow = −
Nw∑
i=1

yi log ŷi. (1)

The sample for the mid-level task is defined as
a tuple (X, e, ym). If the text X contain the men-
tions which should be mapped to the entity e, ym

is assigned 1 otherwise 0. To bridge the gap be-
tween the mentions and standard entities in the
mid-level task, we need also to extract the fea-
tures of standard entities. The standard entity e
is described with the specific name and some med-
ical contents. We feed the name (or contents) of
the entity into the BERT and perform the aver-
age pooling on the output of BERT. The feature
vector of i-th standard entity in the database is de-
fined as he

i . Considering the words of mentions
in raw texts are more correlated to the standard
entity, we adopt the attention mechanism (Zhou
et al., 2016) to focus on the local words of sen-
tences. The attention weighted average feature can
be calculated as: ha =

∑Nw

i=1 αixi. And the atten-
tion score α is defined as: αi =

exp (s(xi,he))∑Nw

i=1 exp (s(xi,he))

where s(xi,he) = Wa[xi;he] + ba. Wa and ba are
trainable weights in the attention module. After ac-
quiring the entity-attention feature ha and standard
entity feature he, we can calculate the prediction
probabilities ŷm = σ(Wm[he;ha] + bm) where σ
is the sigmoid function. The loss function for the
mid-level task is formulated as the cross-entropy:

Lmid = −(ym log ŷm + (1− ym) log(1− ŷm)).
(2)

We define the tuple (X, e, yh) as the sample for
the high-level task where yh = {yhi }N

w

i=1. Given
that the medical text X is “Familial Mediterranean
fever is a recessive disorder.” and standard en-

Familial Mediterranean fever is a recessive disorder
B-Disease I-Disease I-Disease O O B-Disease I-Disease

𝑿:
𝒚:

D010505 D030342Standard Entity:

Original 
Sample

Extended 
Sample

1. (𝑿, 𝒚, D010505,1, `B-Disease I-Disease I-Disease O O O Oᇱ)
2. (𝑿, 𝒚, D030342,1, `O O O O O B-Disease I-Diseaseᇱ)
3. (𝑿, 𝒚, D016870,0, `O O O O O O Oᇱ)

Figure 3: The original sample is from the dataset NCBI.
The extended samples are built on the original one and
used to train the model. The 3rd sample is generated by
negative sampling.

tity e is “D030342”, the label sequence yh should
be “O O O O O B-Disease I-Disease”. To take
advantage of the pre-tasks, we propose the gate
mechanism to aggregate the different features for
solving this task. The sentence feature {hi}N

w

i=1

implicit the medical mentions while the entity at-
tention feature ha contains clearer locations of the
corresponding mentions. Therefore, we propose
the gate mechanism to focus on the fine-grained
feature dimensions. The formulation of the gate
mechanism is G(H,Ha) = σ(Wg[H;Ha] + bg)
where H = {hi}N

w

i=1 and Ha = [ha; . . . ;ha] ∈
R1024×Nw

. Considering the semantic difference
between the mentions and corresponding standard
entities, we exploit the gate mechanism to fuse
the standard entity feature with the sentence fea-
ture. The fusion sentence feature is formulated as:
Hf = H�(1−G(H,Ha))+He�G(H,Ha) where
� is the element-wise production, Hf = {hf

i }N
w

i=1

and He = [he; . . . ;he] ∈ R1024×Nw
. We feed the

fusion feature into the softmax layer to predict the
probabilities ŷhi = softmax(Whhf

i + bh). As the
same as the low-level task, we utilize the cross-
entropy loss function as follows:

Lhigh = −
Nw∑
i=1

yhi log ŷ
h
i . (3)

3.3 Training Process

For the framework, we denote the training sample
as (X, y, e, ym, yh). According to the definitions
of the three tasks, we can generate the task labels
corresponding to the input sentence. The example
is shown in Figure 3. Given the medical text X,
the label y for the low-level task is the same as the
original NER label. We use the standard entities
which the mentions {mi}N

m

i=1 should be mapped to
as the input entity e respectively. The high-level
task label yh is based on y, and it only keeps the
original labels of y which are correlated to the input
e. Besides, we adopt the negative sampling strategy
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to select the standard entity which is not related to
the input sentence X as the input entity e.

To tackle the three level tasks at once, we intro-
duce two hyper-parameters to sum Eqn. 1, Eqn.
2 and Eqn. 3. The overall loss function for the
framework is defined as follows:

L = Llow + λ · Lmid + µ · Lhigh (4)

where λ and µ are hyper-parameters for balancing
different task losses. After generating samples, we
feed them into the model and then calculate the
loss according to Eqn. 4. Following the back-
propagation method, we update the weights of the
networks with the acquired loss. After every epoch
of training, we re-sample the training samples for
better generalization of the model.

4 Experiments

4.1 Datasets and Experiment Settings
We compare our framework with the existing meth-
ods on two medical benchmark datasets. Table 1
presents the detailed statistical information of the
two datasets. There are 798 public medical ab-
stracts in the NCBI dataset (Dogan et al., 2014).
Each medical mention in the text is annotated with
MeSH/OMIM identifiers. BC5CDR dataset (Li
et al., 2016) contains 1500 public medical abstracts
which are also annotated with MeSH identifiers.
We split each abstract into sentence samples with
an average of 40 words according to the ends of
sentences. The padding char is used for filling the
unequal length samples to the fixed length.

During the training process, we first train the
model on the training set and test it on the develop-
ment set for searching the best hyper-parameters.
Then, we fix the best hyper-parameters and train
the model on the set composed of the training and
development sets. Before the model is trained to
the searched maximum number of epochs, we take
the F1 score as the reported result when the loss
gets the lowest. In our experiments, we set the
hyper-parameters λ, µ and learning rate to 0.125,
0.1 and 1e-5 respectively. To train the model, we
use the ADAM (Kingma and Ba, 2015) algorithm
to update the weights. And all experiments are ac-
celerated by the two NVIDIA GTX 2080Ti devices.

4.2 Compared Methods
To represent the effectiveness of our framework,
we adopt the competitive models as the compared

Item NCBI BC5CDR

train set 5424 4560
dev set 923 4581
test set 940 4797
# entities 7025 28545
# NER labels 3 5
# NEN labels 743 2311

Table 1: The statistical information of the NCBI dataset
and the BC5CDR dataset in our experimental settings.

methods including traditional machine learning
methods and impressive deep learning models.

Dnorm (Leaman et al., 2013) is the pipeline
model for medical NER and NEN. It utilizes the
TF-IDF feature to learn the bilinear mapping ma-
trix for the normalization task. LeadMine (Lowe
et al., 2015) considers Wikipedia as dictionary
features for normalizing the medical mentions.
TaggerOne (Leaman and Lu, 2016) is the semi-
Markov based model for jointly modeling medi-
cal NER and NEN. Transition-based model (Lou
et al., 2017) consists of the state transformation
function for the output of NER and NEN.

To reduce human feature engineering, re-
searchers focus on the deep learning for model-
ing NER and NEN. IDCNN (Strubell et al., 2017)
was proposed with an improved CNN module for
NER. MCNN (Zhao et al., 2017) was composed of
the multiple-label CNN modules for better perfor-
mances on NER. CollaboNet (Yoon et al., 2019)
exploited the multi-source datasets for training the
multi-task model and gained better results on all
benchmark datasets. MTL-MERN (Zhao et al.,
2019) consists of the NER and NEN parallel frame-
work and utilizes the feedback strategy to improve
the performances on two tasks.

With the impressive performance of pre-trained
models, BioBERT (Lee et al., 2020) is built on
the BERT (Devlin et al., 2019) and trained with
a large medical corpus. And it achieves state-of-
the-art results on medical NER datasets. Therefore,
we use the BioBERT as the feature extractor and
compare it with our framework.

4.3 Experimental Results

We compare E2EMERN with the baseline methods
on the named entity recognition and normaliza-
tion. The detailed experiment results on NCBI
and BC5CDR are shown in Table 2. The first
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Method
NCBI BC5CDR

Recognition Normalization Recognition Normalization

Dnorm (Leaman et al., 2013) 0.7980 0.7820 - 0.8064
LeadMine (Lowe et al., 2015) - - - 0.8612
TaggerOne (Leaman and Lu, 2016) 0.8290 0.8070 0.8260 0.8370
Transition-based Model (Lou et al., 2017) 0.8205 0.8262 0.8382 0.8562
IDCNN (Strubell et al., 2017) 0.7983 0.7425 0.8011 0.8107
MCNN (Zhao et al., 2017) 0.8517 - 0.8783 -
CollaboNet (Yoon et al., 2019) 0.8636 - 0.8818 -
MTL-MERN (Zhao et al., 2019) 0.8743 0.8823 0.8763 0.8645
BioBERT (Lee et al., 2020) 0.8971 - 0.9029 -

E2EMERN 0.9151 0.8901 0.9175 0.8965
w/o mid-level task 0.8733 0.8890 0.9073 0.8600
w/o high-level task 0.8862 - 0.9065 -
w/o gate mechanism 0.8885 0.8224 0.9100 0.8681
w/o attention mechanism 0.8767 0.8675 0.9092 0.8676

Table 2: The F1 scores of the models on NCBI and BC5CDR. Our model can outperform the baseline methods. The
results for ablation study of E2EMERN are also presented. “w/o gate mechanism” means that the gate mechanism
is replaced with the simple feature concatenation strategy in the framework. “w/o attention mechanism” is the
same as the above one.

four in the table is the traditional machine learn-
ing methods. Among them, the joint models, such
as TaggerOne and Transition-based Model, outper-
form the pipeline ones including Dnorm and Lead-
Mine. When deep learning was introduced into the
pipeline frameworks, IDCNN can make a progress
over conventional methods, such as Dnorm. Com-
pared with MCNN, CollaboNet utilizes the multi-
source dataset as input and performs multi-task
learning to improve the performances on NER task.
MTL-MERN takes full advantage of multi-task
learning and deep semantic representations and
outperforms the above methods. By virtue of the
dynamic language features, BioBERT can better
model the language semantics and outperform the
above NER models.

Compared with baseline methods, E2EMERN
can always achieve the best results on NER and
NEN. The NER results of E2EMERN increase
by 1% ∼ 2% over BioBERT. Because our frame-
work takes full advantage of the correlation be-
tween NER and NEN. Unlike the simple strategy
of MTL-MERN, E2EMERN consists of three pro-
gressive tasks that are well-designed for modeling
the fine-grained features between medical mentions
in raw texts and standard entities. The standard
entity information of NEN is introduced into the
NER module by the mechanisms in our framework.
With the help of the dynamic language features
and progressive multi-task learning, the framework

can extract the medical mentions more exactly and
map them to standard entities. And the semantic
correlation between medical mentions and standard
entities is built on the three progressive tasks from
low to high. The rich semantics captured by the
progressive tasks are beneficial to NER and NEN.

4.4 Further Discussion
To dig into the framework, we conduct the detailed
analysis for presenting it in different aspects. The
ablation study is conducted to present the effective-
ness of the mechanisms proposed in the framework.
Besides the supervised learning, our framework ex-
ploits the standard entity information in the NER
task and is potential in a zero-shot scenario com-
pared with BioBERT. We conduct the case study
to analyze the prediction results and visualize the
attention mechanism to prove its effectiveness.

4.4.1 Ablation Study
As shown in Table 2, we conduct the ablation study
to present the effectiveness of the progressive tasks
and different mechanisms. When free from com-
pleting the mid- or high-level tasks, E2EMERN
gains worse results on NER and NEN. The pro-
gressive tasks improves the ability of the frame-
work to learn the multi-grained features between
original texts and standard entities. Besides, we
replace the gate and attention mechanisms with
the simple feature concatenation strategy as com-
pared methods. When removed the attention mech-
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Text1: the von hippel - lindau tumor suppressor gene is required for cell cycle exit upon serum withdrawal .
Ground Truth: O B-Disease I-Disease I-Disease I-Disease I-Disease O O O O O O O O O O O O
BioBERT: O B-Disease I-Disease O O O O O O O O O O O O O O O

E2EMERN:
O B-Disease I-Disease I-Disease I-Disease I-Disease O O O O O O O O O O O O

+ MeSH:D006623

Text2: genotype - phenotype analyses in cowden disease and bannayan - zonana syndrome , two hamartoma syndromes with germline pten mutation .
Ground Truth: O O O O O B-Disease I-Disease O B-Disease I-Disease I-Disease I-Disease O O B-Disease I-Disease O O O O O
BioBERT: O O O O O B-Disease I-Disease O O O O O O O O O O O O O O

E2EMERN:
O O O O O B-Disease I-Disease O B-Disease I-Disease I-Disease I-Disease O O B-Disease I-Disease O O O O O

+ MeSH:D006223

Text3: reasons for seizures were ruled out and the convulsions stopped few hours after cessation of morphine and did not reoccur in 8 months .
Ground Truth: O O B-Disease O O O O O O O O O O O O B-Chemical O O O O O O O O
BioBERT: O O B-Disease O O O O O O O O O O O O B-Chemical O O O O O O O O

E2EMERN:
O O B-Disease O O O O O O O O O O O O B-Chemical O O O O O O O O

+ MeSH:D009020

Text4: male sprague dawley rats were treated with betaine ( 100 , 200 , and 400 mg / kg ) orally for 40 days .
Ground Truth: O O O O O O O B-Chemical O O O O O O O O O O O O O O O O
BioBERT: O O O O O O O O O O O O O O O O O O O O O O O O

E2EMERN:
O O O O O O O B-Chemical O O O O O O O O O O O O O O O O

+ MeSH:D001622

Table 3: The case study results on NCBI and BC5CDR. “Text1” and “Text2” are from NCBI, and the other two
are from BD5CDR. “Text2” and “Text4” are the unseen samples from the test set of two datasets. The standard
entities coupled with each text are the input of E2EMERN.

anism, E2EMERN achieves worse results on two
tasks. It proves that the supervised signals from
mid-level task are beneficial to the low-task. And
the entity-attention feature generated by the mecha-
nism contributes to the high-level task. E2EMERN
without the gate mechanism gains the worse results
on NEN. Because the mechanism aggregates the
features from lower level tasks which provides the
multi-grained information between mentions and
standard entities. The ablation study proves the
importance of the two mechanisms to E2EMERN.

4.4.2 Results on Unseen Samples
We conduct the statistic analysis on the test set of
NCBI and BC5CDR. As shown in Figure 4, there
are about 40% ∼ 50% samples contain the words
or medial mentions which do not appear in the
training set. Therefore, we need to evaluate the gen-
eralization ability of models on the unseen samples.
We compare E2EMERN with BioBERT on the un-
seen samples in the test set. To a certain extent,
our framework can outperform the existing state-
of-the-art NER model. Compared with BioBERT,
E2EMERN introduces the standard entity base into
the framework. The fine-grained location infor-
mation of medical mentions from the high-level
task is propagated to the low-level task. With the
help of standard entity information and progressive
multi-task learning, E2EMERN can gain the better
generalization ability on unseen samples.

4.4.3 Case Study
We present the case study results in Table 3. Com-
pared with BioBERT, our framework can extract
the medical mentions which BioBERT can not ex-
tract. We draw the label results of E2EMERN with

Seen
47.1%

Unseen
52.9%

NCBI

Seen
61.4%

Unseen
38.6%

BC5CDR

NCBI BC5CDR
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1 0.4521

0.5284

0.7622
0.7092

NER
BioBERT
E2EMERN

Figure 4: The results on unseen samples. The left part
is the proportions of seen and unseen samples in test
sets. The unseen samples mean that the words or med-
ical mentions included of them do not appear in the
training and development sets. The right part is the
NER results of unseen samples in test sets.

the heat map. As the color deepens, the impor-
tance of the token in the sentence increases. The
visualization results prove that the attention mech-
anism in E2EMERN focuses on the tokens which
make of medical mentions. Although “Text2” and
“Text4” are unseen samples, E2EMERN can also
extract the mentions in them. The token “convul-
sions” is paid more attention than “seizures” in
“Text3”. But convulsion is the symptom of seizures.
With the help of medical correlation between them,
E2EMERN can extract the token “seizures” as med-
ical mention. To some extent, the effectiveness of
E2EMERN can be proved by the case study.
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5 Conclusion

In this paper, we reconsider the process of NER and
NEN and propose the end-to-end progressive multi-
task learning framework for medical named entity
recognition and normalization. Compared with ex-
isting methods, the framework consists of three
tasks with progressive difficulty which contributes
to modeling the fine-grained features between med-
ical mentions in raw texts and standard entities.
Furthermore, the detailed analysis of E2EMERN
proves its effectiveness. Considering the medical
area is various, we will try to adapt the framework
to the cross domain problem.
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