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Abstract

Dense passage retrieval has been shown to be
an effective approach for information retrieval
tasks such as open domain question answering.
Under this paradigm, a dual-encoder model
is learned to encode questions and passages
separately into vector representations, and all
the passage vectors are then pre-computed and
indexed, which can be efficiently retrieved
by vector space search during inference time.
In this paper, we propose a new contrastive
learning method called cross momentum con-
trastive learning (xMoCo), for learning a dual-
encoder model for query-passage matching.
Our method efficiently maintains a large pool
of negative samples like the original MoCo,
and by jointly optimizing question-to-passage
and passage-to-question matching, enables us-
ing separate encoders for questions and pas-
sages. We evaluate our method on various
open domain QA datasets, and the experimen-
tal results show the effectiveness of the pro-
posed approach.

1 Introduction

Retrieving relevant passages given certain query
from a large collection of documents is a crucial
component in many information retrieval systems
such as web search and open domain question
answering (QA). Current QA systems often em-
ploy a two-stage pipeline: a retriever is firstly used
to find relevant passages, and then a fine-grained
reader tries to locate the answer in the retrieved
passages. As recent advancement in machine read-
ing comprehension (MRC) has demonstrated ex-
cellent results of finding answers given the correct
passages (Wang et al., 2017), the performance of
open-domain QA systems now relies heavily on the
relevance of the selected passages of the retriever.

Traditionally the retrievers usually utilize sparse
keywords matching such as TF-IDF or BM25

(Robertson and Zaragoza, 2009), which can be effi-
ciently implemented with an inverted index. With
the popularization of neural network in NLP, the
dense passage retrieval approach has gained trac-
tion (Karpukhin et al., 2020). In this approach, a
dual-encoder model is learned to encode questions
and passages into a dense, low-dimensional vector
space, where the relevance between questions and
passages can be calculated by the inner product
of their respective vectors. As the vectors of all
passages can be pre-computed and indexed, dense
passage retrieval can also be done efficiently with
vector space search methods during inference time
(Shrivastava and Li, 2014).

Dense retrieval models are usually trained with
contrastive objectives between positive and nega-
tive question-passage pairs. As the positive pairs
are often given by the training data, one challenge
in contrastive learning is how to select negative
examples to avoid mismatch between training and
inference. During inference time, the model needs
to find the correct passages from a very large set of
pre-computed candidate vectors, but during train-
ing, both positive and negative examples need to
be encoded from scratch, thus severely limiting the
number of negative examples due to computational
cost. One promising way to reduce the discrepancy
is momentum constrastive learning (MoCo) pro-
posed by He et al. (2020). In this method, a pair
of fast/slow encoders are used to encode questions
and passages, respectively. The slow encoder is
updated as a slow moving average of the fast en-
coder, which reduces the inconsistency of encoded
passage vectors between subsequent training steps,
enabling the encoded passages to be stored in a
large queue and reused in later steps as negative
examples. Unfortunately, directly applying MoCo
in question-passage matching is problematic. Un-
like the image matching tasks in original MoCo
paper, the questions and passages are distinct from
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each other and not interchangeable. Furthermore,
the passages are only encoded by the slow encoder,
but the slow encoder is only updated with momen-
tum from the fast encoder, not directly affected
by the gradients. As the fast encoder only sees
the questions, the training becomes insensitive to
the passage representations and fails to learn prop-
erly. To solve this problem, we propose a new con-
trastive learning method called Cross Momentum
Contrastive Learning (xMoCo). xMoCo employs
two sets of fast/slow encoders and jointly optimizes
the question-passage and passage-question match-
ing tasks. It can be applied to scenarios where the
questions and passages require different encoders,
while retaining the advantage of efficiently main-
taining a large number of negative examples. We
test our method on several open-domain QA tasks,
and the experimental results show the effectiveness
of the proposed approach.

To summarize, the main contributions of this
work are as follows:

• We proposes a new momentum contrastive
learning method, Cross Momentum Contrast
(xMoCo), which can learn question-passage
matching where questions and passages re-
quire different encoders.

• We demonstrate the effectiveness of xMoCo
in learning a dense passage retrieval model
for various open domain question answering
datasets.

2 Related Work

There are mainly two threads of research work re-
lated to this paper.

2.1 Passage Retrieval for QA

Retrieving relevance passages is usually the first
step in the most QA pipelines. Traditional pas-
sage retriever utilizes the keyword-matching based
methods such as TF-IDF and BM25 (Chen et al.,
2017). Keyword-based approach enjoys its sim-
plicity, but often suffers from term mismatch be-
tween questions and passages. Such term mismatch
problem can be reduced by either query expansion
(Carpineto and Romano, 2012) or appending gen-
erated questions to the passages (Nogueira et al.,
2019). Dense passage retrieval usually involves
learning a dual-encoder to map both questions
and passages into dense vectors, where their inner-
product denotes their relevance (Lee et al., 2019).

The challenge in training a dense retriever often lies
in how to select negative question-passage pairs.
As a small number of randomly generated negative
pairs are considered too easy to differentiate, previ-
ous work has mainly focused on how to generate
“hard” negatives. Karpukhin et al. (2020) selects
one negative pair from the top results retrieved by
BM25 as hard examples, in addition to one ran-
domly sampled pair. Xiong et al. (2020) uses an
iterative approach to gradually produce harder neg-
atives by periodically retrieving top passages for
each question using the trained model. In addi-
tion to finding hard negatives, Ding et al. (2020)
also address the problem of false negatives by fil-
tering them out using a more accurate, fused input
model. Different from the above works, our ap-
proach aims to address this problem by enlarging
the pool of negative samples using momentum con-
trastive learning, and can be adapted to incorporate
harder, cleaner negative samples by other methods.

2.2 Momentum Contrastive Learning

Momentum contrastive learning (MoCo) is orig-
inally proposed by He et al. (2020). He et al.
(2020) learns image representations by training
the model to find the heuristically altered images
among a large set of other images. It is later im-
proved by constructing better positive pairs (Chen
et al., 2020). Different from the image counter-
part, many NLP tasks has readily available positive
pairs such question-passage pairs. Here the main
benefit of momentum contrastive learning is to ef-
ficiently maintain a large set of negative samples,
thus making the learning process more consistent
with the inference. One example of applying mo-
mentum contrastive learning in NLP is Chi et al.
(2020). In their work, momentum contrastive learn-
ing is employed to optimize the InfoNCE lower
bound between parallel sentence pairs from differ-
ent languages. Different from the above works, the
questions and passages in our work are not inter-
changeable and require different encoders, which
renders the original MoCo not directly applicable.

3 Background

3.1 Task description

In this paper, we deal with the task of retrieving
relevant passages given certain natural language
questions. Given a question q and a collection of
N passages {q1, q2, . . . , qN}, a passage retriever
aims to return a list of passages {qi1 , qi2 , . . . , qiM }
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ranked by their relevance to q. While the number
of retrieved passages M is usually in the magni-
tude of hundreds or thousands, the number of total
passages N is typically very large, possibly in mil-
lions or billions. Such practical concern places
constraints in model choices of the passage retriev-
ers.

3.2 Dual-encoder framework for dense
passage retrieval

The de-facto “go-to” choice for dense passage re-
trieval is the dual-encoder approach. In this frame-
work, a pair of encoders Eq and Ep, usually im-
plemented as neural networks, are used to map
the question q and the passage p into their low-
dimensional vectors separately. The relevance or
similarity score between q and p is calculated as
the inner product of the two vectors:

s(q, p) = Eq(q) · Ep(p)

The advantage of this approach is that the vectors of
all passages can be pre-computed and stored. Dur-
ing inference, we only need to compute the vector
for the question, and the maximum inner product
search (MIPS) (Shrivastava and Li, 2014) can be
used to efficiently retrieve most relevant passages
from a large collection of candidates. It is possible
to train a more accurate matching model if the q and
p are fused into one input sequence, or if a more
sophisticated similarity model is used instead of
the simple inner-product, but those changes would
no longer permit efficient retrieval, thus can only
be used in a later “re-ranking” stage.

The training data D for passage retrieval con-
sists of a collection of positive question-passage
pairs {(p1, q1), (p2, q2), . . . , (pn, qn)}, and an ad-
ditional m passages {pn+1, . . . , pn+m} without
their corresponding questions. The encoders are
trained to optimize the negative log-likelihood of
all positive pairs:

L(D, Eq, Ep) = −
n∑

i=1

log
exp s(qi, pi)∑n+m

j=1 exp s(qi, pj)

As the number of negative pairs (n + m − 1) is
very large, it is infeasible to optimize the loss di-
rectly. Instead, only a subset of the negative sam-
ples will be selected to compute the denominator in
the above equation. The selection of the negative
samples is critical to the performance of trained
model. Previous works such as Xiong et al. (2020)

and Ding et al. (2020) mainly focus on selecting a
few “hard” examples, which hve higher similarity
scores with the question and thus contribute more
to the sum in the denominator. In this work, we will
explore how to use a large set of negative samples
to better approximate the sum in the denominator.

4 Method

4.1 Momentum contrast for passage retrieval

We briefly review momentum contrast and explain
why directly applying momentum contrast for pas-
sage retrieval is problematic.

Momentum contrast method employs a pair of
encoders Eq and Ep. For each training step, the
training pair of qi and pi is encoded as Eq(qi) and
Ep(pi) respectively, which is identical to other
training method. The key difference is that mo-
mentum contrast maintains a queue Q of passage
vectors {Ep(pi−k)}k encoded in previous training
steps. The passage vectors in the queue serve as
negative candidates for the current question qi. The
process is computationally efficient since the vec-
tors for negative samples are not re-computed, but
it also brings the problem of staleness: the vectors
in the queue are computed by the previous, not
up-to-date models. To reduce the inconsistency,
momentum contrast uses momentum update on the
encoder Ep, making Ep a slow moving-average
copy of the question encoder Eq. The gradient
from the loss function is only directly applied to
the question encoder Eq, not the passage encoder
Ep. After each training step, the newly encoded
Epi is pushed into the queue and the oldest vector is
discarded, keeping the queue size constant during
training. Such formulation poses no problem for
the original MoCo paper (He et al., 2020), because
their “questions” and “passages” are both images
and are interchangeable. Unfortunately, in our pas-
sage retrieval problem, the questions and passages
are distinct, and it is desirable to use different en-
coders Eq and Ep. Even in scenarios where the
parameters of the two encoders can be shared, the
passages are only encoded by the passage encoder
Ep, but the gradient from the loss is not applied on
the passage encoder. It makes the training process
insensitive to the input passages, thus unable to
learn reasonable representations.

4.2 xMoCo: Cross momentum contrast

To solve the problems mentioned above, we pro-
pose a new momentum contrastive learning method,
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Figure 1: Illustration of MoCo and xMoCo. Compared with MoCo, xMoCo utilizes two pairs of fast/slow en-
coders, employs two separate queues for questions and passages, and jointly optimizes both question-to-passage
and passage-to-question matching tasks.

called cross momentum contrast (xMoCo). xMoCo
employs two pairs of encoders: Efast

q and Eslow
q

for questions; Efast
p and Eslow

p for passages. In
addition, two separate queues Qq and Qp store
previous encoded vectors for questions and pas-
sages, respectively. In one training step, given a
positive pair q and p, the question encoders map q
into Efast

q (q) and Eslow
q (q), while the passage en-

coders map p intoEfast
p (p) andEslow

p (p). The two
vectors encoded by slow encoders are then pushed
into their respective queues Qq and Qp. We jointly
optimize the question-to-passage and passage-to-
question tasks by pitting q against all vectors inQq

and p against all vectors in Qp:

Lqp = − log
exp (Efast

q (q) · Eslow
p (p))∑

p′∈Qp
expEfast

q (q) · Eslow
p (p′)

Lpq = − log
exp (Efast

p (p) · Eslow
q (q))∑

q′∈Qq
expEfast

p (p) · Eslow
q (q′)

L = λLqp + (1− λ)Lpq

where λ is a weight parameter and simply set to 0.5
in all experiments in this paper. Like the original
MoCo, the gradient update from the loss is only
applied to the fast encodersEfast

q andEfast
p , while

the slow encoders Eslow
q and Eslow

p are updated
with momentum from the fast encoders:

Eslow
p ← αEfast

p + (1− α)Eslow
p

Eslow
q ← αEfast

q + (1− α)Eslow
q

where α controls the update speed of the slow en-
coders and is typically set to a small positive value.
When training is finished, both slow encoders are
discarded, and only the fast encoders are used in
inference. Hence, the number of parameters for
xMoCo is comparable to other dual-encoder meth-
ods when employing similar-sized encoders.

In this framework, the two fast encoders Efast
q

andEfast
p are not tightly coupled in the gradient up-

date, but instead influence other through the slow
encoders. Efast

p updates Eslow
p through momen-

tum updates, which in turn influences Efast
q by gra-

dient updates from optimizing the loss Lqp. Efast
q

can also influence Efast
p through similar path. See

Fig. 1 for illustration.

4.3 Adaption for Batch Training

Batch training is the standard training protocol for
deep learning models due to efficiency and perfor-
mance reasons. For xMoCo, we also expect our
model to be trained in batches. Under the batch
training setting, a batch of positive examples are
processed together in one training step. The only
adaption we need here is to push all vectors com-
puted by slow encoders in one batch into the queues
together. It effectively mimics the behavior of the
“in-batch negative” strategy employed by previous
works such as Karpukhin et al. (2020), where the
passages in one batch will serve as negatives exam-
ples for their questions.
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4.4 Encoders
We use pre-trained uncased BERT-base (Devlin
et al., 2019) models as our encoders following
Karpukhin et al. (2020). The question and passage
encoders utilize two sets of different parameters
but are initialized from the same BERT-base model.
For both question and passage, we use the vectors
of the sequence start tokens in the last layer as their
representations. Better pre-trained models such as
Liu et al. (2019) can lead to better retrieval per-
formance, but we choose the uncased BERT-base
model for easier comparison with previous work.

4.5 Incorporating hard negative examples
Previous work has shown selecting hard examples
can be helpful for training passage retrieval models.
Our method can easily incorporate hard negative
examples by simply adding an additional loss under
the multitask framework:

Lhard

=− log
exp (Efast

q (q) · Efast
p (p))∑

p′∈P−
⋃
{p} expE

fast
q (q) · Efast

p (p′)

where P is a set of hard negative examples. The
loss only involves the two fast encoders, not the
slow encoders. We only add hard negatives for
the question-to-passage matching tasks, not the
passage-to-question matching tasks. In addition,
we also encode these negative passages using the
slow passage encoder Eslow

p and enqueue them to
serve as negative passages in calculating loss Lqp.

In this work, we only implement a simple
method of generating hard examples following
Karpukhin et al. (2020): for each positive pair,
we add one hard negative example by randomly
sampling from top retrieval results using a BM25
retriever. More elaborate methods of finding hard
examples such as Xiong et al. (2020) and Ding
et al. (2020) can also be included, but we leave it
to future work.

4.6 Removing false negative examples
False negative examples are passages that can
match the given question but are falsely labeled
as negative examples. In xMoCo formulation, false
negatives can arise if a previous encoded passage
p in the queue can answer current question q. It
can happen if the some questions share the same
passage as answer, or if the same question-passage
pair is sampled another time when its previous en-
coded vector is still in the queue because the queue

size can be quite large. This is especially important
for datasets with small number of positive pairs. To
fix the problem, we keep track of the passage ids
in the queue and mask out those passages identical
to the current passage when calculating the loss.

Labeling issues can also be the source of false
negative examples as pointed out in Ding et al.
(2020). In their work, an additional model with
fused input is trained to reduce the false negatives.
We plan to incorporate such model-based approach
in the future.

5 Experiment

5.1 Wikipedia Data as Passage Retrieval
Candidates

As many question answering datasets only provide
positive pairs of questions and passages, we need
to create a large collection of passages for passage
retrieval tasks. Following Lee et al. (2019), we
extract the passage candidate set from the English
Wikipedia dump from Dec. 20, 2018. Following
the pre-processing steps in Karpukhin et al. (2020),
we first extract clean texts using pre-processing
code from DrQA (Chen et al., 2017), and then
split each article into non-overlapping chunks of
100 tokens as the passages for our retrieval task.
After pre-processing, we get 20,914,125 passages
in total.

5.2 Question Answering Datasets

We use the five QA datasets from Karpukhin et al.
(2020) and follow their training/dev/test splits.
Here is a brief description of the datasets.

Natural Questions (NQ) (Kwiatkowski et al.,
2019) is a question answer dataset where the ques-
tions were real Google search queries and answers
were text spans of Wikipedia articles manually se-
lected by annotators.

TriviaQA (Joshi et al., 2017) is a set of trivia
questions with their answers. We use the unfiltered
version of TriviaQA.

WebQuestions (WQ) (Berant et al., 2013) is a
collection of questions from Google Suggest API
with answers from Freebase.

CuratedTREC (TREC) (Baudiš and Šedivý,
2015) composes of questions from both TREC QA
tracks and Web sources.

SQuAD v1.1 (Rajpurkar et al., 2016) is original
used as a benchmark for reading comprehension.

We follow the same procedure in Karpukhin et al.
(2020) to create positive passages for all datasets.
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For TriviaQA, WQ and TREC, we use the highest-
ranked passage from BM25 which contains the
answer as positive passage, because these three
datasets do not provide answer passages. We dis-
card questions if answer cannot be found at the top
100 BM25 retrieval results. For NQ and SQuAD,
we replace the gold passage with the matching pas-
sage in our passage candidate set and discard un-
matched questions due to differences in processing.
Table 1 shows the number of questions in the origi-
nal training/dev/test sets and the number of ques-
tions in training sets after discarding unmatched
questions. Note that our numbers are slightly dif-
ferent from Karpukhin et al. (2020) due to small
differences in the candidate set or the filtering pro-
cess.

5.3 Settings
Following Karpukhin et al. (2020), we test our
model on two settings: a “single” setting where
each dataset is trained separately, and a “multi” set-
ting where the training data is combined from NQ,
TriviaQA, WQ and TREC (excluding SQuAD).

We compare our model against two baselines.
The first baseline is the classic BM25 baseline.
The second baseline is the Deep Passage Retrieval
(DPR) model from Karpukhin et al. (2020). We
also implement the setting where the candidates
are re-ranked using a linear combination of BM25
and the model similarity score from either DPR or
our xMoCo model.

The evaluation metric for passage retrieval is
top-K retrieval accuracy. Here the top-K accuracy
means the percentage of questions which have at
least one passage containing the answer in the top K
retrieved passages. In our experiments, we evaluate
the results on both Top-20 and Top-100 retrieval
accuracy.

5.4 Implementation details
For training, we used batch size of 128 for our mod-
els. For the two small datasets TREC and WQ, we
trained the model for 100 epochs; for other datasets,
we trained the model for 40 epochs. We used the
dev set results to select the final checkpoint for test-
ing. The dropout is 0.1 for all encoders. The queue
size of negative examples in our model is 16, 384.
The momentum co-efficient α in the momentum
update is set to 0.001. We used Adam optimizer
with a learning rate of 3e − 5, linear scheduling
with 5% warm-up. We didn’t do hyperparameter
search. We follow their specification in Karpukhin

et al. (2020) when re-implementing DPR baselines.
Training was done on 16 32GB Nvidia GPUs, and
took less than 12 hours to train each model.

For inference, we use FAISS (Johnson et al.,
2017) for indexing and retrieving passage vectors.
For BM25, we use Lucene implementation with
b = 0.4 (length normalization) and k1 = 0.9
(term frequency scaling) following Karpukhin et al.
(2020).

5.5 Main Results

We compare our xMoCo model with both BM25
and DPR baselines over the five QA datasets. As
shown in Table 2, our model out-performs both
BM25 and DPR baselins in most settings when
evaluating on top-20 and top-100 accuracy, except
SQuAD where xMoCo does slightly worse than
BM25. The lower performance on SQuAD than
BM25 is consistent with previous observation in
Karpukhin et al. (2020). All the baseline numbers
are our re-implementations and are comparable
but slightly different from the numbers reported in
Karpukhin et al. (2020) due to the difference in the
pre-processing and random variations in training.
The results empirically demonstrate that using a
large number of negative samples in xMoCo indeed
leads to a better retrieval model. The improvement
of top-20 accuracy is larger than that of top-100
accuracy, since top-100 accuracy is already reason-
ably high for the DPR baselines. Linearly adding
BM25 and model scores does not bring consistent
improvement, as xMoCo’s performance is signifi-
cantly better than BM25 except for SQuAD dataset.
Furthermore, combining training data only brings
improvement on smaller datasets and hurts results
on larger datasets due to domain differences.

5.6 Ablation Study

We perform all ablation experiments on NQ dataset
except for the end-to-end QA result evaluation.

5.6.1 Size of the queue of negative samples
One main assumption of xMoCo is that using a
larger size of negative samples will lead to a better
model for passage retrieval. Here we empirically
study the assumption by varying the size of the
queues of negative samples. The queue size cannot
be reduced to zero because we need at least one
negative sample to compute the contrastive loss.
Instead, we use the two times the batch size as the
minimal queue size, when the strategy essentially
reverses to “in-batch negatives” used in previous
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Dataset Train (Original) Train (Processed) Dev Test

Natural Questions 79,168 58,792 8,757 3,610
TriviaQA 78,785 60,404 8,837 11,313
WebQuestions 3,417 2,470 361 2,032
CuratedTREC 1,353 1,126 133 694
SQuAD 78,713 70,083 8,886 10,570

Table 1: Number of questions in the datasets. Numbers in the training sets are slightly different from the numbers
reported in () due to difference in pre-processing.

Training Retriever Top-20 Top-100
NQ TriviaQA WQ TREC SQuAD NQ TriviaQA WQ TREC SQuAD

None BM25 59.0 66.9 54.2 70.9 68.9 73.9 76.6 71.1 84.5 80.3

Single

DPR 78.6 79.0 72.2 80.1 64.3 85.3 85.1 81.2 88.9 77.1
xMoCo 82.3 80.2 76.5 80.7 65.1 86.0 85.9 83.1 89.4 77.5
DPR+BM25 76.0 79.7 72.3 85.2 72.3 83.7 84.3 80.1 92.4 81.5
xMoCo+BM25 79.2 80.1 76.6 85.8 73.0 85.2 85.2 83.0 93.1 81.2

Multi

DPR 79.4 78.5 74.8 89.2 52.8 85.7 84.8 82.9 93.7 68.1
xMoCo 82.5 80.1 78.2 89.4 55.9 86.3 85.7 84.8 94.1 70.1
DPR+BM25 78.3 79.6 74.9 88.7 67.2 84.0 83.5 82.1 92.1 78.7
xMoCo+BM25 80.3 80.0 76.1 88.3 68.3 85.2 84.0 82.5 93.2 79.2

Table 2: Evaluation results on the five open domain test sets. Evaluation metric is Top-K accuracy which means the
percentage of any passage in the top K retrieval results contain the answer. “Single” denotes the experiments where
the training is performed on its own training data for each dataset, while “Multi” denotes the experiments where
the training is performed on the combined training sets from NQ, TriviaQA, WQ and TREC. All DPR results are
from our re-implementation, which are slightly different, but comparable to the numbers reported in the original
paper.
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Figure 2: The effect of queue size of xMoCo. The re-
sults are top-20 accuracy on NaturalQuestions dataset.

works. As shown in Fig. 2, the model performance
increases as the queue size increases initially, but
tapers off past 16k. This is different from previous
work Chi et al. (2020), where they observe per-
formance gains with queue size up to 130k. One
possible explanation is that the number of training
pairs is relatively small, thus limiting the effective-
ness of the larger queue sizes. As for computational
efficiency, the size of the queue has little impact on
both training speed and memory cost, because both
are dominated by the computation of the encoders.

Setting Top-20 Top-100

xMoCo 82.3 86.0
+tied encoders 75.4 81.2

Table 3: Ablation of tied encoders on NaturalQuestions
dataset. Tying the parameters in the question and pas-
sage encoders decreases the performance of xMoCo.

5.6.2 Effect of using two set of encoders

xMoCo formulation expands on the original mo-
mentum contrastive learning framework MoCo by
enabling two different set of encoders for questions
and passages respectively. For open-domain QA,
it is unclear whether it is beneficial to use two dif-
ferent encoders for questions and passages because
both questions and passages are texts. To empir-
ically answer this question, we perform another
ablation experiment where the parameters in the
question and passage encoders are tied. As can
be seen in Table 3, the model with tied encoders
gives reasonable results, but still under-performs
the model with two different encoders. Further-
more, the flexibility of xMoCo is necessary for
tasks such as text-to-image matching where “ques-
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Training Retriever NQ TriviaQA WQ TREC SQuAD

None BM25 32.1 50.1 30.4 25.3 39.2

Single DPR 42.1 56.4 35.6 26.1 29.7
xMoCo 42.4 57.1 35.4 26.3 30.1

Multi DPR 41.9 56.4 41.2 47.3 24.0
xMoCo 42.4 57.1 41.1 48.1 26.1

Table 4: End-to-end QA results.

tions” and “passages” are drastically different.

5.6.3 End-to-end QA results

For some open domain QA tasks, after the relevant
passages are fetched by the retriever, a “reader” is
then applied to the retrieval results to extract fine-
grained answer spans. While improving retrieval
accuracy is an important goal, it is interesting to
see how the improvement would translate into the
end-to-end QA results. Following Karpukhin et al.
(2020), we implement a simple BERT based reader
to predict the answer spans. Give a question Q
and N retrieved passages {P1, . . . , PN}, the reader
first concatenates the question Q to each passage
Pi and predicts the probability of span (P s

i , P
e
i as

the answer as:

p(i, s, e|Q,P1, . . . , PN ) = pr(i|Q,P1, . . . , PN )

× pstart(s|Q,Pi)

× pend(e|Q,Pi)

where pr is the probability of selecting the ith pas-
sage, and pstart, pend are the probabilities of the
sth and eth tokens being the answer start and end
position respectively. pstart and pend is computed
by the standard formula in the original BERT pa-
per (Devlin et al., 2019), and the pr is computed
by applying softmax over a linear transformation
over the vectors of the start tokens of all passages.
We follow the training strategy of Karpukhin et al.
(2020), and sample one positive passages and 23
negative passages from the top-100 retrieval results
during training. Please refer to their paper for the
details.

The results are shown in Table 4. While the
results from xMoCo are generally better in most
cases, the improvements are marginal compared
to the results of DPR models. The reason might
be that the improvement of xMoCo over DPR on
top-100 accuracy is not very large, and it might
require better reader to find out the answer spans.

6 Discussion

How to select/create negative examples is an es-
sential aspect of passage retrieval model training.
xMoCo improves passage retrieval model by effi-
ciently maintaining a large set of negative exam-
ples, while previous works mainly focus on finding
a few hard examples. It is desirable to design a
method to take the best from both worlds. As de-
scribed in Section 4.5, we can combine the two
approaches under a simple multitask framework.
But this multitask framework also has its draw-
backs. Firstly, it loses the computational efficiency
of xMoCo, especially if the method of generating
the hard examples is expensive. Secondly, the large
set of negative examples in xMoCo and the set of
hard examples are two separate sets, while ideally,
we want to maintain a large set of hard negative
examples. To this end, one possible direction is to
employ curriculum learning (Bengio et al., 2009).
Assuming the corresponding passages for similar
questions can serve as hard examples for each other,
we can schedule the order of training examples so
that similar questions are trained in adjacent steps,
resulting more hard examples to be kept in the
queue. We plan to explore this possibility in future
work.

7 Conclusion

In this paper, we propose cross momentum con-
trastive learning (xMoCo), for passage retrieval
task in open domain QA. xMoCo jointly opti-
mizes question-to-passage and passage-to-question
matching, enabling using separate encoders for
questions and passages, while efficiently maintains
a large pool of negative samples like the original
MoCo. We verify the effectiveness of the proposed
method on various open domain QA datasets. For
future work, we plan to investigate how to better
integrate hard negative examples into xMoCo.
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