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Abstract

Knowledge distillation is a critical technique
to transfer knowledge between models, typi-
cally from a large model (the teacher) to a
more fine-grained one (the student). The objec-
tive function of knowledge distillation is typ-
ically the cross-entropy between the teacher
and the student’s output distributions. How-
ever, for structured prediction problems, the
output space is exponential in size; there-
fore, the cross-entropy objective becomes in-
tractable to compute and optimize directly. In
this paper, we derive a factorized form of the
knowledge distillation objective for structured
prediction, which is tractable for many typical
choices of the teacher and student models. In
particular, we show the tractability and empir-
ical effectiveness of structural knowledge dis-
tillation between sequence labeling and depen-
dency parsing models under four different sce-
narios: 1) the teacher and student share the
same factorization form of the output struc-
ture scoring function; 2) the student factoriza-
tion produces more fine-grained substructures
than the teacher factorization; 3) the teacher
factorization produces more fine-grained sub-
structures than the student factorization; 4) the
factorization forms from the teacher and the
student are incompatible.

1 Introduction

Deeper and larger neural networks have led to sig-
nificant improvement in accuracy in various tasks,
but they are also more computationally expensive
and unfit for resource-constrained scenarios such
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as online serving. An interesting and viable solu-
tion to this problem is knowledge distillation (KD)
(Bucilua et al., 2006; Ba and Caruana, 2014; Hin-
ton et al., 2015), which can be used to transfer
the knowledge of a large model (the teacher) to a
smaller model (the student). In the field of natu-
ral language processing (NLP), for example, KD
has been successfully applied to compress massive
pretrained language models such as BERT (Devlin
et al., 2019) and XLM-R (Conneau et al., 2020)
into much smaller and faster models without sig-
nificant loss in accuracy (Tang et al., 2019; Sanh
et al., 2019; Tsai et al., 2019; Mukherjee and Has-
san Awadallah, 2020).

A typical approach to KD is letting the stu-
dent mimic the teacher model’s output probabil-
ity distributions on the training data by using the
cross-entropy objective. For structured prediction
problems, however, the output space is exponen-
tially large, making the cross-entropy objective in-
tractable to compute and optimize directly. Take
sequence labeling for example. If the size of the
label set is L, then there are L™ possible label se-
quences for a sentence of n words and it is infeasi-
ble to compute the cross-entropy by enumerating
the label sequences. Previous approaches to struc-
tural KD either choose to perform KD on local
decisions or substructures instead of on the full out-
put structure, or resort to Top-K approximation of
the objective (Kim and Rush, 2016; Kuncoro et al.,
2016; Wang et al., 2020a).

In this paper, we derive a factorized form of the
structural KD objective based on the fact that al-
most all the structured prediction models factorize
the scoring function of the output structure into
scores of substructures. If the student’s substruc-
ture space is polynomial in size and the teacher’s
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marginal distributions over these substructures can
be tractably estimated, then we can tractably com-
pute and optimize the factorized form of the struc-
tural KD objective. As will be shown in the paper,
many widely used structured prediction models sat-
isfy the assumptions and hence are amenable to
tractable KD. In particular, we show the feasibility
and empirical effectiveness of structural KD with
different combinations of teacher and student mod-
els, including those with incompatible factorization
forms. We apply this technique to structural KD
between sequence labeling and dependency parsing
models under four different scenarios.

1. The teacher and student share the same factor-
ization form of the output structure scoring func-
tion.

2. The student factorization produces more fine-
grained substructures than the teacher factoriza-
tion.

3. The teacher factorization produces more fine-
grained substructures than the student factoriza-
tion.

4. The factorization forms from the teacher and the
student are incompatible.

In all the cases, we empirically show that our
structural KD approaches can improve the student
models. In the few cases where previous KD ap-
proaches are applicable, we show our approaches
outperform these previous approaches. With un-
labeled data, our approaches can further improve
student models’ performance. In a zero-shot cross-
lingual transfer case, we show that with sufficient
unlabeled data, student models trained by our ap-
proaches can even outperform the teacher models.

2 Background
2.1 Structured Prediction

Structured prediction aims to predict a structured
output such as a sequence, a tree or a graph. In
this paper, we focus on structured prediction prob-
lems with a discrete output space, which include
most of the structured prediction tasks in NLP
(e.g., chunking, named entity recognition, and de-
pendency parsing) and many structured prediction
tasks in computer vision (e.g., image segmentation).
We further assume that the scoring function of the
output structure can be factorized into scores of a
polynomial number of substructures. Consequently,
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we can calculate the conditional probability of the
output structure y given an input x as follows:
exp (Score(y, x))
>y ev(z) €Xp (Score(y’, x))
[Tuey exp (Score(u, x))
Z(z)

P(yle) =

ey

where Y () represents all possible output struc-
tures given the input x, Score(y, x) is the scoring
function that evaluates the quality of the output y,
Z(x) is the partition function, and u € y denotes
that w is a substructure of y. We define the sub-
structure space U(x) = Uy cy(q) {ulu € ylas the
set of substructures of all possible output structures
given input x.

Take sequence labeling for example. Given a
sentence x , the output space Y(x) contains all
possible label sequences of x. In linear-chain CRF,
a popular model for sequence labeling, the scor-
ing function Score(y, «) is computed by summing
up all the transition scores and emission scores
where 7 ranges over all the positions in sentence x,
and the substructure space U(x) contains all pos-
sible position-specific labels {y;} and label pairs

{(yi-1,9)}-
2.2 Knowledge Distillation

Knowledge distillation is a technique that trains a
small student model by encouraging it to imitate
the output probability distribution of a large teacher
model. The typical KD objective function is the
cross-entropy between the output distributions pre-
dicted by the teacher model and the student model:

Lo =— Y Plyla)logP(ylz) (2
yeY(x)

where P; and P; are the teacher’s and the student’s
distributions respectively.

During training, the student jointly learns from
the gold targets and the distributions predicted by
the teacher by optimizing the following objective
function:

Estudent = )\ﬁKD + (1 - /\)ﬁtarget

where A is an interpolation coefficient between the
target 10SS Liarger and the structural KD loss Lkp.
Following Clark et al. (2019); Wang et al. (2020a),
one may apply teacher annealing in training by
decreasing A linearly from 1 to 0. Because KD
does not require gold labels, unlabeled data can
also be used in the KD loss.



3 Structural Knowledge Distillation

When performing knowledge distillation on struc-
tured prediction, a major challenge is that the struc-
tured output space is exponential in size, leading to
intractable computation of the KD objective in Eq.
2. However, if the scoring function of the student
model can be factorized into scores of substructures
(Eq. 1), then we can derive the following factorized
form of the structural KD objective.

Lxp=— Y _ Piylz)logPy(y|z)
yeY(z)

= Z Pi(y|x) Z Scores(u, x)+logZs(x)

yeY () ucy

=— Z Pi(y|x) Z 1yeyScores(u, z)+log Zs(x)
yeY(x) u€Us ()

=— Z Z Py (y|x)1yecyScores(u, x)+logZ,(x)
uelUs(x),yeY(x)

=— Z Py (u|x)Scores(u, x)+logZ,(x) 3)
u€eUs(x)

where 1.ondition 18 1 if the condition is true and O
otherwise. From Eq. 3, we see that if Us(x) is
polynomial in size and P;(u|x) can be tractably
estimated, then the structural KD objective can be
tractably computed and optimized. In the rest of
this section, we will show that this is indeed the
case for some of the most widely used models in
sequence labeling and dependency parsing, two
representative structured prediction tasks in NLP.
Based on the difference in score factorization be-
tween the teacher and student models, we divide
our discussion into four scenarios.

3.1 Teacher and Student Share the Same
Factorization Form

Case 1a: Linear-Chain CRF = Linear-Chain
CRF In this case, both the teacher and the student
are linear-chain CRF models. An example appli-
cation is to compress a state-of-the-art CRF model
for named entity recognition (NER) that is based
on large pretrained contextualized embeddings to a
smaller CRF model with static embeddings that is
more suitable for fast online serving.

For a CRF student model described in sec-
tion 2.1, if we absorb the emission score
Se(yi, x) into the transition score S¢((y;—1, i), T)
at each position ¢, then the substructure
space Ug(x) contains every two adjacent la-
bels {(yi—1,%i)} for i=1,...,n, with n be-

ing the sequence length, and the substruc-
ture score is defined as Score((y;i—1,¥i),x) =
St((yi—1,9i),®) + Se(yi,x). The substructure
marginal P;((y;—1,¥;)|x) of the teacher model can
be computed by:

Pi((yi—1,yi)|) o< a(yi—1) x B(yi)

x exp(Score((yi—1,¥i), T))
€]

where a(y;—1) and [(y;) are forward and back-
ward scores that can be tractably calculated using
the classical forward-backward algorithm.

Comparing with the Posterior KD and Top-K
KD of linear-chain CRFs proposed by Wang et al.
(2020a), our approach calculates and optimizes
the KD objective exactly, while their two KD ap-
proaches perform KD either heuristically or approx-
imately. At the formulation level, our approach is
based on the marginal distributions of two adja-
cent labels, while the Posterior KD is based on the
marginal distributions of a single label.

Case 1b: Graph-based Dependency Parsing =
Dependency Parsing as Sequence Labeling In
this case, we use the biaffine parser proposed by
Dozat et al. (2017) as the teacher and the sequence
labeling approach proposed by Strzyz et al. (2019)
as the student for the dependency parsing task. The
biaffine parser is one of the state-of-the-art models,
while the sequence labeling parser provides a good
speed-accuracy tradeoff. There is a big gap in accu-
racy between the two models and therefore KD can
be used to improve the accuracy of the sequence
labeling parser.

Here we follow the head-selection formulation
of dependency parsing without the tree constraint.
The dependency parse tree y is represented by
(y1,---,Yn), where n is the sentence length and
y; = (hi, ;) denotes the dependency head of the
i-th token of the input sentence, with h; being the
index of the head token and [/; being the dependency
label. The biaffine parser predicts the dependency
head for each token independently. It models sepa-
rately the probability distribution of the head index
Py(h;|x) and the probability distribution of the la-
bel P,(l;|x). The sequence labeling parser is a
MaxEnt model that also predicts the head of each
token independently. It computes Score((h;, l;), x)
for each token and applies a softmax function to
produce the distribution Ps((h;, 1;)|x).

Therefore, these two models share the same fac-
torization in which each substructure is a depen-
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dency arc specified by y;. Us(x) thus contains
all possible dependency arcs among tokens of the
input sentence x. The substructure marginal pre-
dicted by the teacher can be easily derived as:

P((hi, 1) |x) = Pi(hilz) x Pi(lile)  (5)

Note that in this case, the sequence labeling parser
uses a MaxEnt decoder, which is locally normal-
ized for each substructure. Therefore, the structural
KD objective in Eq. 3 can be reduced to the fol-
lowing form without the need for calculating the
student partition function Z4(x).

Lkp = — Z Py (u|x) x logPs(ulx) (6)
uelUs(x)

In all the cases except Case 1a and Case 3, the
student model is locally normalized and hence we
can follow this form of objective.

3.2 Student Factorization Produces More
Fine-grained Substructures than Teacher
Factorization

Case 2a: Linear-Chain CRF = MaxEnt In
this case, we use a linear-chain CRF model as the
teacher and a MaxEnt model as the student. Pre-
vious work (Yang et al., 2018; Wang et al., 2020a)
shows that a linear-chain CRF decoder often leads
to better performance than a MaxEnt decoder for
many sequence labeling tasks. Still, the simplicity
and efficiency of the MaxEnt model is desirable.
Therefore, it makes sense to perform KD from a
linear-chain CRF to a MaxEnt model.

As mentioned in Case 1a, the substructures of
a linear-chain CRF model are consecutive labels
{(yi=1,¥i)}. In contrast, a MaxEnt model pre-
dicts the label probability distribution Ps(y;|x) of
each token independently and hence the substruc-
ture space U () consists of every individual label
{y:}. To calculate the substructure marginal of the
teacher P;(y;|x), we can again utilize the forward-
backward algorithm:

Pi(yile) o< ayi) x B(yi) (7)

where «(y;) and ((y;) are forward and backward
scores.

Case 2b: Second-Order Dependency Parsing
= Dependency Parsing as Sequence Labeling
The biaffine parser is a first-order dependency
parser, which scores each dependency arc in a
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parse tree independently. A second-order depen-
dency parser scores pairs of dependency arcs with
a shared token. The substructures of second-order
parsing are therefore all the dependency arc pairs
with a shared token. It has been found that second-
order extensions of the biaffine parser often have
higher parsing accuracy (Wang et al., 2019; Zhang
et al., 2020; Wang et al., 2020d; Wang and Tu,
2020). Therefore, we may take a second-order
dependency parser as the teacher to improve a se-
quence labeling parser.

Here we consider the second-order dependency
parser of Wang and Tu (2020). It employs mean
field variational inference to estimate the probabili-
ties of arc existence P;(h;|x) and uses a first-order
biaffine model to estimate the probabilities of arc la-
bels P;(l;|x). Therefore, the substructure marginal
can be calculated in the same way as Eq. 5.

3.3 Teacher Factorization Produces More
Fine-grained Substructures than Student
Factorization

Case 3: MaxEnt = Linear-Chain CRF Here
we consider KD in the opposite direction of Case
2a. An example application is zero-shot cross-
lingual NER. Previous work (Pires et al., 2019;
Wu and Dredze, 2019) has shown that multilin-
gual BERT (M-BERT) has strong zero-shot cross-
lingual transferability in NER tasks. Many such
models employ a MaxEnt decoder. In scenarios re-
quiring fast speed and low computation cost, how-
ever, we may want to distill knowledge from such
models to a model with much cheaper static mono-
lingual embeddings while compensating the perfor-
mance loss with a linear-chain CRF decoder.

As described in Case 1a, the substructures of
a linear-chain CRF model are consecutive labels
{(yi—1,v:)}. Because of the label independence
and local normalization in the MaxEnt model, the
substructure marginal of the MaxEnt teacher is cal-
culated by:

Pi((yi-1,yi)|x) = Py(yi-1|x) Pi(yilz)  (8)

3.4 Factorization Forms From Teacher and
Student are Incompatible

Case 4: NER as Parsing = MaxEnt Very
recently, Yu et al. (2020) propose to solve the
NER task as graph-based dependency parsing and
achieve state-of-the-art performance. They repre-
sent each named entity with a dependency arc from



the first token to the last token of the named en-
tity, and represent the entity type with the arc label.
However, for the flat NER task (i.e., there is no
overlapping between entity spans), the time com-
plexity of this method is higher than commonly
used sequence labeling NER methods. In this case,
we take a parsing-based NER model as our teacher
and a MaxEnt model with the BIOES label scheme
as our student.

The two models adopt very different representa-
tions of NER output structures. The parsing-based
teacher model represents an NER output of a sen-
tence with a set of labeled dependency arcs and
defines its score as the sum of arc scores. The Max-
Ent model represents an NER output of a sentence
with a sequence of BIOES labels and defines its
score as the sum of token-wise label scores. There-
fore, the factorization forms of these two models
are incompatible.

Computing the substructure marginal of the
teacher P;(y;|x), where y; € {By, I}, E;, S;, 0|l €
L} and L is the set of entity types, is much more
complicated than in the previous cases. Take
y; = By forexample. P;(y; = Bj|x) represents the
probability of the ¢-th word being the beginning of
a multi-word entity of type ‘I’. In the parsing-based
teacher model, this probability is proportional to
the summation of exponentiated scores of all the
output structures that contain a dependency arc of
label ‘I’ with the ¢-th word as its head and with its
length larger than 1. It is intractable to compute
such marginal probabilities by enumerating all the
output structures, but we can tractably compute
them using dynamic programming. See supple-
mentary material for a detailed description of our
dynamic programming method.

4 Experiments

We evaluate our approaches described in Section
3 on NER (Case 1a, 2a, 3, 4) and dependency
parsing (Case 1b, 2b).

4.1 Settings

Datasets We use CoNLL 2002/2003 datasets
(Tjong Kim Sang, 2002; Tjong Kim Sang and
De Meulder, 2003) for Case 1a, 2a and 4, and
use WikiAnn datasets (Pan et al., 2017) for Case
1a, 2a, 3, and 4. The CoNLL datasets contain
the corpora of four Indo-European languages. We
use the same four languages from the WikiAnn
datasets. For cross-lingual transfer in Case 3, we

use the four Indo-European languages as the source
for the teacher model and additionally select four
languages from different language families as the
target for the student models.”

We use the standard training/development/test
split for the CoNLL datasets. For WikiAnn, we
follow the sampling of Wang et al. (2020a) with
12000 sentences for English and 5000 sentences for
each of the other languages. We split the datasets
by 3:1:1 for training/development/test. For Case
1b and 2b, we use Penn Treebank (PTB) 3.0 and
follow the same pre-processing pipeline as in Ma
et al. (2018). For unlabeled data, we sample sen-
tences that belong to the same languages of the
labeled data from the WikiAnn datasets for Case
1a, 2a and 4 and we sample sentences from the
target languages of WikiAnn datasets for Case 3.
We use the BLLIP corpus?® as the unlabeled data
for Case 1b and 2b.

Models For the student models in all the cases,
we use fastText (Bojanowski et al., 2017) word em-
beddings and character embeddings as the word
representation. For Case 1la, 2a and 4, we con-
catenate the multilingual BERT, Flair (Akbik et al.,
2018), fastText embeddings and character embed-
dings (Santos and Zadrozny, 2014) as the word
representations for stronger monolingual teacher
models (Wang et al., 2020c). For Case 3, we use M-
BERT embeddings for the teacher. Also for Case
3, we fine-tune the teacher model on the training
set of the four Indo-European languages from the
WikiAnn dataset and train student models on the
four additional languages. For the teacher models
in Case 1b and 2b, we simply use the same em-
beddings as the student because there is already
huge performance gap between the teacher and stu-
dent in these settings and hence we do not need
strong embeddings for the teacher to demonstrate
the utility of KD.

Baselines We compare our Structural KD (Struct.
KD) with training without KD (w/o KD) as well as
existing KD approaches. In Case 1a, the Pos. KD
baseline is the Posterior KD approach for linear-
chain CRFs proposed by Wang et al. (2020a). They

The four languages from the CoNLL datasets are Dutch,
English, German and Spanish and the four target languages for
Case 3 are Basque, Hebrew, Persian and Tamil. We use ISO
639-1 language codes (https://en.wikipedia.org/
wiki/List_of_ ISO_639-1_codes) to represent each
language.

3Brown Laboratory for Linguistic Information Processing
(BLLIP) 1987-89 WSJ Corpus Release 1.
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Case 2a Case 3
CoNLL WikiAnn Wiki+U |Wiki U

Case 1a 1b 2a 2b 4
Labeled |CoN Wiki| PTB | CoN Wiki|PTB | CoN Wiki
Teacher  [89.15 88.52|95.96(89.15 88.52(96.04(88.57 88.38
w/o KD  [84.70 83.31]|89.85(83.87 80.86|89.85(83.87 80.86
Pos. KD [85.27 83.73

Struct. KD|85.35 84.12{91.83/84.50 82.23/91.78|84.28 81.45

MaxEnt Teacher|| 88.65 87.41 87.41 | 56.01
CRF Teacher 89.15 88.52 88.52 -

Token. KD 84.25 82.09  83.07 | 38.42
Struct. KD 84.50 82.23  83.34 | 45.28

Table 1: Averaged F1 scores for NER and labeled at-
tachment scores (LAS) for dependency parsing on la-
beled datasets. CoN: CoNLL datasets.

Table 3: Comparing with reference baselines on NER
task. Wiki+U means the training data comprises la-
beled and unlabeled WikiAnn data and Wiki U means
that the training data of this case contains only the un-
labeled data.

Case la | 1b | 2a | 2b 3 4

Labeled+Unlabeled | Wiki | PTB | Wiki | PTB |Wiki U| Wiki

Teacher 88.52(95.96|88.52(96.04| 56.01 (88.38 H de en es nl [ Avg.

Top-1 84.19(90.03|82.40(90.03| 41.11 |82.10 Case 1a

Pos. KD +Top-1 8491} - | - | - - - w/o KD' 82.16 90.13 88.06 89.11 | 87.36

Struct. KD + Top-1|85.24|91.98|85.24|91.94| 45.28 (82.44 Top-WK KD' 82.15 9052 88.64 8924 | 87.64
Pos. KD' 82.22 90.68 88.57 89.41 | 87.72

Table 2: Average F1 score of NER and labeled attach- Pos.+Top-WK' || 82.31 90.53 88.66 89.58 | 87.77

ment scores (LAS) for dependency parsing with both Struct. KD 82.28 90.86 88.67 90.07 | 87.97

labeled and unlabeled data. Wiki U means that the train- Case 2a

ing data of this case contains only the unlabeled data. w/o KDY 81.40 90.08 87.72 88.99 | 87.05
Token KD' 81.30 90.02 88.24 88.87 | 87.11
Struct. KD 81.27 90.25 88.64 89.14 | 87.32

also propose Top-K KD but have shown that it is in-
ferior to Pos. KD. For experiments using unlabeled
data in all the cases, in addition to labeled data, we
use the teacher’s prediction on the unlabeled data
as pseudo labeled data to train the student mod-
els. This can be seen as the Top-1 KD method®.
In Case 2a and 3, where we perform KD between
CRF and MaxEnt models, we run a reference base-
line that replaces the CRF teacher or student model
with a MaxEnt model and performs token-level KD
(Token KD) of MaxEnt models that optimizes the
cross entropy between the teacher and student label
distributions at each position.

Training For MaxEnt and linear-chain CRF mod-
els, we use the same hyper-parameters as in Akbik
et al. (2018). For dependency parsing, we use the
same hyper-parameters as in Wang and Tu (2020)
for teacher models and Strzyz et al. (2019) for stu-
dent models. For M-BERT fine-tuning in Case 3,
we mix the training data of the four source datasets
and train the teacher model with the AdamW opti-
mizer (Loshchilov and Hutter, 2018) with a learn-
ing rate of 5x10° for 10 epochs. We tune the
KD temperature in {1, 2, 3,4, 5} and the loss inter-
polation annealing rate in {0.5,1.0,1.5}. For all
experiments, we train the models for 5 runs with a
fixed random seed for each run.

*We do not predict pseudo labels for the labeled data,
because we find that the teacher models’ predictions on the
labeled training data have approximately 100% accuracy in
most of the cases.

Table 4: A comparison of KD approaches for multilin-
gual NER. {: Results are from Wang et al. (2020a).

4.2 Results

Table 1 shows the experimental results with labeled
data only and 2 shows the experimental results with
additional 3000 unlabeled sentences. The results
show that our structural KD approaches outper-
form the baselines in all the cases. Table 3 com-
pares Struct. KD with Token KD, the reference
baseline based on MaxEnt models. For Case 2a,
which involves a MaxEnt student, Struct. KD with
a CREF teacher achieves better results than Token
KD with a MaxEnt teacher. For Case 3, which in-
volves a MaxEnt teacher, Struct. KD with a CRF
student achieves better results than Token KD with
a MaxEnt student. These results are to be expected
because Struct. KD makes it possible to apply
exact knowledge distillation with a more capable
teacher or student. In all the experiments, we run
Almost Stochastic Dominance proposed by Dror
et al. (2019) with a significance level of 0.05 and
find that the advantages of our structural KD ap-
proaches are significant. Please refer to Appendix
for more detailed results.

4.3 Multilingual NER Experiments

There is a recent increase of interest in training mul-
tilingual NER models (Tsai et al., 2019; Mukherjee
and Hassan Awadallah, 2020) because of the strong
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generalizability of M-BERT on multiple languages.
Existing work explored knowledge distillation ap-
proaches to train fast and effective multilingual
NER models with the help of monolingual teachers
(Wang et al., 2020a). To show the effectiveness
of structural KD in the multilingual NER setting,
we compare our approaches with those reported by
Wang et al. (2020a). Specifically, the monolingual
teachers are always CRF models, and the multilin-
gual student is either a CRF model (Case 1a) or a
MaxEnt model (Case 2a). Wang et al. (2020a) re-
port results of the Top-WK KD (a weighted version
of Top-K KD) and Pos. KD approaches for Case
la and the reference baseline Token KD (with a
MaxEnt teacher) for Case 2a. We follow their ex-
perimental settings when running our approach.

The experimental results in Table 4 show the
effectiveness of Struct. KD in both cases. In Case
1a, our approach is stronger than both Top-WK KD
and Pos. KD as well as the mixture of the two
approaches on average. In Case 2a, Struct. KD
not only outperforms Token KD, but also makes the
MaxEnt student competitive with the CRF student
without KD (87.32 vs. 87.36).

5 Analysis
5.1 Amount of Unlabeled Data

We compare our approaches with the baselines with
different amounts of unlabeled data for Case 1a,
1b and 3, which are cases that apply in-domain
unlabeled data for NER and dependency parsing,
and cross-lingual unlabeled data for NER. We ex-
periment with more unlabeled data for Case 1b
than for the other two cases because the labeled
training data of PTB is more than 10 times larger
than the labeled NER training data in Case 1a and
3. Results are shown in Figure 1. The experimental
results show that our approaches consistently out-
perform the baselines, though the performance gaps
between them become smaller when the amount
of unlabeled data increases. Comparing the perfor-
mance of the students with the teachers, we can
see that in Case 1a and 1b, the gap between the
teacher and the student remains large even with the
largest amount of unlabeled data. This is unsurpris-
ing considering the difference in model capacity
between the teacher and the student. In Case 3,
however, we find that when using 30,000 unlabeled
sentences, the CRF student models can even out-
perform the MaxEnt teacher model, which shows
the effectiveness of CRF models on NER.

|| de en es nl | Avg
CRF 7537 91.21 86.55 85.67 | 84.70
Global 75.67 91.11 86.72 8592 | 84.85
Local 76.61 9141 87.20 86.19 | 85.35

Table 5: Comparison of the global and local tempera-
ture application approaches on CoNLL NER.

|| CoNLL  WikiAnn

CRF 89.15 88.52
CRF-Mrg. 89.08 88.41
NER-Par. 88.57 88.38
NER-Par.-Mrg. 87.40 86.82
MaxEnt 88.65 87.41

Table 6: Averaged F1 score of teachers and it’s
marginal distributions. -Mrg.: Marginal distribution,
NER-Par.: NER as parsing (Yu et al., 2020).

5.2 Temperature in Structural Knowledge
Distillation

A frequently used KD technique is dividing the log-
its of probability distributions of both the teacher
and the student by a temperature in the KD ob-
jective (Hinton et al., 2015). Using a higher tem-
perature produces softer probability distributions
and often results in higher KD accuracy. In struc-
tural KD, there are two approaches to applying the
temperature to the teacher model, either globally
to the logit of P(y|x) (i.e., Score;(y, x)) of the
full structure y, or locally to the logit of P;(u|x)
of each student substructure u. We empirically
compare these two approaches in Case 1la with
the same setting as in Section 4.1. Table 5 shows
that the local approach results in better accuracy
for all the languages. Therefore, we use the local
approach by default in all the experiments.

5.3 Comparison of Teachers

In Case 2a and Case 4, we use the same Max-
Ent student model but different types of teacher
models. Our structural KD approaches in both
cases compute the marginal distribution P;(y;|x)
of the teacher at each position ¢ following the sub-
structures of the MaxEnt student, which is then
used to train the student substructure scores. We
can evaluate the quality of the marginal distribu-
tions by taking their modes as label predictions and
evaluating their accuracy. In Table 6, we compare
the accuracy of the CRF teacher and its marginal
distributions from Case 2a, the NER-as-parsing
teacher and its marginal distributions from Case
4, and the MaxEnt teacher which is the KD base-
line in Case 2a. First, we observe that for both
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Figure 1: The accuracy of structural KD and the baselines on different amounts of unlabeled data in three cases.
The x-axis represents the amount of unlabeled data in thousand and the y-axis represents the accuracy. The dashed
lines are the accuracy of the teacher models. The dotted lines are the accuracy of the baseline models without any

knowledge from the teachers.

CRF and NER-as-parsing, predicting labels from
the marginal distributions leads to lower accuracy.
This is to be expected because such predictions do
not take into account correlations between adjacent
labels. While predictions from marginal distribu-
tions of the CRF teacher still outperform MaxEnt,
those of the NER-as-parsing teacher clearly under-
perform MaxEnt. This provides an explanation as
to why Struct. KD in Case 4 has equal or even
lower accuracy than the Token KD baseline in Case
2a in Table 3.

6 Related Work

6.1 Structured Prediction

In this paper, we use sequence labeling and depen-
dency parsing as two example structured prediction
tasks. In sequence labeling, a lot of work applied
the linear-chain CRF and achieved state-of-the-art
performance in various tasks (Ma and Hovy, 2016;
Akbik et al., 2018; Liu et al., 2019b; Yu et al., 2020;
Wei et al., 2020; Wang et al., 2021a,b). Meanwhile,
a lot of other work used the MaxEnt layer instead
of the CRF for sequence labeling (Devlin et al.,
2019; Conneau et al., 2020; Wang et al., 2020b)
because MaxEnt makes it easier to fine-tune pre-
trained contextual embeddings in training. Another
advantage of MaxEnt in comparison with CRF is
its speed. Yang et al. (2018) showed that models
equipped with the CRF are about two times slower
than models with the MaxEnt layer in sequence la-
beling. In dependency parsing, recent work shows
that second-order CRF parsers achieve significantly
higher accuracy than first-order parsers (Wang
et al., 2019; Zhang et al., 2020). However, the
inference speed of second-order parsers is much
slower. Zhang et al. (2020) showed that second-
order parsing is four times slower than the sim-
ple head-selection first-order approach (Dozat and
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Manning, 2017). Such speed-accuracy tradeoff as
seen in sequence labeling and dependency pars-
ing also occurs in many other structured prediction
tasks. This makes KD an interesting and very use-
ful technique that can be used to circumvent this
tradeoff to some extent.

6.2 Knowledge Distillation in Structured
Prediction

KD has been applied in many structured predic-
tion tasks in the fields of NLP, speech recognition
and computer vision, with applications such as neu-
ral machine translation (Kim and Rush, 2016; Tan
et al., 2019), sequence labeling (Tu and Gimpel,
2019; Wang et al., 2020a), connectionist temporal
classification (Huang et al., 2018), image semantic
segmentation (Liu et al., 2019a) and so on. In KD
for structured prediction tasks, how to handle the
exponential number of structured outputs is a main
challenge. To address this difficult problem, recent
work resorts to approximation of the KD objective.
Kim and Rush (2016) proposed sequence-level dis-
tillation through predicting K-best sequences of
the teacher in neural machine translation. Kun-
coro et al. (2016) proposed to use multiple greedy
parsers as teachers and generate the probability dis-
tribution at each position through voting. Very re-
cently, Wang et al. (2020a) proposed structure-level
knowledge distillation for linear-chain CRF models
in multilingual sequence labeling. During the dis-
tillation process, teacher models predict the Top-K
label sequences as the global structure information
or the posterior label distribution at each position
as the local structural information, which is then
used to train the student. Besides approximate ap-
proaches, an alternative way is using models that
make local decisions and performing KD on these
local decisions. Anderson and Gémez-Rodriguez
(2020) formulated dependency parsing as a head-



selection problem and distilled the distribution of
the head node at each position. Tsai et al. (2019)
proposed MiniBERT through distilling the output
distributions of M-BERT models of the MaxEnt
classifier. Besides the output distribution, Mukher-
jee and Hassan Awadallah (2020) further distilled
the hidden representations of teachers.

7 Conclusion

In this paper, we propose structural knowledge dis-
tillation, which transfers knowledge between struc-
tured prediction models. We derive a factorized
form of the structural KD objective and make it
tractable to compute and optimize for many typical
choices of teacher and student models. We apply
our approach to four KD scenarios with six cases
for sequence labeling and dependency parsing. Em-
pirical results show that our approach outperforms
baselines without KD as well as previous KD ap-
proaches. With sufficient unlabeled data, our ap-
proach can even boost the students to outperform
the teachers in zero-shot cross-lingual transfer.
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A Dynamic Programming for Case 4

We describe how the marginal distribution over
BIOES labels at each position of the input sen-
tence can be tractably computed based on the NER-
as-parsing teacher model using dynamic program-
ming.

Given an input sentence « with n words, we first
define the following functions.

. Iﬁ(z, [) represents the summation of scores
of all possible labeling sequences of the sub-
sentence from the first token to the i-th token
while a span ends with the i-th token with a
label [.

. ]Sﬁ(z, F) represents the summation of scores
of all possible labeling sequences of the sub-
sentence from the first token to the i-th token
while there is no arc pointing to the ¢-th token.

. ﬁ’(z, [) represents the summation of scores
of all possible labeling sequences of the sub-
sentence from the ¢-th toke to the last token
while a span starts with the i-th token with a
label .

. ﬁ)(z, F) represents the summation of scores
of all possible labeling sequences of the sub-
sentence from the i-th toke to the last token
while there is no arc coming from the i-th
token.

We can compute the values of these functions for
all values of ¢ and ! using dynamic programming.
The base cases are:

DP(1,F) = 1 DP(n,F) = 1

The recursive formulation of these functions are:
]i)’(i, )= Zexp(Score(ykvi =1)) * Iig’(k, F)
k=1
DP(i,F) = DB(i — 1,F) + 3 _DB(i — 1,)

leL

Zexp (Score(y; ; = 1)) *ﬁ’],
bP(, ﬁ)z+1F+Zﬁw+1l

leL

where Score(y; ; = ) is the score assigned by the
teacher model to the dependency arc from i to j
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with label [. After dynamic programming, we can
compute the substructure marginals of the teacher
P,(y;|x) as follows:

Pi(y; = Bi|x)

= ﬁ(z,F) *

— DP(B,,i)/Z ()

Z exp(Score(y; ; = 1))

J=i+1
« DP(j,F)/Z ()

Pi(y; = Ij|x) = DP(I;,i)/ Z(x)

i—1 n
= Z Z exp(Score(yx,; = 1)) * [ﬁ(kz,F)

k=1j=i+1

« DP(j, F)/Z (=)

P,(y; = Ej|lx) = DP(E}, i)/ Z(x)
i—1

= ﬁ)(z,F) * Z exp(Score(yx; = 1))
k=1

+« DP(k,F)/Z()

Py(yi = Olz) = DP(0, 1)/ Z(x)
— DPB(i, F) + DP(i, F)/ Z(x)

Fi(yi = Silx) = DP(S;,1)/ Z ()
—Iﬁ F)* exp(Score(y; ; = 1) *ﬁ’ (i,F)/Z(x)

where

» DP(X, i) represents the summation of scores
of all possible labeling sequences in which the
i-th token is labeled as X. X can be one of
‘B, I, 1,0, 5.

* Z(x) represents the summation of scores of
all possible labeling sequences given the input
sentence x. y; ; = | represents that there is a
dependency arc of label ‘I’ from the ¢-th word
to the j-th word. We can calculate Z(x) by

Bﬁnl—i—ﬁﬁnForﬁDll S F)

The edge cases are:
Pt(yn = Bl‘x) =0

Pi(y1 = Ii|x) = Pi(yn = Ii|x) =0
Pt(yl = El|£c) =0



|| Speed (sentences/second)  # Param (M)
Teacher 27.76 233.40
Student 672.20 9.46

Table 7: Running speed and model sizes of the teacher
and student models in Case 2a.

B Additional Analysis

B.1 Comparison of Speed and Model Size

An important goal of KD is to produce faster and
smaller models. In Table 7, we show a comparison
on the running speed and model size between the
teacher and student models on the CoNLL English
test set from Case 2a. It can be seen that the student
model is about 24 times faster and 25 times smaller
than the teacher model.

C Detailed Experimental Results

In this section, we present detailed experimental
results. Table 8, 9 and 10 show the results of NER
task, while table 11 and 12 show the results of
Parsing. We evaluate the significance based on
Almost Stochastic Dominance (ASD) (Dror et al.,
2019), which is a high quality comparison between
deep neural networks. We evaluate with a signifi-
cance level of 0.05. For the significance test over
averaged scores, we averaged over the same ran-
dom seed of each language as a sample of aver-
aged score. In tables, we use { to represent our
approaches are significantly stronger than the mod-
els training without KD or with Top-1 KD. We use
1 to represent that our approaches are significantly
stronger than other KD approaches.

C.1 Results of NER task

Table 8, 9 and 10 represent the KD results of ex-
periments with labeled and unlabeled datasets. Our
approaches outperform the baselines significantly
in most of the cases. Note that in some cases, our
approaches perform slightly inferior to other ap-
proaches (for example, de dataset in Case 1a in
Table 9 with 30k unlabeled sentences) while our
approaches are still stronger than these approaches
according to the ASD test. The possible reason
is that the variances of our approaches are much
larger than the other approaches and ASD indicates
our approaches is possibly better than the other
approaches.
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C.2 Results of Parsing task

Tabel 11 and 12 represent the results of experi-
ments of Parsing. Our structural KD approaches
significantly outperform the other approaches in all
cases. UAS and LAS in these tables were depen-
dency parsing metrics, and they refer to unlabeled
attachment score and labeled attachment score re-
spectively.



Dataset CoNLL WikiAnn
Scenario de en es nl Avg. de en es nl Avg.
Teacher 8348 0225 8929 0156 89.15 | 3698 83.80 01.85 9146 88.52
Case 1a | WO KD 7537 9121 8655 8567 84.70 | 80.12 80.09 8584 87.19 8331
ase 1a | Hos. KD 76.46 9138 87.33 8592 8527 | 80.02 81.76 8598 87.15 83.73
Struct. KD 76.617F 91.411% 87207 86.19'* 85.3574 80.64™% 81.377 87.29™ 87.197* 84.127%
CRF Teacher 3348 9225 8929 0156 89.15 | 3698 83.80 01.85 9146 88.52
MaxEnt teacher | 82.83 92.03 8849 90126 83.65 | 8508 8246 00.81 9039 87.41
Case 2a | wio KD 7444 9078 8542 84.83 83.87 | 77.98 7852 83.73 83.19 80.86
token-level KD | 75.08 9095 85.88 85.10 84.25 | 78.40 79.52 8492 8550 82.09
Struct. KD 75.417F 91,041 86.257 85.281% 84.5071 78.497% 79.48" 85.28'% 85.66'F 82.23'%
Teacher 8238 9241 8877 90.72 8857 | 8696 83.11 9141 92.05 8338
Case4 | wioKD 7444 9078 8542 8433 83.87 | 7798 7852 83.73 83.19 30.86
Struct. KD 74907 91.217 85.82F 85.207 84.287| 78.66" 78.97" 83.83" 83.34" 81.45'
Table 8: Results of F1 scores for NER task on labeled datasets
Dataset WikiAnn with Unlabeled data
Scenario # Unlabeled sent. de en es nl avg
Teacher 8698 83.80 91.85 91.46 88.52
Top-1 80.66 79.85 87.79 88.44 84.19
Pos. KD + Top-1 3K 81.56 81.40 88.10 88.55 84.91
Struct. KD + Top-1 81.881F 81.23" 88.66'F 89.201% 85.241*
Case 1a Top-1 82.27 80.32 88.78 88.23 84.90
Pos. KD + Top-1 10k 82.01 81.53 89.28 88.99 8545
Struct. KD + Top-1 82.34' 81.277 89.85' 89.191* 85.66*
Top-1 84.20 &81.19 90.21 89.36 86.24
Pos. KD + Top-1 30k 84.12 82.56 89.82 89.53 86.51
Struct. KD + Top-1 84.171F 82.147 90.411* 89.84' 86.64'*
Teacher 8698 83.80 91.85 91.46 88.52
Top-1 78.82 78.48 85.54 86.77 82.40
token-level KD + Top-1 3K 79.84 79.18 85.89 87.36 83.07
Struct. KD + Top-1 79.821 79.417% 86.361% 87.751% 83.341%
Case 2a Top-1 80.75 78.53 86.93 87.30 83.38
token-level KD + Top-1 10k 80.71 79.23 87.82 87.80 83.89
Struct. KD + Top-1 81.071* 79.41% 87.771 87.991% 84.06
Top-1 82.49 79.43 88.78 88.74 84.86
token-level KD + Top-1 30k 82.35 8042 89.32 88.84 85.23
Struct. KD + Top-1 83.06'% 80.437% 89.02f 88.627 85.28'%
Teacher 86.96 83.11 9141 92.05 88.38
Top-1 3K 7841 7722 85.82 8694 82.10
Struct. KD + Top-1 78.80" 78.007 85.75 87.227 82.44f
Case 4 | Top-1 10k 79.59 77.53 87.85 87.51 83.12
Struct. KD + Top-1 80.04" 78.06" 88.037 87.40 83.38f
Top-1 30k 81.47 78.59 89.46 88.80 84.58
Struct. KD + Top-1 81.85" 79.57" 89.557 89.137 85.03f

Table 9: Results of F1 scores for NER task on unlabeled datasets
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WikiAnn
Case 3 #Unlabeled sent. eu fa he ta Avg.
Teacher 67.92 40.30 58.68 57.14 56.01
Top-1 4177 37.88 4132 4346 41.11
Token-level KD + Top-1 3k 52.67 2632 3622 3845 3842
Struct. KD + Top-1 53.691 42.021% 42,75 42.66t 45.28'
Top-1 58.63 34.65 4337 57.18 48.46
Token-level KD + Top-1 10k 58.87 28.63 41.62 5435 45.87
Struct. KD + Top-1 62.501 39,72t 46.221 58.2711 51.68*
Top-1 7437 3570 55.12 63.78 57.24
Token-level KD + Top-1 30k 70.98 29.44 5550 63.39 54.83
Struct. KD + Top-1 75.66' 38.081t 58.521 64.691% 59.241%

Table 10: Result of F1 scores of zero shot transfer experiment on NER task

metric Case 1b | Case 2b

PTB PTB

Teacher 95.96 96.04

UAS | w/o KD 91.78 91.78
Struct. KD | 93.56" | 93.56'

Teacher 94.24 94.29

LAS | w/o KD 89.85 89.85
Struct. KD | 91.837 | 91.78"

Table 11: Result of F1 scores of Parsing task with labeled dataset. Note that all our approaches are significantly

stronger than the baseline.

Case 1b Case 2b
PTB with Unlabeled data PTB with Unlabeled data
Metric | 3k [ 10k [30k [50k | 100k [Avg. |3k |10k [30k |50k | 100k | Avg.
Uas | Top-1 92.00 [92.52 19322 [ 93.69 [ 94.25 [ 93.14 [ 91.99 [ 92.44 [ 93.16 [ 93.69 [ 94.26 [ 93.11
Struct. KD + Top-1 | 93.71%| 93.937) 94.267| 94.587| 94.841| 94.267| 93.67| 93.907| 94.307| 94.647| 94.897| 94.28"
LAs | Top-l 90.03 [ 90.62 [ 91.44 [ 91.99 [ 92.61 | 91.34 [ 90.03 | 90.59 | 91.41 | 91.98 [ 92.66 | 91.33
Struct. KD + Top-1 | 91.987| 92.24%| 92.63%| 93.007| 93.281| 92.637| 91.941| 92.187| 92.66| 93.047| 93.31 92.63"

Table 12: The accuracy of Parsing task with unlabeled dataset (in thousand). Note that all our approaches are

significantly stronger than the baseline.
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