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Abstract

The multimodality problem has become a ma-
jor challenge of existing non-autoregressive
generation (NAG) systems. A common solu-
tion often resorts to sequence-level knowledge
distillation by rebuilding the training dataset
through autoregressive generation (hereinafter
known as “teacher AG”). The success of such
methods may largely depend on a latent as-
sumption, i.e., the teacher AG is superior to the
NAG model. However, in this work, we exper-
imentally reveal that this assumption does not
always hold for the text generation tasks like
text summarization and story ending genera-
tion. To provide a feasible solution to the mul-
timodality problem of NAG, we propose incor-
porating linguistic structure (Part-of-Speech
sequence in particular) into NAG inference in-
stead of relying on teacher AG. More specif-
ically, the proposed POS-constrained Parallel
Decoding (POSPD) method aims at provid-
ing a specific POS sequence to constrain the
NAG model during decoding. Our experi-
ments demonstrate that POSPD consistently
improves NAG models on four text generation
tasks to a greater extent compared to knowl-
edge distillation. This observation validates
the necessity of exploring the alternatives for
sequence-level knowledge distillation.

1 Introduction

Unlike autoregressive generation (AG) that gener-
ates tokens step-by-step, non-autoregressive gener-
ation (NAG) parallelly generates all tokens in one
time step and thus the inference could be signifi-
cantly speeded up (Ma et al., 2019; Ran et al., 2020;
Susanto et al., 2020). Despite the computational
advantage of NAG, it has faced the multimodality
problem (Gu et al., 2018) caused by the condition-
ally independent decoding. A typical example of
the problem is illustrated in Figure 1, where either

∗ Correspondence to Wenqiang Lei.

Figure 1: An example to explain “multimodality prob-
lem”. The German sentence “Vielen Dank.” can be
translated into “Many Thanks.” and “Thank you.”.

of “Thank you.” and “Many Thanks.” is the correct
translation (i.e., generation modes). In this exam-
ple, a mixed mode “Many you.” / “Thank Thanks.”
will be generated by NAG. It is because the con-
ditional dependence among target words will be
broken in parallel decoding. A typical manifesta-
tion is that words are usually missing (e.g., “Many
you.”) and repeating (e.g., “Thank Thanks.”) in
NAG’s sentences. To solve this problem, the key is
helping NAG models to deal with various genera-
tion modes.

To date, one of the most widely used solutions
is sequence-level knowledge distillation (Kim and
Rush, 2016) which aims to reduce the generation
modes of the raw data (Zhou et al., 2019). Tak-
ing machine translation as an example, the knowl-
edge distillation based methods rebuild the target
sequence in the training set by employing an AG
model to translate the training samples. The as-
sumption is that the target sentences generated by
one AG model tend to have less modality. De-
spite the success of the above studies, there are
still two major limitations: (1) Most existing works
mainly focus on machine translation where the per-
formance of AG is generally assumed to be better
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than NAG. Clearly, such a solution will degrade
the performance of NAG on the task where the AG
model cannot obtain a better result. As demon-
strated in our experiments (See § 4.5), there are a
number of such tasks beyond the assumption like
text summarization and story ending generation.
(2) The knowledge distillation based methods may
cost a tremendous amount of time to rebuild a large-
scale training set with AG, which runs counter to
the initial goal of NAG to improve the speed.

To overcome the aforementioned limitations,
we explore to alleviate the multimodality problem
in a different manner. In short, we aim to con-
strain NAG generation modes in the inference stage,
rather than directly reducing generation modes in
the training stage. More specifically, our basic idea
is that the linguistic structure of the target sentence
could be helpful to alleviate the multimodality prob-
lem. In this paper, we show that the Part-of-Speech
(POS) sequence, one of most simple solutions in
modeling the linguistic structure (Cutting et al.,
1992), could effectively verify our idea and show
promising performance in four different tasks. In
more details, the proposed POS-constrained Paral-
lel Decoding (POSPD) trains a POS predictor to ob-
tain POS tags of target sequences. In the inference
stage, POSPD constrains NAG models to choose
the final outputs that satisfy the pre-specified POS
sequence. As the POS predictor with a shallow
decoder is separately trained, our POSPD could act
as a plug-and-play method to assistant NAG mod-
els with negligible extra time. Meanwhile, it also
shows the speed advantage of our method even con-
sidering the time cost in building the POS dataset,
since POS tagging is much faster than sentence
generating due to the small POS dictionary.

To conduct a comprehensive empirical evalua-
tion, we examine the generalizability of POSPD by
applying it to two widely-used NAG models (i.e.,
CMLM and DisCo) over four text generation tasks,
including text summarization, story ending genera-
tion, question generation, and machine translation.
Experiments demonstrate that POSPD significantly
and consistently improves the two NAG models
and beats the sequence-level knowledge distillation
with a considerable performance gap. The main
contributions of this work could be summarized as
follows:

• For the first time, we experimentally reveal
that the implicit assumption of knowledge dis-
tillation does not always hold for the tasks

(e.g., text summarization, story ending gener-
ation, as demonstrated in our experiments). In
other words, AG cannot guarantee better per-
formance than NAG, thus resulting in the un-
desirable performance of NAG if using knowl-
edge distillation to alleviate the multimodal-
ity problem. This empirical result could pro-
vide novel insight to revisiting the role of the
knowledge distillation in NAG.

• To alleviate the multimodality problem in var-
ious tasks, we propose POSPD by employing
POS sequences to constrain the NAG gener-
ation modes in the inference stage. It is sim-
ple but effective, being able to act as a plug-
and-play assistant for NAG models. Such a
linguistic structure based solution shows an
effective and efficient alternative to the knowl-
edge distillation paradigm in alleviating the
multimodality problem1.

2 Related Works

In this section, we first analyze related works on
alleviating the multimodality problem. Then, we
review some representative works which introduce
the linguistic structure into some text generation
scenarios.

2.1 The Multimodality Problem in NAG
Recently, various attempts have been made to al-
leviate the multimodality problem, which can be
roughly divided into two types: (1) Reducing the
diversity of generation modes in training; (2) Help-
ing models select one generation mode in inference.
The first type usually trains the NAG model under
the guidance of an AG model (called teacher AG),
e.g., sequence-level knowledge distillation (Kim
and Rush, 2016), learning from AG model’s hid-
den state (Li et al., 2019) and the curriculum learn-
ing with AG model (Liu et al., 2020d; Guo et al.,
2020a). However, these methods implicitly assume
that the teacher AG can achieve better performance
than NAG models, otherwise it may degrade the
performance of the NAG models. As two typical
methods of the second type, iterative and dynamic
programming methods have achieved promising
performance. In short, iterative models generate
the target sentence by iteratively refining the lat-
est output (Ghazvininejad et al., 2019; Kasai et al.,

1The source code and dataset are available at https:
//github.com/yangkexin/POSPD

https://github.com/yangkexin/POSPD
https://github.com/yangkexin/POSPD
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Figure 2: An overview of the POS-constrained Parallel Decoding

2020a; Guo et al., 2020b). Alternatively, dynamic
programming methods use a heuristic searching
strategy to select a better output from multiple de-
coded candidates (Sun et al., 2019; Saharia et al.,
2020; Ghazvininejad et al., 2020). The biggest dif-
ference is prespecifying the linguistic structure to
constrain the generation of NAG in a plug-and-play
way. Extensive experiments verify the effective-
ness and efficiency of our idea.

2.2 Leveraging the Linguistic Structure
Text generation involves multiple tasks, such as
style transfer (Liu et al., 2020a) and text filling (Liu
et al., 2019). Dating back to the period of statistical
machine translation (Liu et al., 2006; Galley et al.,
2006), linguistic structure prediction has long been
investigated for it. Previous works often model
and leverage syntactic structures on the decoder
side, such as modeling long-distance word cor-
respondence by syntactic dependency trees (Wu
et al., 2017), implicitly incorporate linguistic prior
in decoder (Eriguchi et al., 2017) and joint decod-
ing with syntactic structure (Feng et al., 2020). In
NAG, linguistic structures can also be helpful. As
a global pattern of target sentence, it could serve
as the complementary to the parallel decoding by
helping models capture words dependency. How-
ever, directly incorporating aforementioned meth-
ods into NAG are less portable for current NAG
models, since they are originally designed for AG.
In comparison, POSPD can act as a plug-and-play
component that uses a separate POS predictor to
constrain NAG models during inference. There-
fore, the NAG model can enjoy the benefits of the
syntactical structure constraining while retaining

its original model structure.

3 Methodology

In this section, we elaborate our POSPD for the
NAG model. To ease of presentation, we start from
a toy example to illustrate the overview of POSPD
in § 3.1, and then give a detailed explanation of the
implementation in § 3.2. After that, we present the
training details of POSPD in § 3.3.

3.1 Overview

An overview of our POSPD method is demon-
strated in Figure 2, where a toy example of ma-
chine translation is used as a showcase. To be
exact, the German sentence “Vielen Dank.” is fed
simultaneously into both the POS predictor and the
NAG model, and then the POS predictor generates
a POS sequence JJ NNS PCT which is further
converted into a binarized mask matrix through
a conversion dictionary. Meanwhile, the NAG
model generates the primary probability distribu-
tions through a softmax layer. Here, from Figure
1, words “Many” and “you” get the highest prob-
ability, resulting in the mix mode “Many you” if
following the primary distribution. To avoid such
an undesirable result, our POSPD automatically
adjusts the probability according to the binarized
mask matrix. For example, the probability of “you”
is adjusted to 0, since the POS tag of “you” is PRP
rather than NNS. As a result, “Many Thanks.” gets
the highest probability hence to be generated as the
output.
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3.2 POSPD in Details

In this part, we detail the POSPD by introducing
the conversion dictionary building, the workflow of
POSPD, and the core module—the POS predictor.
Building a Conversion Dictionary The key idea
of POSPD is filtering out the words that dissatisfy
the prespecified POS sequence in the primary re-
sults of NAG. To implement our idea, we need a
conversion dictionaryDc that contains the mapping
from POS tags to words. Given a target vocabulary
Vw with the length of |Vw| and a POS tag set Vs,
each key ofDc is a POS tag in Vs and the value is a
set of words that can be assigned to this POS tag. It
is worth noting that a word may have multiple POS
tags. Therefore, one word may appear in multiple
sets in Dc.
The POSPD Workflow The workflow of POSPD
is as follows: given a source sentence x, POSPD
feeds it into both the NAG model’s encoder and
the POS predictor. After that, the POS predictor
outputs a POS sequence s = (s1, s2, ..., sL) for
the target sentence. Meanwhile, the decoder of the
NAG model generates a preliminary distribution
matrix D = (d1,d2, ...,dL), where di represents
the distribution of all words2 in the i-th position.
Note that, the sentence length follows the length of
the predicted POS tag L.

For the ease of implementation, the POS se-
quence s is converted into a binarized mask ma-
trixM = (m1,m2, ...,mL). In details, for each
POS tag si, the corresponding binarized vector is
mi = (m1

i ,m
2
i , ...,m

|Vw|
i ) and the j-th position

mj
i is defined as:

mj
i =

{
1, wj ∈ Dsi

c ;
0, wj /∈ Dsi,

c
(1)

where wj is the j-th word token in Vw. As a result,
the POS sequence s is replaced byM. Finally, we
get the new generation results by:

y = argmax(M ·D). (2)

The POS Predictor As the core module of the
POSPD, our POS predictor is dedicated to out-
put the POS tag sequence of the target sentence
when accepting the source sentence as the input.
To train the POS predictor, we need to create a POS
dataset where each sample is a pair consisting of a
source sentence and a POS sequence of the target

2The length of di is |Vw|.

sentence3. As shown in Figure 3, the architecture
of our POS predictor is a variant of the standard
Transformer (Vaswani et al., 2017). As shown in
the gray arrow flow, the main difference between
our POS predictor and the vanilla Transformer is
the layer number of encoder and decoder. To be
specific, unlike the vanilla Transformer which con-
tains six layers for both encoder and decoder, we
use a multi-layer encoder and a one-layer decoder
to reduce the inference time, because the complex-
ity for decoding the POS sequence is much lower
than that for the original sentence.

Figure 3: The overview of the POS predictor in POSPD.
The linear layer (the red arrow points to) is only used
in the training stage.

POS Predictor Optimization To optimize the
POS predictor, we take a multi-task learning (Evge-
niou and Pontil, 2004) paradigm to jointly decode
the word sequence and POS sequence on the tar-
get side. The underlying hypothesis is that the
target word sentence is highly related to the POS
sequence. Given a source sentence x, a POS se-
quence s and a target sentence y = (y1, y2, ..., yL),
the learning objective is then defined as the sum
of the POS tagging loss (the first term) and the
sentence prediction loss (the second term):

L = Lpos + Lword, (3)

where the POS sentence prediction loss can be writ-
ten as:

Lpos =
L∑

t=1

logP (st|s<t,x), (4)

and the target sentence prediction loss is:

Lword =
L∑

t=1

logP (yt|s<t,x). (5)

3We use NLTK POS tagger to create the POS sequence,
which can be found at https://www.nltk.org/book/
ch05.html.

https://www.nltk.org/book/ch05.html
https://www.nltk.org/book/ch05.html
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In our method, the POS predictor uses an extra
linear layer after the decoder to generate the target
sentence, as shown in Figure 3. After training,
we only need the POS predicting linear layer for
inference, thus enjoying the better performance for
the POS sequence prediction.

3.3 Training under the BPE Condition
Almost all NAG models use the Byte Pair En-
coding (BPE) (Sennrich et al., 2016) technique
to build the word vocabulary with subword-level
tokens. However, these tokens cannot be tagged
by the mainstream POS Taggers (Yarowsky and
Ngai, 2001), which makes difficulties in building
the POS dataset. To address this issue, we propose
a simple but effective subword-level POS tagging
method for our POS predictor. A simple example
is demonstrated in Table 1, the NLTK toolkit tags
the word “gutacht” as NN in the original sentence
but cannot handle the BPE form “gut ##ach ##t”.
Intuitively, we can assign the BPE form to have the
POS tag as “gutacht” (i.e. NN NN NN). However,
this method increases the number of repeated to-
kens in generation sentences of NAG models and
even worsens the performance. The possible reason
is that the aforementioned method cannot explicitly
distinguish whether a POS tag is associated with
a BPE token or a complete word. In contrast, our
method tags the BPE form as NN1 NN2 NN3. As
a result, the conversion dictionary is more sparse
while improving the mapping between the POS tag
and the corresponding words. In addition, the word
“question” is tagged as NN, since it doesn’t have any
sub-word tokens after the BPE.

Ori. yesterday , gutacht’ s mayor gave a clear answer
to this question.

BPE yesterday , gut ##ach ##t ’ s mayor gave a clear
answer to this question .

WP NN , NN SYM$ JJ NN VBD DT JJ NN
TO DT NN .

SWP NN PCT NN1 NN2 NN3 SYM$ JJ NN
VBD DT JJ NN TO DT NN PCT

Table 1: An example of the subword-level POS tagging
method, where “WP” denotes the POS sequence gener-
ated by NLTK, and “SWP” is the “WP” of sub-word
level. “##” denotes the subword token marker.

4 Experiments

In this section, we use multiple text generation
datasets to comprehensively evaluate the effective-
ness and efficiency of the proposed POSPD. For

an extensive comparison, we compare our POSPD
with the sequence-level knowledge distillation, and
provide detailed analyzes in alleviating the mul-
timodality problem and the time cost in dataset
building.

4.1 Datasets

We conduct experiments on four widely-used
benchmark datasets to evaluate POSPD: XSUM for
text summarization, ROCStories corpus for story
ending generation, SQuAD 1.1 for question genera-
tion, and WMT14 (DE-EN) for machine translation.
Meanwhile, we use BERT-based BPE tokenizer4

for all datasets. The details are as follows:
XSUM (Narayan et al., 2018) includes the 227k
British Broadcasting Corporation (BBC) online ar-
ticles and the corresponding single-sentence sum-
maries. The average sentence lengths are 358.5
words for input and 21.1 words for output.
ROCStories Corpus5 (Mostafazadeh et al., 2016)
contains 98k five-sentence stories. For each story,
we use the last sentence as the target output while
the other four sentences as the source input. We ran-
domly sample 90k/4k stories for training/validation,
and the remaining 4160 for testing. The average
sentence lengths are 39.64 words for input and
10.72 words for output.
SQuAD 1.16 (Rajpurkar et al., 2016) is a machine
reading comprehension data set containing 98K
passage-question-answer triples (Liu et al., 2020b).
After processing, we obtain a question genera-
tion dataset. Following GLGE (Liu et al., 2020c),
the input sentence is formatted as 〈answer [SEP]
passage〉. The average sentence lengths are 149.4
words for input and 11.5 words for output.
WMT14 (DE-EN)7 contains 4.5M translation
pairs and 3k/3k pairs for validation/testing. The
average sentence lengths are 25.07 words for input
and 26.53 words for output.

4.2 Evaluation Metrics

Follow GLGE (Liu et al., 2020c), we use ROUGE-1
(R-1), ROUGE-2 (R-2), and ROUGE-L (R-L) (Lin,
2004) as evaluation metrics for text summarization,

4https://pypi.org/project/
transformers/.

5https://cs.rochester.edu/nlp/
rocstories/

6https://rajpurkar.github.io/
SQuAD-explorer/

7https://www.statmt.org/wmt14/
translation-task.html

https://pypi.org/project/transformers/
https://pypi.org/project/transformers/
https://cs.rochester.edu/nlp/rocstories/
https://cs.rochester.edu/nlp/rocstories/
https://rajpurkar.github.io/SQuAD-explorer/
https://rajpurkar.github.io/SQuAD-explorer/
https://www.statmt.org/wmt14/translation-task.html
https://www.statmt.org/wmt14/translation-task.html
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while BLEU-4 (B-4) (Papineni et al., 2002), Me-
teor (Denkowski and Lavie, 2014), and R-L are
used in question generation and story ending gen-
eration. Meanwhile, BLEU-4 is also the evaluation
metric for machine translation to keep in line with
previous works (Gu et al., 2018).

4.3 Baselines and Comparison

In this work, we focus on using iteration-based
NAG models as backbones, because they are
one of the mainstream NAG structures in cur-
rent works and perform competitively to AG mod-
els without any external system (Kasai et al.,
2020b). Specifically, we use two representative
iteration-based NAG models from recent work, i.e.,
CMLM (Ghazvininejad et al., 2019) and DisCo
(Kasai et al., 2020a). The details are as follows:
CMLM The conditional masked language model
randomly masks some target tokens and predicts
them with the remaining ones. In inference, it
masks several tokens with the lower “confidence”
and retains other tokens with higher “confidence”
during iterations, which is called mask-predict in-
ference. Following Ghazvininejad et al. (2019), we
use same settings for all generation tasks8.
DisCo The disentangled context transformer aims
to use different context information when predict-
ing each token, being regarded as an effective im-
provement of CMLM. For better comparison, we
also use mask-predict inference as same as CMLM.
Meanwhile, we use the model settings described
in Kasai et al. (2020a) for all generation tasks9.
Knowledge Distillation Following Gu et al.
(2018) which uses a standard transformer (Vaswani
et al., 2017) as the teacher model to regenerate
training set in the greedy method for NAG mod-
els (hereinafter described as “Transformer-1 (6-
6)”), we report NAG models’ performances on
all text generation task when using the distilled
training dataset. In the following discussion, the
“Transformer-1” and “Transformer-4” denote the
beam size of 1 and 4 in the beam search, respec-
tively. Meanwhile, we also report the results of
different Transformer model structures, where the
“(6-6)” and “(12-1)” denote the version of six en-
coder layers, six decoder layers and the version of
12 encoder layers, one decoder layers, respectively.

8https://github.com/facebookresearch/
Mask-Predict

9https://github.com/facebookresearch/
DisCo

4.4 Experimental Settings

We follow the hyperparameters for standard Trans-
former in (Vaswani et al., 2017) for our POS predic-
tor. One minor difference is the layers of encoder
and decoder are set to 12 and 1 to make a fair
comparison with AG models, respectively. All of
the models are implemented based on Fairseq (Ott
et al., 2019), and we follow the other specific pa-
rameter settings for both AG and NAG models
in (Kasai et al., 2020b). In inference, the length
beam, length penalty, and batch size are all set to
1 to calculate the main results (without any post-
processing) and latency. The latency is calculated
through using the built-in time statistics function in
Fairseq, which is tested on a single NVIDIA Tesla
P100 GPU to keep in line with previous works (Gu
et al., 2018). Meanwhile, the beam size of our POS
predictor is set to 5. For the number of iterations,
we report the iterations when the NAG model re-
sults are converged. In practice, the iterations of
two NAG models are 4, 3, 3 and 10 on XSUM,
SQuAD1.1, ROCStories and WMT14 (DE-EN).

4.5 Main Results

We evaluate the performance of two NAG mod-
els (CMLM and DisCo) on four text generation
datasets, and further provide the results when us-
ing sequence-level data distillation (i.e., “+Distill”)
and the POSPD (i.e., “+POSPD”), respectively. We
report the main results in Table 2 and the inference
time comparison in Table 3, from which we can
make the following conclusions:
1. POSPD consistently improve NAG models on
four text generation dataset to a greater extent
compared to knowledge distillation. POSPD
consistently improve NAG models on four text gen-
eration tasks while knowledge distillation may even
degrade performances of the NAG models such as
XSUM (row 5 vs. row 6) and SQuAD 1.1 (row 8 vs.
row 9). More importantly, although the knowledge
distillation improves NAG models by 1.04/1.56
(row 5 vs. row 6, row 8 vs. row 9) on BLEU-4 in
WMT14 (DE-EN), POSPD still beats the knowl-
edge distillation version by 0.24/0.19 (row 6 vs.
row 7, row 9 vs. row 10) on BLEU-4.
2. Knowledge distillation does not always im-
prove the NAG model as the AG models may get
worse performance than NAG. In both text sum-
marization (XSUM) and story ending generation
(ROCStories) tasks, the two original NAG mod-
els CMLM and DisCo outperform the AG model.

https://github.com/facebookresearch/Mask-Predict
https://github.com/facebookresearch/Mask-Predict
https://github.com/facebookresearch/DisCo
https://github.com/facebookresearch/DisCo
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Patterns Models XSUM SQuAD 1.1 ROCStories WMT14

Metrics R-1/R-2/R-L B-4/Meteor/R-L B-4

AG (row 1-4)

Transformer-1 (6-6) 19.53/3.38/15.36 3.87/9.73/29.34 1.89/8.70/23.98 31.61
Transformer-1 (12-1) 17.51/2.63/14.18 2.84/7.78/26.58 1.03/6.99/20.46 27.25
Transformer-4 (6-6) 22.98/5.88/18.56 4.69/9.95/29.76 2.45/8.67/23.85 33.07
Transformer-4 (12-1) 17.69/2.72/14.30 3.55/7.73/28.15 1.52/7.26/20.66 28.28

NAG (row 5-10)

CMLM 24.95/5.07/19.73 3.49/10.68/30.48 1.61/9.24/25.01 26.48
+Distill 20.22/3.49/16.29 3.03/9.13/28.91 0.30/5.14/16.58 27.28
+POSPD 25.22/5.49/19.93 4.29/11.00/30.66 1.79/9.37/24.96 27.52
DisCo 26.85/6.86/21.72 3.38/10.33/31.21 1.68/9.06/25.10 27.21
+Distill 18.42/3.27/14.92 3.25/8.78/29.57 0.00/4.59/15.72 28.04
+POSPD 27.39/7.26/22.15 4.20/10.80/30.59 1.72/9.25/25.07 28.23

Table 2: Results on four text generation datasets. Bold values represent the maximum values of each column in
the NAG pattern.

Models XSUM SQuAD 1.1 ROCStories WMT14 (DE-EN)

POSPD 105 (1.00×) 69 (1.00×) 66 (1.00×) 105 (1.00×)
CMLM 132 (0.79×) 110 (0.62×) 74 (0.89×) 172 (0.61×)
DisCo 107 (0.98×) 105 (0.66×) 76 (0.87×) 168 (0.63×)

Table 3: Inference speed (ms/sample) comparisons on four text generation datasets.

It is obvious that the adoption of sequence-level
knowledge distillation limits the performance of
NAG models in these case. More interestingly, in
question generation, the AG model outperforms
the NAG models with BLUE-4 by 0.4/0.5 (row 3
vs. row 5/row 8), but knowledge distillation de-
grades NAG models’ performance with BLEU-4
by 0.46/0.13 (row 5 vs. row 6, row 8 vs. row 9).
3. POSPD does not bring significant extra time
in constraining NAG models’ generation while
decoding. POSPD maintains its advantage in high-
speed inference across all data sets. For example,
on the dataset SQuAD 1.1, the inference latency of
POSPD is much lower than NAG models (1.00× vs.
0.62×/0.66×). Meanwhile, on the WMT14 (DE-
EN) that has the longest average length of the target
sentence, POSPD still maintains its advantage in
the inference speed. Therefore, our POSPD could
constrain the NAG model with the negligible extra
time, since POSPD and the NAG model predict
sequences (i.e., POS sequence and target sentence)
in parallel.

4.6 Further Discussions

There is a loose ending towards the discussion of
our POSPD solution. In this section, we conduct
discussions to shed light on other interesting prop-
erties of POSPD. The discussions are guided by
the following three research questions:
Q1: How does POSPD alleviate the multimodality
problem?

Q2: Is it time-consuming to build the POS dataset
on the new task?
Q3: Does multi-tasking learning object help the
POS tag prediction?

4.6.1 Discussion on Generated Results (Q1)
To further analyze the role of POSPD and the
sequence-level knowledge distillation in alleviat-
ing the multimodality problem, we conduct further
statistical analyses on the generated results of four
datasets. Considering the multimodality problem
usually manifests as repeating or missing tokens
in the generation sentences, we use two indicators,
i.e., the repetition rate and the total number of to-
kens, to quantify them separately. Concretely, we
refer to a “single-token repeat” metric (Welleck
et al., 2020) and define the repetition rate here as
the percentage of the repeated times between two
adjacent tokens in the total number of tokens in a
sentence, and then average it over the dataset.

The results are shown in Table 4, from which we
can see both knowledge distillation and POSPD can
reduce the repetition rate in NAG models on four
datasets, and they are more effective on XSUM
datasets with longer sentences. While in token
numbers, using knowledge distillation significantly
reduces the number of tokens generated by NAG
models on XSUM. In contrast, using POSPD re-
markably make the length of generated sentences
by NAG models close to the reference without in-
creasing the repetition rate.
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Models SQuAD 1.1 XSUM WMT14 ROCStories

Metrics Repetition / Tokens

Reference ≈0.0/140786 ≈0.0/275003 0.01/67617 ≈0.0/44731

CMLM 0.09/-11036 0.15/-2616 0.01/-1957 0.06/+69
+Distill 0.05/-25418 0.06/-52643 0.03/+1214 0.03/+20058
+POSPD 0.09/+247 0.07/+4570 0.01/+1247 0.05/+1297

DisCo 0.05/-24364 0.14/-4641 0.01/-1957 0.06/+2234
+Distill 0.06/-30723 0.06/-52643 0.01/-2026 0.02/+9020
+POSPD 0.02/+1945 0.09/-10871 0.01/+1257 0.05/+1408

Table 4: Statistical analysis of NAG models’ generations. “Reference” denotes the target sentence’s reference.
“Repetition” and “Tokens” represent the repetition rate and tokens number gap between reference and model out-
puts, respectively.

4.6.2 Time Cost in Building Datasets (Q2)

Considering that both POSPD and knowledge distil-
lation require the processing of the training dataset
when it comes to a new task/dataset (i.e., build-
ing the POS data set for POSPD / regenerating the
training set for knowledge distillation), we further
analyze the time consumption of the two process-
ing steps. As shown in Table 5, POSPD has a
significant advantage over knowledge distillation
in the time consuming of dataset building. Espe-
cially on the larger dataset WMT14 (DE-EN), it
can save even more time in building datasets, which
is beneficial for rapid deployment on new tasks.

Method Distill POSPD Samples

SQuAD 1.1 1086 45 (24.1×) 75k
ROCStories 402 49 (8.2×) 90k
XSUM 1850 240 (7.71×) 200k
WMT14 44258 5220 (8.48×) 4500k

Table 5: Time cost (seconds) comparisons in rebuilding
datasets on four datasets. The batch size are 100 and 1
for the knowledge distillation and POSPD.

Models SQuAD 1.1 XSUM

Metrics B-4/Meteor/R-L R-1/R-2/R-L

CMLM 3.49/10.68/30.48 24.95/5.07/19.73
MT w/o 4.18/10.80/31.04 25.12/5.24/19.91
MT w/ 4.29/11.00/30.66 25.22/5.49/19.93

DisCo 3.38/10.33/31.21 26.85/6.86/21.72
MT w/o 4.17/10.56/31.05 27.00/6.89/21.81
MT w/ 4.20/10.80/30.59 27.39/7.26/22.15

Table 6: The ablation study on using multi-task learn-
ing strategy in POSPD’s training stage. “MT w/o” and
“MT w/” denote training the POS predictor in POSPD
with/without the multi-tasking learning, respectively.

4.6.3 Multi-task Learning Strategy (Q3)

In this part, we analyze the impact of using a multi-
task learning strategy in POSPD’s training stage.
For lack of space, we take the ablation study on
two datasets of different sizes, i.e., SQuAD 1.1
and XSUM. The results are shown in Table 6. In-
terestingly, predicting the POS sequence directly
from the original sentence (i.e., “POSPD w/o”) can
also improve the performance of the NAG models.
More importantly, multi-task learning strategy can
improve the performance of POSPD in two datasets
with a tiny increase in model parameters (only one
linear layer). Meanwhile, it is only used during
the POSPD’s training stage and does not affect the
inference time of POSPD.

5 Conclusion

In this paper, we revisit the role of the knowledge
distillation in alleviating the multimodality prob-
lem of NAG. In brief, we experimentally reflect
that the basic assumption of these knowledge distil-
lation methods, the AG model is superior to NAG
model, does not always hold for all text genera-
tion tasks. To alleviate the multimodality problem,
we show a different solution by incorporating lin-
guistic structure into NAG. Extensive experiments
demonstrate that our POSPD significantly and con-
sistently improves the NAG models in effectiveness
and computational efficacy.

As we tentatively give a successful implemen-
tation of leveraging one of the simplest linguistic
structures to benefit the NAG models in inference,
such paradigm deserves a closer and more detailed
exploration. Thus in the future, we will investi-
gate to make the NAG models enjoy the benefits
of incorporating diverse and abundant linguistic
structures in a more superior way. In addition, our
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experimental results suggest that future work might
need to consider wider ranges of generation tasks
instead of only machine translation when assessing
the performance of NAG models.
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