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Abstract

Chinese Spelling Check (CSC) is a challeng-
ing task due to the complex characteristics of
Chinese characters. Statistics reveal that most
Chinese spelling errors belong to phonological
or visual errors. However, previous methods
rarely utilize phonological and morphological
knowledge of Chinese characters or heavily
rely on external resources to model their sim-
ilarities. To address the above issues, we pro-
pose a novel end-to-end trainable model called
PHMOSpell, which promotes the performance
of CSC with multi-modal information. Specif-
ically, we derive pinyin and glyph representa-
tions for Chinese characters from audio and
visual modalities respectively, which are inte-
grated into a pre-trained language model by a
well-designed adaptive gating mechanism. To
verify its effectiveness, we conduct compre-
hensive experiments and ablation tests. Ex-
perimental results on three shared benchmarks
demonstrate that our model consistently out-
performs previous state-of-the-art models.

1 Introduction

Chinese Spelling Check (CSC) is a fundamen-
tal task in Chinese Natural Language Processing
(NLP), which aims to automatically detect and cor-
rect spelling errors in Chinese sentences. These
errors typically consist of human writing errors and
machine recognition errors by automatic speech
recognition (ASR) or optical character recognition
(OCR) systems (Yu et al., 2014). CSC serves as a
preliminary component for other downstream tasks
like information retrieval (IR) in search engine,
thus significantly affects the final performance of
these tasks.

Chinese is an ideograph language which contains
numerous characters and has no between-word de-
limiters. These characteristics make its spelling
check more difficult than other alphabetical lan-
guages such as English. Specifically, for error

p-s error:
wrong sentence: 人们必(pinyin: bi4)生去追求的目标。
ground truth: 人们毕(pinyin: bi4)生去追求的目标。
v-s error:
wrong sentence: 迎接每一个固(radicals: 古,口)难。
ground truth: 迎接每一个困(radicals: 木,口)难。

Table 1: Examples of p-s (phonological similarity) er-
ror and v-s (visual similarity) error from SIGHAN13
(Wu et al., 2013). Here, the ground truth of the p-s
error means “The goal that people pursue throughout
their lives” and the ground truth of the v-s error means
“Get prepared for every difficulty”.

detection, Chinese words usually consist of sev-
eral characters and have no clear word boundaries,
which makes it impossible to detect spelling errors
just using individual word or character. They must
be put in a specific sentence to capture contextual
semantic information. For error correction, how
to select correct candidates from tremendous char-
acter sets remains a great challenge. In contrast
to English words that are composed of a small set
of alphabet letters, there are more than 10k Chi-
nese characters, and 3.5k of them are frequently
used (Wang et al., 2019b). Besides, unlike English,
almost all Chinese spelling errors are real-word
errors which means the misspelling one is also a
valid character in the vocabulary. (Kukich, 1992;
Jia et al., 2013; Yu and Li, 2014).

Since a great number of Chinese characters are
similar either in phonology or morphology, they
are easily misused with each other. According to
(Liu et al., 2011), 76% of Chinese spelling errors
belong to phonological similarity error and 46%
belong to visual similarity error. Table 1 presents
examples of these two common errors. The pronun-
ciation and the shape of Chinese characters can be
characterized by pinyin1 and radicals2, respectively.

1pinyin is the official phonetic system of Mandarin Chi-
nese, which usually consists of three parts: initials, finals and
tones.

2radical is the basic building blocks of all Chinese charac-
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Previous methods have made attempts to fuse these
two information into the process of CSC (Jin et al.,
2014; Han et al., 2019; Hong et al., 2019; Nguyen
et al., 2020). However, pinyin or radicals in these
methods were used as external resources or heuris-
tic filters and can not be trained with the model in
an end-to-end style. More recently, Cheng et al.
(2020) proposed SpellGCN, which incorporated
phonological and morphological similarities into a
pre-trained language model by graph convolutional
network (GCN). However, their similarity graphs
relied on specific confusion sets. Since confusion
sets are unable to cover all characters, SpellGCN
can only fuse limited information. Furthermore,
they just used a simple aggregate strategy for fea-
ture fusion.

To tackle the above issues, we propose a novel
framework called PHMOSpell. PHMOSpell incor-
porates pinyin and glyph features into a pre-trained
language model via an adaptive gating module for
CSC. These features are derived from intermediate
representations of dominant Tacotron2 (Shen et al.,
2018) in text-to-speech (TTS) task and VGG19
(Simonyan and Zisserman, 2014) in computer vi-
sion (CV) task. We combine them with semantic
representation from a pre-trained language model
by the proposed adaptive gating module, enabling
the model to be trained end-to-end. Comprehen-
sive experiments are conducted on three shared
benchmarks to prove that latent representations
in our method can capture not only semantic but
also phonological and morphological information.
Experimental results demonstrate that our method
outperforms all baseline methods on three bench-
marks.

The contributions of this paper are in three folds:
1) We derive both phonological and morphologi-
cal knowledge of Chinese characters from multi-
modality and apply them to CSC. 2) We design
a novel adaptive gating mechanism, which effec-
tively incorporates the multi-modal information
into a pre-trained language model in an end-to-end
trainable way. 3) We achieve state-of-the-art per-
formance on three benchmark datasets using the
proposed model.

2 Related Work

CSC has received active research in recent years.
Previous studies on CSC can be divided into three
categories: rule based methods, statistical based

ters, there are about 216 different radicals in Chinese.

methods and deep learning based methods. Mangu
and Brill (1997) proposed a rule based approach
for automatically acquiring linguistic knowledge
from a small set of easily understood rules. Jiang
et al. (2012) arranged a new grammar system of
rules to solve both Chinese grammar errors and
spelling errors. Xiong et al. (2015)’s HANSpeller
was based on an extended HMM, ranker based mod-
els and a rule based model. For statistical based
methods, Noisy Channel Model (Brill and Moore,
2000, 2008; Chiu et al., 2014; Noaman et al., 2016;
Bao et al., 2020) is the most widely used model.
Statistical based methods usually narrowed the can-
didates choice by utilizing a predefined confusion
set (Chen et al., 2013; Hsieh et al., 2013; Wang
et al., 2019a), which contains a set of similar char-
acter pairs. These similar characters were used to
replace each other and language models were lever-
aged to measure the quality of the modified sen-
tences (Liu et al., 2013; Yu and Li, 2014; Xie et al.,
2015). More recently, deep learning has achieved
excellent results on many NLP tasks, including
CSC. Wang et al. (2019a) proposed an end-to-
end confusionset-guided encoder-decoder model,
which treated CSC as a sequence-to-sequence task
and infused confusion sets information by copy
mechanism. FASpell (Hong et al., 2019) employed
BERT (Devlin et al., 2019) as a denoising autoen-
coder (DAE) for CSC. SpellGCN (Cheng et al.,
2020) constructed two similarity graphs over the
characters in confusion sets and employed graph
convolutional network on these two graphs to cap-
ture the pronunciation/shape similarities between
characters. Soft-Masked BERT (Zhang et al., 2020)
was proposed to combine a Bi-GRU based detec-
tion network and a BERT based correction network,
where the former passed its prediction results to the
latter using soft masking mechanism. Nguyen et al.
(2020) applied TreeLSTM (Tai et al., 2015; Zhu
et al., 2015) on the tree structure of the character
radicals to get hierarchical character embeddings,
which was used as an adaptable filtering component
for candidates selection.

3 Approach

3.1 Problem Formulation

Generally, CSC can be regarded as a revision task
on Chinese sentences. Given a Chinese sentence
X = {x1, x2, ..., xn} of length n, the model needs
to detect spelling errors on character level and
output its correct corresponding sentence Y =
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Figure 1: The architecture of our model.
⊙

and
⊕

denote element-wise multiplication and addition operation,
respectively. Correct sentence means ’Please tell me’.

{y1, y2, ..., yn}. Although CSC can be viewed as
a kind of sequence-to-sequence (Seq2Seq) task, it
is different from other Seq2Seq tasks (e.g., Text
Summarization, Machine Translation): the input
and output sequences of the former are equal in
length. Most or even all of the characters in the
input sequence remain unchanged, only a few of
them need to be corrected.

3.2 Model

Our model consists of three feature extractor mod-
ules and an adaptive gating module used to fuse
kinds of features. Figure 1 illustrates the architec-
ture of our model. Given a sentence, our model
firstly extracts pinyin feature, glyph feature and
context-sensitive semantic feature for every char-
acter, then integrates three features by the adaptive
gating module. Finally, the integrated representa-
tion of each character is fed into a fully-connected
layer to calculate the probabilities over the whole
vocabulary, where the character with the highest
probability is picked as the substitute.

In the following subsections, we will elaborate
the implementation of each module.

3.3 Pinyin Feature Extractor

Neural TTS models, like Tacotron2 (Shen et al.,
2018), have achieved high-quality performance in
producing natural-sounding synthetic speech. We
propose to generate the phonological representa-
tions of Chinese characters through a TTS model

so that CSC can benefit from realistic pronunci-
ation similarities between characters. In this pa-
per, we leverage Tacotron2, a recurrent sequence-
to-sequence mel spectrograms prediction network,
to help modeling the phonological representations
since its location-sensitive attention can create ef-
fective time alignment between the character se-
quence and the acoustic sequence. When training a
Chinese TTS system with Tacotron2, characters are
first converted to pinyin sequence as phoneme form.
Then the sequence is represented by the encoder
using an embedding layer and the hidden repre-
sentations are consumed by the decoder to predict
a corresponding mel spectrogram one frame at a
time. Motivated by this, we train Tacotron2 sepa-
rately using public Chinese female voice datasets
3 with teacher forcing. During training, we utilize
pinyin transcription and mel spectrograms as input
to help modeling pinyin representations. Then we
extract pinyin embedding layer of the encoder as
our pinyin feature extractor to generate the phono-
logical representations for CSC. When given a Chi-
nese sentence X, our model first converts it to a
pinyin sequence using pypinyin4. Then dense fea-
ture for pinyin sequence Fp = {fp1 , f

p
2 , ..., f

p
n} can

be obtained by using pinyin feature extractor as a
lookup table, where fpi ∈ Rdp and dp is the dimen-

3https://test.data-baker.com/#/data/
index/source

4https://github.com/mozillazg/
python-pinyin

https://test.data-baker.com/#/data/index/source
https://test.data-baker.com/#/data/index/source
https://github.com/mozillazg/python-pinyin
https://github.com/mozillazg/python-pinyin
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sion of the pinyin feature.

3.4 Glyph Feature Extractor

As Chinese characters are composed of graphi-
cal components, it is intuitive that the represen-
tations for Chinese characters could benefit from
the spatial layout of these components. Motivated
by Meng et al. (2019) and Sehanobish and Song
(2019)’s exploration on using glyph images for Chi-
nese named entity recognition (NER) and Chinese
word segmentation (CWS), we employ a glyph fea-
ture extractor to extract glyph features for Chinese
characters. We make use of 8106 Chinese glyph im-
ages released by (Sehanobish and Song, 2019). To
take advantage of powerful pre-trained models and
avoid training from scratch, VGG19 (Simonyan
and Zisserman, 2014) pretrained on ImageNet is
adopted as the backbone of the glyph feature ex-
tractor. Following (Meng et al., 2019), we further
finetune it with the objective of recovering the iden-
tifiers from glyph images to solve the problem of
domain adaptation. After that, we drop the last clas-
sification layer and use the outputs of VGG19’s last
max pooling layer as glyph features. For a given
sentence X, our glyph feature extractor is able to
first retrieve images for its characters and then gen-
erate glyph features: Fg = {fg1 , f

g
2 , ..., f

g
n}, where

fgi ∈ Rdg is the glyph feature of the ith character
xi and dg is the dimension of the glyph feature.

3.5 Semantic Feature Extractor

Beyond the phonological and the morphological
information, we adopt empirically dominant pre-
trained language model to capture semantic infor-
mation from context. Following (Hong et al., 2019;
Cheng et al., 2020; Zhang et al., 2020), BERT is
employed as the backbone of our semantic feature
extractor. Given an input sentence X, the extractor
outputs hidden states Fs = {f s1 , f s2 , ..., f sn} at the
final layer of BERT as semantic features, where
f si ∈ Rds and ds is the dimension of the semantic
feature.

3.6 Adaptive Gating

Most previous methods for CSC simply used ad-
dition or concatenation to fuse different features.
However, these fusion strategies ignore the relation-
ship between the features. To tackle this issue, we
propose an innovative adaptive gating mechanism
served like a gate to finely control the fusion of

features. It is defined as follows:

AG(Fp,Fs) = σ(FpWp + bp) · Fs (1)

AG(Fg,Fs) = σ(FgWg + bg) · Fs (2)

where Wp ∈ Rdp×ds ,bp ∈ Rn×ds ,Wg ∈
Rdg×ds ,bg ∈ Rn×ds are parameters to be learned.
σ is a nonlinear activation function, which is a
ReLU function in our implementation. “·” rep-
resents element-wise multiplication. We employ
the proposed gating mechanism to control how
much information in pinyin and glyph features
is fused with semantic feature and transferred to
the next classifier module. The enriched feature
Fe ∈ Rn×ds is calculated as follows:

Fe = λp ·AG(Fp,Fs) + λg ·AG(Fg,Fs) (3)

where λp + λg = 1 are coefficients. Finally, we
add residual connection to Fe and Fs by linear
combination:

Fes = Fe + Fs (4)

3.7 Training
During the training process, the representation Fes

is fed into a fully-connected layer for the final clas-
sification, which is defined as follows:

P (Yp|X) = softmax(FesWfc + bfc) (5)

where Wfc ∈ Rds×V ,bfc ∈ Rn×V are learnable
parameters for the fully-connected layer, V is the
size of the vocabulary and Yp is the predicted sen-
tence given the erroneous sentence X.

The goal of training the model is to match the
predicted sequence Yp and the ground truth se-
quence Yg. Overall, the learning process is driven
by minimizing negative log-likelihood of the char-
acters:

L = −
n∑

i=1

logP (ŷi = yi|X) (6)

where ŷi, yi are the ith characters of Yp and Yg,
respectively.

3.8 Inference
At inference time, we select candidates with the
highest probability given by the model for each
character’s correction. As for detection task, it
is accomplished by checking whether the picked
candidate is different with the input character.



5962

Training Data # erroneous sent / sent Avg.length
SIGHAN13 340 / 700 41.8
SIGHAN14 3358 / 3437 49.6
SIGHAN15 2273 / 2339 31.3

(Wang et al., 2018) 271009 / 271329 42.5
Total 276980 / 277805 42.5

Test Data # erroneous sent / sent Avg.length
SIGHAN13 971 / 1000 74.3
SIGHAN14 520 / 1062 50.0
SIGHAN15 541 / 1100 30.6

Table 2: Statistics of datasets.

4 Experiments

4.1 Datasets

To investigate the effectiveness of our proposed
method, we conduct extensive experiments on
three shared benchmark datasets for CSC task.
Specifically, we make use of training datasets
from SIGHAN13 (Wu et al., 2013), SIGHAN14
(Yu et al., 2014) and SIGHAN15 (Tseng et al.,
2015). We also include 271K training samples
automatically generated by OCR-based and ASR-
based methods (Wang et al., 2018) as in (Cheng
et al., 2020; Nguyen et al., 2020). We employ test
datasets of SIGHAN13, SIGHAN14, SIGHAN15
for evaluation. Following the same data pre-
processing procedure with (Cheng et al., 2020;
Nguyen et al., 2020), characters in all SIGHAN
datasets are converted to simplified form using
OpenCC5. We adopt SIGHAN’s standard split of
training and test data. The detailed statistic of the
data is presented in Table 2.

4.2 Baseline Methods

We compare our method against several advanced
methods proposed recently to investigate the poten-
tial of our framework. They are listed below:

• FASPell (Hong et al., 2019): This method
employs BERT as a denoising autoencoder to
generate candidates for wrong characters and
filters the visually/phonologically irrelevant
candidates by a confidence-similarity decoder.

• SpellGCN (Cheng et al., 2020): This method
learns the pronunciation/shape relationship be-
tween the characters by applying graph con-
volutional network on two similarity graphs.
It predicts candidates for corrections by com-
bining graph representations with semantic
representations from BERT.

5https://github.com/BYVoid/OpenCC

• HeadFilt (Nguyen et al., 2020): This method
uses adaptable filter learned from hierarchical
character embeddings to estimate the similar-
ity between characters and filter candidates
produced by BERT.

• BERT: This method finetunes BERT with the
training data and selects the character with the
highest probability for correction.

4.3 Evaluation Metrics

We adopt sentence-level metrics for evaluation,
which are widely used in previous methods for
CSC task. Sentence-level metrics are stricter than
character-level metrics since all errors in a sen-
tence need to be detected and corrected. Metrics
including accuracy, precision, recall and F1 score
are calculated for errors detection and correction,
respectively.

4.4 Experimental Setup

Our model is implemented based on huggingface’s
pytorch implementation of transformers6. We ini-
tialize weights of the semantic feature extractor
using bert-base-chinese and weights of the glyph
feature extractor using pretrained VGG19 from
torchvision library7. Weights of the adaptive gating
are randomly initialized. We train our model using
AdamW optimizer for 5 epochs with learning rate
1e−4. Batch size is 64 for training and 32 for eval-
uation. Best λp, λg are 0.6, 0.4 for SIGHAN13,
0.8, 0.2 for SIGHAN14 and SIGHAN15. We train
Tacotron2 using its open-source implementation8

for 130k steps with default parameters, except the
decay step is set to 15000. The number of our
pinyin is 1920 and the dimension of the pinyin fea-
ture is 512. Characters are written using Hei Ti
font9 in 8106 glyph images. We finetune VGG19
on glyph images for 50 epochs with a batch size
32 and a learning rate 5e−4. The dimension of
the glyph feature is 25088. All experiments are
conducted on 2 Tesla V100 with 16G memory.

4.5 Main Results

Table 3 presents the results of all methods on three
test datasets. Our method outperforms all previous

6https://github.com/huggingface/
transformers

7https://github.com/pytorch/vision
8https://github.com/Rayhane-mamah/

Tacotron-2
9Hei Ti font is a very formal sans serif font for Chinese

writing.

https://github.com/BYVoid/OpenCC
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/pytorch/vision
https://github.com/Rayhane-mamah/Tacotron-2
https://github.com/Rayhane-mamah/Tacotron-2
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Test dataset Method
Detection Level Correction Level

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

SIGHAN13

FASpell (2019) - 76.2 63.2 69.1 - 73.1 60.5 66.2
SpellGCN (2020) - 80.1 74.4 77.2 - 78.3 72.7 75.4
HeadFilt (2020) 74.9 100.0 74.9 85.7 74.1 100.0 74.1 85.1

BERT 70.6 98.7 70.6 82.3 67.8 98.6 67.8 80.4
PHMOSpell 77.1 99.5 76.8 86.7 75.4 99.5 75.1 85.6

SIGHAN14

FASpell (2019) - 61.0 53.5 57.0 - 59.4 52.0 55.4
SpellGCN (2020) - 65.1 69.5 67.2 - 63.1 67.2 65.3
HeadFilt (2020) 74.2 82.5 61.6 70.5 73.5 82.1 60.2 69.4

BERT 72.7 78.6 60.7 68.5 71.2 77.8 57.6 66.2
PHMOSpell 78.5 85.3 67.6 75.5 76.9 84.7 64.3 73.1

SIGHAN15

FASpell (2019) - 67.6 60.0 63.5 - 66.6 59.1 62.6
SpellGCN (2020) - 74.8 80.7 77.7 - 72.1 77.7 75.9
HeadFilt (2020) 79.3 84.5 71.8 77.6 78.5 84.2 70.2 76.5

BERT 79.9 84.1 72.9 78.1 77.5 83.1 68.0 74.8
PHMOSpell 82.6 90.1 72.7 80.5 80.9 89.6 69.2 78.1

Table 3: Performances of our method and baseline methods, where accuracy (Acc.), precision (Prec.), recall (Rec.),
F1 on detection level and correction level are reported (%). Best results are in bold.

methods and achieves new state-of-the-art perfor-
mance on all three datasets. Compared with the
best baseline method (HeadFilt), the improvements
of our method are 1.0%, 5.0%, 2.9% on detection-
level F1 and 0.5%, 3.7%, 1.6% on correction-level
F1 respectively, which verifies the effectiveness of
our method.

We observe that our method substantially outper-
forms SpellGCN on the precision and F1 scores,
which indicates that our method is superior to Spell-
GCN in fusing similarity knowledge. Although
SpellGCN incorporates such knowledge, it relies
on a predefined confusion set, which limits its gen-
eralization. Firstly, similarity knowledge cannot
be obtained adequately since the confusion set is
limited and unable to cover all characters. Sec-
ondly, the confusion set is manually constructed
and has no golden-standard, which may bring about
cascading errors. Our method achieves better F1
scores than HeadFilt, apparently because Head-
Filt only leverages morphological knowledge in its
post-filtering component. Finally, our method con-
sistently beats vanilla BERT on all three datasets
in terms of all metrics, which demonstrates the
importance of incorporating the phonological and
morphological knowledge into the semantic space
for the CSC task.

4.6 Ablation Study

To study the effectiveness of each component in
our method, we carry out ablation tests on three
datasets. All ablation experiments with pinyin and

glyph features are conducted using equal weights
for pinyin feature and glyph feature (λp = λg)
to avoid unnecessary biases they bring. Table 4
presents the results. First, replacing adaptive gating
with a simple aggregate strategy leads to worse per-
formance for both detection and correction, which
demonstrates the benefit of using adaptive gating.
We then remove pinyin feature extractor or glyph
feature extractor from the model. The performance
degrades more when removing pinyin feature com-
pared with removing glyph feature, which implies
that phonological information is more crucial for
CSC. This is consistent with the finding that most
Chinese spelling errors are caused by phonological
similarity (Liu et al., 2011). The result further de-
grades when removing both features and adaptive
gating module, and this trend intuitively indicates
that both phonological and morphological informa-
tion contribute to the final performance.

4.7 Effect of Hyper Parameters

In this subsection, we conduct experiments to an-
alyze the effect of weights of features and the di-
mension of the pinyin feature.

Figure 2 shows how different weights influence
the performance of the model. In this compari-
son, the value of λp (λg) changes from 0.0 (1.0)
to 1.0 (0.0) with the gap of 0.2. We plot the
detection-level and correction-level F1 scores on
three datasets in Figure 2. The results consis-
tently show that our model performs better when
λp is set larger (e.g., 0.6 for SIGHAN13, 0.8 for
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Test dataset Method
Detection Level Correction Level

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

SIGHAN13

PHMOSpell (w/o PGA) 70.6 98.7 70.6 82.3 67.8 98.6 67.8 80.4
PHMOSpell (w/o GE) 76.1 99.1 76.1 86.1 74.9 99.0 74.8 85.2
PHMOSpell (w/o PE) 71.9 98.9 71.8 83.2 69.5 98.8 69.3 81.5
PHMOSpell (w/ AS) 71.6 99.4 71.1 82.9 70.3 99.4 69.8 82.0

PHMOSpell 77.2 99.5 76.9 86.8 75.1 99.5 74.7 85.4

SIGHAN14

PHMOSpell (w/o PGA) 72.7 78.6 60.7 68.5 71.2 77.8 57.6 66.2
PHMOSpell (w/o GE) 76.4 83.6 64.3 72.7 75.3 83.1 62.0 71.1
PHMOSpell (w/o PE) 76.2 82.9 64.7 72.7 74.8 82.2 61.8 70.6
PHMOSpell (w/ AS) 73.4 81.3 59.1 68.5 72.4 80.8 57.0 66.8

PHMOSpell 76.6 82.4 66.3 73.5 75.3 81.8 63.6 71.6

SIGHAN15

PHMOSpell (w/o PGA) 79.9 84.1 72.9 78.1 77.5 83.1 68.0 74.8
PHMOSpell (w/o GE) 81.2 88.7 70.7 78.7 80.0 88.4 68.2 77.0
PHMOSpell (w/o PE) 81.0 88.3 70.7 78.5 79.5 87.9 67.7 76.5
PHMOSpell (w/ AS) 78.9 87.5 66.5 75.6 77.9 87.2 64.7 74.3

PHMOSpell 81.3 88.6 71.2 79.0 80.0 88.2 68.4 77.1

Table 4: Ablation results on three datasets. PHMOSpell (w/ AS) denotes replacing adaptive gating module
with aggregate strategy for feature fusion. PHMOSpell (w/o PE) denotes model without pinyin feature extractor.
PHMOSpell (w/o GE) denotes model without glyph feature extractor. PHMOSpell (w/o PGA) denotes model
without pinyin, glyph feature extractor and adaptive gating, which is a vanilla BERT implementation.
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Figure 2: Effect of different weights for features.
We show results (%) of detection-level F1 (D-F) and
correction-level F1 (C-F) on three datasets.

SIGHAN14, SIGHAN15), which means a higher
weight on pinyin feature. Moreover, all of them
outperform the model without any features.

Previous ablation tests show that the pinyin fea-
ture has more influence on the performance than the
glyph feature. We further perform experiments by
varying the dimension of the pinyin feature since it
directly impacts the quality of the feature. Figure 3
shows larger dimensions perform better. However,
it should be noted that the performance degrades
when the dimension is larger than 512. This is
reasonable due to the bias-variance phenomenon
explained in (Yin and Shen, 2018). Feature with a
small dimensionality can not capture all possible
pinyin relations (high bias). On the other hand, fea-
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Figure 3: The results of correction-level F1 score (%)
w.r.t. the dimension of the pinyin feature.

ture with a large dimensionality includes too much
noise (high variance). One must make a trade-off in
dimensionality selection for high-quality features.

4.8 Features Visualization

To understand the effectiveness of our features
more intuitively, we reduce features from high-
dimensional space to low-dimensional space and vi-
sualize some of them using t-SNE (Van der Maaten
and Hinton, 2008).

Figure 4 illustrates the embeddings of pinyin
whose initial begins with “d”, “f”, “h” and “j”. One
can find from the figure that embeddings form sev-
eral clusters based on their pronunciations. Pinyin
embeddings with more similar pronunciations (eg.
“fu4” and “hu2”) are closer in distance than dissim-
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ilar ones (eg. “hu2” and “dao4”). This suggests
that the model has learned alignment between the
pinyin feature and the realistic acoustic feature. We
also plot glyph embeddings of characters with radi-
cal “口”, “土” at left side and characters with radi-
cal “口” at outside in Figure 5. They show the same
trends as that of pinyin embeddings. Above all, this
further verifies the effectiveness of both phonolog-
ical and morphological knowledge derived from
multi-modality.
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Figure 4: The scatter of similar pinyin in terms of pro-
nunciation. Pinyin whose initial begins with “d”, “f”,
“h”, “j” are shown in red, purple, blue, orange respec-
tively.
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Figure 5: The scatter of similar characters in terms of
shape. Characters with “口” and “土” at left side are
shown in red and orange, characters with “口” at out-
side are shown in blue.

4.9 Discussion
To demonstrate how our model can handle phono-
logical and visual errors, we showcase some repre-
sentative cases from the test datasets. For instance,
for the erroneous sentence “...不惜娱(pinyin: yu2)
弄大臣...”, vanilla BERT corrects “娱弄” as
“玩(pinyin: wan2) 弄 (play)” without consider-
ing phonological information, which is only se-
mantically reasonable. Our model, however, takes
both semantic and phonological knowledge into
consideration and successfully generates a more
proper correction “...不惜愚(pinyin: yu2) 弄大
臣... (...Not hesitate to fool the minister...)”. An-
other case is “...那别人的欢(radicals: 又,欠) 说

是没办法改变你的...”. Our model is capa-
ble of modifying it into correct sentence “...那
别人的劝(radicals: 又,力) 说是没办法改变
你的...(...The persuasion of others can’t change
you...)” under morphological constraint, whereas
vanilla BERT produces an inferior correction
“小(radicals: 小)说 (fiction)”.

We also manually analyze the error cases of our
model on the test datasets and find there are two
common types of errors. One type is continuous
errors, where several continuous characters in a sen-
tence are wrong. For example, in sentence “...他
们有时候，有一点捞到...”, “捞到(Caught)” are
continuous errors, which should be “唠叨” (The
correct sentence means ’Sometimes they are a little
nagging’). The model fails to correct such continu-
ous errors since the meaning of the whole sentence
is more disturbed. Correcting another type of er-
rors requires strong external knowledge. For in-
stance, “心智 (mind)” in poem “...天将降大任于
斯人也，必先苦其心智，劳其筋骨... (...When
Heaven is going to give a great responsibility to
someone, it will first fill his mind with suffering,
toil his sinews and bones...)” is erroneous but se-
mantic plausible in Chinese. The model is still
unable to correct it into “心志 (mind)” since the
model lacks knowledge of poem.

5 Conclusion

In this research, we propose a novel end-to-end
trainable model called PHMOSpell for CSC, which
incorporates both phonological and morphological
knowledge from two feature extractors into a pre-
trained language model by an effective adaptive gat-
ing mechanism. Extensive experiments and empir-
ical comparisons show that PHMOSpell achieves
state-of-the-art results on three widely used bench-
marks for CSC, demonstrating the effectiveness of
the proposed method.

We remain extending the multi-modal knowl-
edge to other NLP tasks (e.g., grammar error cor-
rection) as our future work. Another fruitful fu-
ture work is exploring the integration of external
knowledge so that the model can deal with errors
in poems, proverbs, etc.
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