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Abstract

A neural multimodal machine translation
(MMT) system is one that aims to perform bet-
ter translation by extending conventional text-
only translation models with multimodal infor-
mation. Many recent studies report improve-
ments when equipping their models with the
multimodal module, despite the controversy of
whether such improvements indeed come from
the multimodal part. We revisit the contribu-
tion of multimodal information in MMT by de-
vising two interpretable MMT models. To our
surprise, although our models replicate sim-
ilar gains as recently developed multimodal-
integrated systems achieved, our models learn
to ignore the multimodal information. Upon
further investigation, we discover that the im-
provements achieved by the multimodal mod-
els over text-only counterparts are in fact re-
sults of the regularization effect. We report em-
pirical findings that highlight the importance
of MMT models’ interpretability, and discuss
how our findings will benefit future research.

1 Introduction

Multimodal Machine Translation (MMT) aims at
designing better translation systems by extending
conventional text-only translation systems to take
into account multimodal information, especially
from visual modality (Specia et al., 2016; Wang
et al., 2019). Despite many previous success in
MMT that report improvements when models are
equipped with visual information (Calixto et al.,
2017; Helcl et al., 2018; Ive et al., 2019; Lin et al.,
2020; Yin et al., 2020), there have been continuing
debates on the need for visual context in MMT.

In particular, Specia et al. (2016); Elliott et al.
(2017); Barrault et al. (2018) argue that visual con-
text does not seem to help translation reliably, at

*The majority of this work was done while the first author
was interning at Tencent Al Lab.

least as measured by automatic metrics. Elliott
(2018); Gronroos et al. (2018a) provide further ev-
idence by showing that MMT models are, in fact,
insensitive to visual input and can translate without
significant performance losses even in the pres-
ence of features derived from unrelated images. A
more recent study (Caglayan et al., 2019), however,
shows that under limited textual context (e.g., noun
words are masked), models can leverage visual in-
put to generate better translations. But it remains
unclear where the gains of MMT methods come
from, when the textual context is complete.

The main tool utilized in prior discussion is ad-
versarial model comparison — explaining the be-
havior of complex and black-box MMT models by
comparing performance changes when given adver-
sarial input (e.g., random images). Although such
an opaque tool is an acceptable beginning to in-
vestigate the need for visual context in MMT, they
provide rather indirect evidence (Hessel and Lee,
2020). This is because performance differences
can often be attributed to factors unrelated to vi-
sual input, such as regularization (Kukacka et al.,
2017), data bias (Jabri et al., 2016), and some oth-
ers (Dodge et al., 2019).

From these perspectives, we revisit the need
for visual context in MMT by designing two in-
terpretable models. Instead of directly infusing
visual features into the model, we design learnable
components, which allow the model to voluntarily
decide the usefulness of the visual features and re-
inforce their effects when they are helpful. To our
surprise, while our models are shown to be effective
on Multi30k (Elliott et al., 2016) and VaTex (Wang
et al., 2019) datasets, they learn to ignore the mul-
timodal information. Our further analysis suggests
that under sufficient textual context, the improve-
ments come from a regularization effect that is sim-
ilar to random noise injection (Bishop, 1995) and
weight decay (Hanson and Pratt, 1989). The addi-
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tional visual information is treated as noise signals
that can be used to enhance model training and lead
to a more robust network with lower generalization
error (Salamon and Bello, 2017). Repeating the
evaluation under limited textual context further sub-
stantiates our findings and complements previous
analysis (Caglayan et al., 2019).

Our contributions are twofold. First, we revisit
the need for visual context in the popular task of
multimodal machine translation and find that: (1)
under sufficient textual context, the MMT models’
improvements over text-only counterparts result
from the regularization effect (Section 5.2). (2)
under limited textual context, MMT models can
leverage visual context to help translation (Sec-
tion 5.3). Our findings highlight the importance of
MMT models’ interpretability and the need for a
new benchmark to advance the community.

Second, for the MMT task, we provide a strong
text-only baseline implementation and two mod-
els with interpretable components that replicate
similar gains as reported in previous works. Differ-
ent from adversarial model comparison methods,
our models are interpretable due to the specifically
designed model structure and can serve as stan-
dard baselines for future interpretable MMT stud-

ies. Our code is available at https://github.

com/LividWo/Revisit—MMT.

2 Background

One can broadly categorize MMT systems into two
types: (1) Conventional MMT, where there is gold
alignment between the source (target) sentence pair
and a relevant image and (2) Retrieval-based MMT,
where systems retrieve relevant images from an im-
age corpus as additional clues to assist translation.

Conventional MMT Most MMT systems re-
quire datasets consist of images with bilingual an-
notations for both training and inference. Many
early attempts use a pre-trained model (e.g.,
ResNet (He et al., 2016)) to encode images into
feature vectors. This visual representation can
be used to initialize the encoder/decoder’s hid-
den vectors (Elliott et al., 2015; Libovicky and
Helcl, 2017; Calixto et al., 2016). It can also be
appended/prepended to word embeddings as ad-
ditional input tokens (Huang et al., 2016; Calixto
and Liu, 2017). Recent works (Libovicky et al.,
2018; Zhou et al., 2018; Ive et al., 2019; Lin et al.,
2020) employ attention mechanism to generate a
visual-aware representation for the decoder. For

instance, Doubly-ATT (Calixto et al., 2017; Helcl
et al., 2018; Arslan et al., 2018) insert an extra
visual attention sub-layer between the decoder’s
source-target attention sub-layer and feed-forward
sub-layer. While there are more works on engi-
neering decoders, encoder-based approaches are
relatively less explored. To this end, Yao and Wan
(2020) and Yin et al. (2020) replace the vanilla
Transformer encoder with a multi-modal encoder.
Besides the exploration on network structure, re-
searchers also propose to leverage the benefits of
multi-tasking to improve MMT (Elliott and Kadar,
2017; Zhou et al., 2018). The Imagination archi-
tecture (Elliott and Kadar, 2017; Helcl et al., 2018)
decomposes multimodal translation into two sub-
tasks: translation task and an auxiliary visual recon-
struction task, which encourages the model to learn
a visually grounded source sentence representation.

Retrieval-based MMT The effectiveness of con-
ventional MMT heavily relies on the availability
of images with bilingual annotations. This could
restrict its wide applicability. To address this is-
sue, Zhang et al. (2020) propose UVR-NMT that
integrates a retrieval component into MMT. They
use TF-IDF to build a token-to-image lookup ta-
ble, based on which images sharing similar topics
with a source sentence are retrieved as relevant
images. This creates image-bilingual-annotation
instances for training. Retrieval-based models have
been shown to improve performance across a vari-
ety of NLP tasks besides MMT, such as question
answering (Guu et al., 2020), dialogue (Weston
etal., 2018), language modeling (Khandelwal et al.,
2019), question generation (Lewis et al., 2020), and
translation (Gu et al., 2018).

3 Method

In this section we introduce two interpretable
MMT models: (1) Gated Fusion for conventional
MMT and (2) Dense-Retrieval-augmented MMT
(RMMT) for retrieval-based MMT. Our design phi-
losophy is that models should learn, in an inter-
pretable manner, to which degree multimodal in-
formation is used. Following this principle, we
focus on the component that integrates multimodal
information. In particular, we use a gating matrix A
(Yin et al., 2020; Zhang et al., 2020) to control the
amount of visual information to be blended into the
textual representation. Such a matrix facilitates in-
terpreting the fusion process: a larger gating value
Aj; € [0, 1] indicates that the model exploits more
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visual context in translation, and vice versa.

3.1 Gated Fusion MMT

Given a source sentence x of length 7" and an as-
sociated image 2z, we compute the probability of
generating target sentence y of length IV by:

N
plyle,2) =[] po Wi | 2, 2,9<), (1)

)

where pg (y; | @, z,y<;) is implemented with a
Transformer-based (Vaswani et al., 2017) network.
Specifically, we first feed x into a vanilla Trans-
former encoder to obtain a textual representation
Hix € RT*4 which is then fused with visual
representation Embed jpage (2) before fed into the
Transformer decoder. For each image z, we use
a pre-trained ResNet-50 CNN (He et al., 2016) to
extract a 2048-dimensional average-pooled visual
representation, which is then projected to the same
dimension as Hiex:

Embed image (2) = W, ResNeto01 (2). (2)

We next generate a gating matrix A € [0, 1)7>¢
to control the fusion of Hiey; and Embed jmage (2):

A = sigmoid (WA Embed image (2) + UAHtext) ,

where W and U, are model parameters. Note
that this gating mechanism has been a building
block for many recent MMT systems (Zhang et al.,
2020; Lin et al., 2020; Yin et al., 2020). We are,
however, the first to focus on its interpretability.
Finally, we generate the output vector H by:

H = Hiex + A Embed image (Z) 3)

H is then fed into the decoder directly for transla-
tion as in vanilla Transformer.

3.2 Retrieval-Augmented MMT (RMMT)

RMMT consists of two sequential components:
(1) an image retriever p(z|x) that takes = as in-
put and returns Top-K most relevant images from
an image database; (2) a multi-modal translator
p(ylz, 2) =TI} po (yi | 7, Z, y<;) that generates
each y; conditioned on the input sentence x, the
image set Z returned by the retriever, and the pre-
viously generated tokens ;.

Image Retriever Based on the TF-IDF model,
searching in existing retrieval-based MMT (Zhang
et al., 2020) ignores the context information of a
given query, which could lead to poor performance.
To improve the recall of our image retriever, we
compute the similarity between a sentence = and
an image z with inner product:

sim(x,z) = Embed (ex (ar:)T Embed image(2),

where Embediey () and Embedimaee(2) are d-
dimensional representations of x and z, respec-
tively. We then retrieve top-K images that are
closest to . For Embedimage(2), we compute it by
Eq. 2. For Embedie(x), we implement it using
BERT (Devlin et al., 2019):

Embed text (.Z') - Wtext BERTCLS (':U) . (4)

Following standard practices, we use a pre-trained
BERT model! to obtain the “pooled” representation
of the sequence (denoted as BERTcrs(z)). Here,
Wit 1S a projection matrix.

Multimodal Translator Different from Gated
Fusion, p(y|z, £) now is conditioning on a set of
images rather than one single image. For each z in
Z, we represent it using Embedimage (2) € R4 as in
Equation 2. The image set Z then forms a feature
matrix Embedimage (Z) € RE*?, where K = | Z|
and each row corresponds to the feature vector of
an image. We use a transformation layer fy(x) to
extract salient features from Embedimaee(Z) and
obtain a compressed representation R? of Z. Af-
ter the transformation, ideally, we can implement
p(y|z, Z) using any existing MMT models. For
interpretability, we follow the Gated Fusion model
to fuse the textual and visual representations with
a learnable gating matrix A:

H = Heex + Af@( Embed image (Z)) (5)

Here, fy(x) denotes a max-pooling layer with win-
dow size K x 1.

4 Experiment

In this section, we evaluate our models on the
Multi30k and VaTex benchmark.

4.1 Dataset

We perform experiments on the widely-used MMT
datasets: Multi30k. We follow a standard split

"Here we use bert-base-uncased version.
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of 29,000 instances for training, 1,014 for valida-
tion and 1,000 for testing (Test2016). We also
report results on the 2017 test set (Test2017) with
extra 1,000 instances and the MSCOCO test set
that includes 461 more challenging out-of-domain
instances with ambiguous verbs. We merge the
source and target sentences in the officially pre-
processed version of Multi30k? to build a joint
vocabulary. We then apply the byte pair encod-
ing (BPE) algorithm (Sennrich et al., 2016) with
10,000 merging operations to segment words into
subwords, which generates a vocabulary of 9,712
(9,544) tokens for En-De (En-Fr).

Retriever pre-training. We pre-train the retriever
on a subset of the Flickr30k dataset (Plummer et al.,
2015) that has overlapping instances with Multi30k
removed. We use Multi30k’s validation set to eval-
uate the retriever. We measure the performance by
recall-at- K (RQK), which is defined as the frac-
tion of queries whose closest K images retrieved
contain the correct images. The pre-trained re-
triever achieves RQ1 of 22.8% and RQ5 of 39.6%.

4.2 Setup

We experiment with different model sizes (Base,
Small, and Tiny, see Appendix A for details). Base
is a widely-used model configuration for Trans-
former in both text-only translation (Vaswani et al.,
2017) and MMT (Groénroos et al., 2018b; Ive et al.,
2019). However, for small datasets like Multi30k,
training such a large model (about 50 million pa-
rameters) could cause overfitting. In our prelimi-
nary study, we found that even a Small configura-
tion, which is commonly used for low-resourced
translation (Zhu et al., 2019), can still overfit on
Multi30k. We therefore perform grid search on the
En—De validation set in Multi30k and obtain a
Tiny configuration that works surprisingly well.
We use Adam with 5, = 0.9, B2 = 0.98 for
model optimization. We start training with a warm-
up phase (2,000 steps) where we linearly increase
the learning rate from 10~ to 0.005. Thereafter we
decay the learning rate proportional to the number
of updates. Each training batch contains at most
4,096 source/target tokens. We set label smoothing
weight to 0.1, dropout to 0.3. We follow (Zhang
et al., 2020) to early-stop the training if validation
loss does not improve for ten epochs. We average
the last ten checkpoints for inference as in (Vaswani
et al., 2017) and (Wu et al., 2018). We perform

“https://github.com/multi30k/dataset

beam search with beam size set to 5. We report
4-gram BLEU and METEOR scores for all test sets.
All models are trained and evaluated on one single
machine with two Titan P100 GPUs.

4.3 Baselines

Our baselines can be categorized into three types:

* The text-only Transformer;

* The conventional MMT models: Doubly-ATT
and Imagination;

¢ The retrieval-based MMT models: UVR-NMT.

Details of these methods can be found in Section 2.
For fairness, all the baselines are implemented by
ourselves based on FairSeq (Ott et al., 2019). We
use top-5 retrieved images for both UVR-NMT
and our RMMT. We also consider two more recent
state-of-the-art conventional methods for reference:
GMNMT (Yin et al., 2020) and DCCN (Lin et al.,
2020), whose results are reported as in their papers.

Note that most MMT methods are difficult (or
even impossible) to interpret. While there exist
some interpretable methods (e.g., UVR-NMT) that
contain gated fusion layers similar to ours, they
perform sophisticated transformations on visual
representation before fusion, which lowers the in-
terpretability of the gating matrix. For example, in
the gated fusion layer of UVR-NMT, we observe
that the visual vector is order-of-magnitude smaller
than the textual vector. As a result, interpreting
gating weight is meaningless because visual vector
has negligible influence on the fused vector.

4.4 Results

Table 1 shows the BLEU scores of these methods
on the Multi30k dataset. From the table, we see
that although we can replicate similar BLEU scores
of Transformer-Base as reported in (Gronroos et al.,
2018b; Ive et al., 2019), these scores (Row 1) are
significantly outperformed by Transformer-Small
and Transformer-Tiny, which have fewer parame-
ters. This shows that Transformer-Base could over-
fit the Multi30k dataset. Transformer-Tiny, whose
number of parameters is about 20 times smaller
than that of Transformer-Base, is more robust and
efficient in our test cases. We therefore use it as
the base model for all our MMT systems in the
following discussion.

Based on the Transformer-tiny model, both our
proposed models (Gated Fusion and RMMT) and
baseline MMT models (Doubly-ATT, Imagina-
tion and UVR-NMT) significantly outperform the
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# | Model En—De En—Fr
#Params | Test2016 Test2017 MSCOCO | #Params | Test2016 Test2017 MSCOCO
Text-only Transformer
1 | Transformer-Base 49.1M 38.33 31.36 27.54 49.0M 60.60 53.16 42.83
2 | Transformer-Small | 36.5M 39.68 32.99 28.50 36.4M 61.31 53.85 44.03
3 | Transformer-Tiny 2.6M 41.02 33.36 29.88 2.6M 61.80 53.46 44.52
Existing MMT Systems
4 | GMNMT* 4.0M 39.8 32.2 28.7 - 60.9 53.9 -
5 | DCCN* 17.1M 39.7 31.0 26.7 16.9M 61.2 54.3 454
6 | Doubly-ATT* 3.2M 41.45 33.95 29.63 3.2M 61.99 53.72 45.16
7 | Imagination® 7.0M 41.31 32.89 29.90 6.9M 61.90 54.07 44.81
8 | UVR-NMT® 2.9M 40.79 32.16 29.02 2.9M 61.00 53.20 43.71
Our MMT Systems
9 | Gated Fusion® 2.9M 41.96 33.59 29.04 2.8M 61.69 54.85 44.86
10 | RMMT® 2.9M 41.45 32.94 30.01 2.9M 62.12 54.39 44.52

Table 1: BLEU scores on Multi30k. Results in row 4 and 5 are taken from the original papers. # indicates conven-
tional MMT models, while <} refer to retrieval-based models. Without further specified, all our implementations

are based on the 7iny configuration.

state-of-the-arts (GMNMT and DCCN) on En—De
translation. However, the improvement of all these
methods (Rows 4-10) over the base Transformer-
Tiny model (Row 3) is very marginal. This shows
that visual context might not be as important as
we expected for translation, at least on datasets we
explored.

We further evaluate all the methods on the ME-
TEOR scores (see Appendix C). We also run ex-
periments on the VaTex dataset (see Appendix B).
Similar results are observed as Table 1. Although
various MMT systems have been proposed recently,
a well-tuned model that uses text only remain com-
petitive. This motivates us to revisit the importance
of visual context for translation in MMT models.

S Model Analysis

Taking a closer look at the results given in the pre-
vious section, we are surprised by the observation
that our models learn to ignore visual context when
translating (Sec 5.1). This motivates us to revisit
the contribution of visual context in MMT systems
(Sec 5.2). Our adversarial evaluation shows that
adding model regularization achieves comparable
results as incorporating visual context. Finally, we
discuss when visual context is needed (Sec 5.3) and
how these findings could benefit future research.

5.1 Probe the need for visual context in MMT

To explore the need for visual context in our
models, we focus on the interpretable compo-
nent: the gated fusion layer (see Equation 3 and
5). Intuitively, a larger gating weight A;; indi-
cates the model learns to depend more on vi-

Multi30k | Gated Fusion RMMT
En—De
Test2016 4.5e-21 8.6e-13
Test2017 7.0e-17 4.0e-13
MSCOCO 9.7e-21 3.5e-14
En—Fr
Test2016 1.6e-18 1.1e-11
Test2017 7.2e-15 5.0e-12
MSCOCO 2.3e-18 5.3e-13

Table 2: Micro-averaged gating weight A on Multi30k.

sual context to perform better translation. We
quantify the degree to which visual context is
used by the micro-averaged gating weight A =
2%21 sum(A™)/(d x V'). Here M, V are the to-
tal number of sentences and words in the corpus,
respectively. sum(-) add up all elements in a given
matrix, and A is a scalar value ranges from 0 to
1. A larger A implies more usage of the visual
context.

We first study models’ behavior after conver-
gence. From Table 2, we observe that A is neg-
ligibly small, suggesting that both models learn
to discard visual context. In other words, visual
context may not be as important for translation as
previously thought. Since A is insensitive to out-
liers (e.g., large gating weight at few dimensions),
we further compute p(A;; > 1le-10): percentage
of gating weight entries in A that are larger than
le-10. With no surprise, we find that on all test
splits p(A;; > 1e-10) are always zero, which again
shows that visual input is not used by the model in
inference.

The Gated Fusion’s training process also shed
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(b) En—Fr.

Figure 1: Training dynamic of Multi30k En—de and
En—Fr translation, from Epoch 1.

some light on how the model accommodates the
visual information during training. Figure 1 (a) and
(b) shows how A changes during training, from the
first epoch. We find that, Gated Fusion starts with
a relatively high A (>0.5), but quickly decreases to
~ 0.48 after the first epoch. As the training contin-
ues, A gradually decreases to roughly zero. In the
early stages, the model relies heavily on images,
possibly because they could provide meaningful
features extracted from a pre-trained ResNet-50
CNN, while the textual encoder is randomly ini-
tialized. Compared with text-only NMT, utilizing
visual features lowers MMT models’ trust in the
hidden representations generated from the textual
encoders. As the training continues, the textual en-
coder learns to represent source text better and the
importance of visual context gradually decreases.
In the end, the textual encoder carries sufficient
context for translation and supersedes the contribu-
tions from the visual features. Nevertheless, this
doesn’t explain the superior performance of the
multimodal systems (Table 1). We speculate that
visual context is acting as regularization that helps
model training in the early stages. We further ex-
plore this hypothesis in the next section.

5.2 Revisit need for visual context in MMT

In the previous section, we hypothesize that the
gains of MMT systems come from some regulariza-
tion effects. To verify our hypothesis, we conduct
experiments based on two widely used regulariza-
tion techniques: random noise injection (Bishop,

1995) and weight decay (Hanson and Pratt, 1989).
The former simulates the effects of assumably un-
informative visual representations and the later is
a more principled way of regularization that does
not get enough attention in the current hyperpa-
rameter tuning stage. Inspecting the results, we
find that applying these regularization techniques
achieves similar gains over the text-only baseline
as incorporating multimodal information does.

For random noise injection, we keep all hyper-
parameters unchanged but replace visual features
extracted using ResNet with randomly initialized
vectors, which are noise drawn from a standard
Gaussian distribution. A MMT model equipped
with ResNet features is denoted as a ResNet-based
model, while the same model with random initial-
ization is denoted as a noise-based model. We
run each experiment three times and report the av-
eraged results. Note that values in parentheses
indicate the performance gap between the ResNet-
based model and its noise-based adversary.

Table 3 shows BLEU scores on the Multi30k
dataset. Each column in the table corresponds
to a test set “contest”. From the table, we ob-
serve that, among 18 (3 methods x 3 test sets x
2 tasks) contests with the Transformer model (row
1), noise-based models (rows 2-4) achieve better
performance 13 times, while ResNet-based models
win 14 cases. This shows that noise-based models
perform comparably with ResNet-based models. A
further comparison between noise-based models
and ResNet-based models shows that they are com-
patible after 18 contests, in which the former wins
8 times and the latter wins 10 times.

We observe similar results when repeating above
evaluation using METEOR (Tabel 9 ) and on VaTex
(Table 7 ). These observations deduce that random
noise could function as visual context. In MMT
systems, adding random noise or visual context
can help reduce overfitting (Bishop et al., 1995)
when translating sentences in Multi30k, which are
short and repetitive (Caglayan et al., 2019). More-
over, we find that the > norm of model weights in
ResNet-based Gated Fusion and noise-based Gated
Fusion are only 97.7% and 95.2% of that in Trans-
former on En—De, respectively. This further ver-
ifies our speculation that, as random noise injec-
tion (An, 1996), visual context can help weight
smoothing and improve model generalization.

Further, we regularize the models with weight de-
cay. We consider three models: the text-only Trans-
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4 | Model En—De En—Fr

Test2016 Test2017 MSCOCO Test2016 Test2017 MSCOCO
1 | Transformer 41.02 33.36 29.88 61.80 53.46 44.52
2 | Doubly-ATT | 41.53(+0.08) 33.90(-0.05) 29.76(+0.15) | 61.85(-0.35) 54.61(+0.46) 44.85(-0.80)
3 | Imagination | 41.20(-0.11) 33.32(+0.42) 29.92(+0.02) | 61.28(-0.62) 53.74(-0.33) 44.89(+0.08)
4 | Gated Fusion | 41.53(-0.45) 33.52(-0.07) 29.87(+0.83) | 61.58(-0.11) 54.21(-0.64) 44.88(+0.02)

Table 3: BLEU scores on Multi30k with randomly initialized visual representation. Numbers in parentheses
indicate the relative improvement/deterioration compared with the same model with ResNet feature initialization.

\ BLEU METEOR A
1 | Transformer 11.39 35.53 -
2 +weight decay 0.1  11.66 35.95 -
w. ResNet features
3 Gated Fusion 14.79 40.41 0.047
4 RMMT 16.67 43.62 0.011
w. random noise
5 Gated Fusion 11.40 35.44 0.032
6 RMMT 12.08 37.60 0.010

Table 4: Adversarial evaluation with limited textual
context on Multi30k En-De Test2016.

former, the representative existing MMT method
Doubly-ATT, and our Gated Fusion method. Fig-
ure 2 and 3 (in Appendix C) show the BLEU
and METEOR scores of these methods on En—De
translation as weight decay rate changes, respec-
tively. We see that the best results of the text-only
Transformer model with fine-tuned weight decay
are comparable or even better than that of the MMT
models Doubly-ATT and Gated Fusion that utilize
visual context. This again shows that visual context
is not as useful as we expected and it essentially
plays the role of regularization.

5.3 When is visual context needed in MMT

Despite the less importance of visual information
we showed in previous sections, there also exist
works that support its usefulness. For example,
Caglayan et al. (2019) experimentally show that,
with limited textual context (e.g., masking some
input tokens), MMT models will utilize the visual
input for translation. This further motivates us to
investigate when visual context is needed in MMT
models. We conduct experiment with a new mask-
ing strategy that does not need any entity linking an-
notations as in Caglayan et al. (2019). Specifically,
we follow Tan and Bansal (2020) to collect a list
of visually grounded tokens. A visually grounded
token is the one that has more than 30 occurrences
in the Multi30k dataset with stop words removed.

Masking all visually grounded tokens will affect
around 45% of tokens in Multi30k.

Table 4 shows the adversarial study with visu-
ally grounded tokens masked. In particular, we
select Transformer, Gated Fusion and RMMT as
representative methods. From the table, we see that
random noise injection (row 5,6) and weight de-
cay (row 2) can only bring marginal improvement
over the text-only Transformer model. However,
ResNet-based models that utilize visual context sig-
nificantly improve the translation results. For ex-
ample, RMMT achieves almost 50% gain over the
Transformer on the BLEU score. Moreover, both
Gated Fusion and RMMT using ResNet features
lead to a larger A value than that when textual con-
text is sufficient as shown in Table 2. Those results
further suggest that visual context is needed when
textual context is insufficient. In addition to token
masking, sentences with incorrect, ambiguous and
gender-neutral words (Frank et al., 2018) might
also need visual context to help translation. There-
fore, to fully exert the power of MMT systems, we
emphasize the need for a new MMT benchmark,
in which visual context is deemed necessary to
generate correct translation.

Interestingly, even with ResNet features, we ob-
serve a significant drop in both BLEU and ME-
TEOR scores compared with those in Table 1 and
8, similar to that reported in (Chowdhury and El-
liott, 2019). The reason could be two-fold. On the
one hand, there are many words that can not be visu-
alized. For example, in Table 5 (a), although Gated
Fusion can successfully identify the main objects
in the image (“little boys pose with a puppy”), it
fails to generate the more abstract concept “family
picture”. On the other hand, when translating differ-
ent words, it is difficult to capture correct regions
in images. For example, in Table 5 (b), we see
that Gated Fusion incorrectly generates the word
frauen (women) because it captures the woman at
the top-right corner of the image.
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Figure 2: BLEU score curves on En—De translation with different weight decay rate.

SRC: two young boys pose with a puppy for a family picture
NMT: zwei braune-hunde-spielen mit einem spielzeug fiir einen tennisball
(two brown dogs play with a toy for a tennis ball)
MMT: zwei Kleine jungen posieren mit einem welpen fiir einfote
(two little boys pose with a puppy for a photo)
REF: zwei kleine jungen posieren mit einem welpen fiir eine familienfoto
(two little boys pose with a puppy for a family photo)
SRC: two men sitting in a restaurant
NMT: zwei kinderspielen in einem springbrannen
(two children are playing in a fountain)
(b) MMT: zwei frasen sitzen in einem restaurant
(two women are sitting in a restaurant)
e . * REF: zwei ménner sitzen in einem restaurant

(two men are sitting in a restaurant)

Table 5: Case studies under limited textual input. We use underline to denote masked tokens, and strikethreugh
(bold) font to denote ineerreet (correct) lexical choices. We use Gated Fusion for analysis.

5.4 Discussion

Finally, we discuss how our findings might bene-
fit future MMT research. First, a benchmark that
requires more visual information than Multi30k
to solve is desired. As shown in Section 5.2, sen-
tences in Multi30k are rather simple and easy-to-
understand. Thus textual context could provide
sufficient information for correct translation, mak-
ing visual modules relatively redundant in these
systems. While the MSCOCO test set in Multi30k
contains ambiguous verbs and encourages models
to use image sources for disambiguation, we still
lack a corresponding training set.

Second, our methods can serve as a verifica-
tion tool to investigate whether visual grounding is
needed in translation for a new benchmark.

Third, we find that visual feature selection is
also critical for MMT’s performance. While most
methods employ the attention mechanism to learn
to attend relevant regions in an image, the shortage
of annotated data could impair the attention mod-
ule (see Table 5 (b)). Some recent efforts (Yin

et al.,, 2020; Lin et al., 2020; Caglayan et al.,
2020) address the issue by feeding models with pre-
extracted visual objects instead of the whole image.
However, these methods are easily affected by the
quality of the extracted objects. Therefore, a more
effective end-to-end visual feature selection tech-
nique is needed, which can be further integrated
into MMT systems to improve performance.

6 Conclusion

In this paper we devise two interpretable mod-
els that exhibit state-of-the-art performance on the
widely adopted MMT datasets — Multi30k and the
new video-based dataset — VaTex. Our analysis
on the proposed models, as well as on other ex-
isting MMT systems, suggests that visual context
helps MMT in the similar vein as regularization
methods (e.g., weight decay), under sufficient tex-
tual context. Those empirical findings, however,
should not be understood as us downplaying the
importance existing datasets and models; we be-
lieve that sophisticated MMT models are necessary

6160



for effective grounding of visual context into trans-
lation. Our goal, rather, is to (1) provide additional
clarity on the remaining shortcomings of current
dataset and stress the need for new datasets to move
the field forward; (2) emphasise the importance of
interpretability in MMT research.
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A Training Settings

Table 6 shows the configuration of different model
sizes.

Model component ‘ Base ‘ Small ‘ Tiny

Number of encoder/decoder layers 6 6 4
Input/Output layer dimension 512 | 512 | 128
Inner feed-forward layer dimension | 2048 | 1024 | 256
Number of attention heads 8 4 4

Table 6: Model configurations for Base, Small, and
Tiny.

B Results on VaTex

VaTex is a video-based MMT corpus that con-
tains 129,955 English-Chinese sentence pairs for
training, 15,000 sentence pairs for validation, and
30,000 sentence pairs for testing. Each pair of sen-
tences is associated with a video clip. Since the
testing set is not publicly available, we use half of
the validation set for validating and the other half
for testing. We apply the byte pair encoding al-
gorithm on the lower-cased English sentences and
split Chinese sentences into sequences of charac-
ters, resulting in a vocabulary of 17,216 English
tokens and 3,384 Chinese tokens. We use the video
features provided along with the VaTex dataset, in
which each video is represented as R¥*1024 where
k is the number of segments. Since some MMT
systems take a “global” visual feature as input, we
use 3D-Max-Pooling to extract the pooled repre-
sentation R'%?* for each video.

Model |  BLEU | METEOR
Transformer 35.82 59.02
+weight decay 0.1 36.32 59.38
+weight decay 0.01 36.07 59.14
+weight decay 0.001 3592 59.22
Doubly-ATT 36.05 (35.46) | 59.26 (58.84)
Imagination 36.25 (36.10) | 59.26 (59.15)
Gated Fusion 36.06 (36.01) | 59.34 (59.33)
RMMT 36.35 (36.43) | 59.44 (59.57)

Table 7: Results on VaTex En-Zh translation. Numbers
in parentheses are the performance of the same model
with random noise initialization.

The results are shown in Table 7. We observe
that although most MMT systems show improve-
ment over the Transformer baseline, the gains are
quite marginal. Indicating that although image-
based MMT models can be directly applied to

video-based MMT, there is still room for improve-
ment due to the challenge of video understand-
ing. We also note that (a) regularize the text-only
Transformer with weight decay demonstrates sim-
ilar gains as injecting video information into the
models; (b) replacing video features with random
noise replicate comparable performance, which fur-
ther supports our findings in Section 5.2.

C Results on METEOR

We also report our results based on ME-
TEOR (Banerjee and Lavie, 2005), which con-
sistently demonstrates higher correlation with hu-
man judgments than BLEU does in independent
evaluations such as in EMNLP WMT 2011 3.
From Table 8, we can see that on En-Fr transla-
tion, MMT systems demonstrate similar improve-
ments over text-only baselines in both METEOR
and BLEU(see Table 1). On En-De translation,
however, MMT systems are mostly on-par with
Transformer-tiny on METEOR and do not show
consistent gains as BLEU. We hypothesis the rea-
son being that En-De sets are created in a image-
blind fashion, in which the crowd-sourcing work-
ers produce translations without seeing the im-
ages (Frank et al., 2018). Such that source sen-
tence can already provide sufficient context for
translation. When creating the En-Fr corpus, the
image-blind issue is fixed (Elliott et al., 2017), thus
images are perceived as “needed” in the translation
for whatever reason. Although BLEU is unable
to elicit this difference, evaluation based on ME-
TEOR captured it and confirmed previous research.
We also compute METEOR scores for our exper-
iments that regularize models with random noise
(see Table 9) and weight decay (see Figure 3). The
results are consistent with those evaluated using
BLEU and further complement our early findings.

D Results on IWSLT’14

We also evaluate the retrieval-based model RMMT
on text-only corpus — IWSLT’14. The IWSLT’ 14
dataset contains 160k bilingual sentence pairs for
En-De translation task. Following the common
practice, we lowercase all words, split 7k sentence
pairs from the training dataset for validation and
concatenate dev2010, dev2012, tst2010, tst2011,
tst2012 as the test set. The number of BPE opera-
tions is set to 20,000. We use the Small configura-
tion in all our experiments. The dropout and label

3http://statmt.org/wmt11/papers.html
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4 | Model En—De En—Fr
#Params | Test2016 Test2017 MSCOCO | #Params | Test2016 Test2017 MSCOCO
Text-only Transformer
1 | Transformer-Base 49.1M 65.92 60.02 54.73 49.0M 80.09 74.93 68.57
2 | Transformer-Small | 36.5M 66.01 60.80 55.95 36.4M 80.71 75.74 69.10
3 | Transformer-Tiny 2.6M 68.22 62.05 56.64 2.6M 81.02 75.62 69.43
Existing MMT Systems
4 | GMNMT* 4.0M 57.6 51.9 47.6 - 74.9 69.3 -
5 | DCCN* 17.1M 56.8 49.9 45.7 16.9M 76.4 70.3 65.0
6 | Doubly-ATT* 3.2M 68.04 61.83 56.21 3.2M 81.12 75.71 70.25
7 | Imagination® 7.0M 68.06 61.29 56.57 6.9M 81.2 76.03 70.35
Our MMT Systems
9 | Gated Fusion® 2.9M 67.84 61.94 56.15 2.8M 80.97 76.34 70.51
10 | RMMT® 2.9M 67.97 61.71 56.33 2.9M 81.29 76.09 70.24

Table 8: METEOR scores on Multi30k. Results in row 4 and 5 are taken from the original papers. # indicates
conventional MMT models, while <} refers to retrieval-based models. Without further specification, all our imple-
mentations are based on the 7iny configuration.

# | Model En—De En—Fr

Test2016 Test2017 MSCOCO Test2016 Test2017 MSCOCO
1 | Transformer 68.22 62.05 56.64 81.02 75.62 69.43
2 | Doubly-ATT | 68.39(+0.35) 61.83(+0.0) 56.46(+0.25) | 81.27(+0.15) 76.22(+0.51) 70.21(-0.04)
3 | Imagination 67.93(-0.13) 61.84(+0.55) 56.49(-0.08) | 80.75(-0.45) 76.57(+0.54) 69.88(-0.47)
4 | Gated Fusion | 68.25(+0.41) 61.5(-0.44)  55.93(-0.22) | 81.22(+0.25) 76.01(-0.33) 70.33(-0.18)

Table 9: METEOR scores on Multi30k with randomly initialized visual representation. Numbers in parentheses
indicate the relative improvement/deterioration compared with the original model with ResNet features.

—<— Transformer
—=— Doubly-ATT
#— Gated Fusion

0 0.001

0.1 0.01
Weight Decay Rate

(a) Test2016.

0.0001

—<— Transformer
—+— Doubly-ATT
62.50 =— Gated Fusion

0.01 0.001
Decay Rate

0.0001

0.1
Weight

(b) Test2017.

—<— Transformer
—=— Doubly-ATT
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Weight Decay Rate

(c) MSCOCO.

0 0.0001

Figure 3: METEOR score curves on En—De translation with different weight decay rate.
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Model BLEU

Transformer-Small 28.62
+weight decay 0.0001  29.14
RMMT-Small 29.03

Table 10: BLEU score on IWSLT’ 14 EN—DE transla-
tion.

smoothing rate are set to 0.3 and 0.1, respectively.
Since there is no images associated with IWSLT,
we follow (Zhang et al., 2020) and retrieve top-5
images from Multi30K corpus.

From Table 10, we see that Transformer with-
out weight decay is marginally outperformed by
RMMT, but achieves slightly higher BLEU scores
when trained with a 0.0001 weight decay. Our
discussion in Section 5.2 sheds light on why
visual context is helpful on non-grounded low-
resourced datasets like IWSLT 14 — for low-
resourced dataset like IWSLT’ 14, injecting visual
context help regularize model training and avoid
overfitting.
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