A Conditional Splitting Framework for Efficient Constituency Parsing

Thanh-Tung Nguyen'Y, Xuan-Phi Nguyen'Y, Shafiq Joty'®, Xiaoli Li™’
9Nanyang Technological University
$Salesforce Research Asia
Institute for Infocomm Research, A-STAR
Singapore
{ng0155ng@e.;nguyenxul002@e.; srjoty@}ntu.edu.sg
x11li@i2r.a-star.edu.sg

Abstract

We introduce a generic seq2seq parsing frame-
work that casts constituency parsing problems
(syntactic and discourse parsing) into a series
of conditional splitting decisions. Our pars-
ing model estimates the conditional probabil-
ity distribution of possible splitting points in
a given text span and supports efficient top-
down decoding, which is linear in number of
nodes. The conditional splitting formulation
together with efficient beam search inference
facilitate structural consistency without rely-
ing on expensive structured inference. Cru-
cially, for discourse analysis we show that in
our formulation, discourse segmentation can
be framed as a special case of parsing which
allows us to perform discourse parsing without
requiring segmentation as a pre-requisite. Ex-
periments show that our model achieves good
results on the standard syntactic parsing tasks
under settings with/without pre-trained repre-
sentations and rivals state-of-the-art (SoTA)
methods that are more computationally ex-
pensive than ours. In discourse parsing, our
method outperforms SoTA by a good margin.

1 Introduction

A number of formalisms have been introduced to
analyze natural language at different linguistic lev-
els. This includes syntactic structures in the form
of phrasal and dependency trees, semantic struc-
tures in the form of meaning representations (Ba-
narescu et al., 2013; Artzi et al., 2013), and dis-
course structures with Rhetorical Structure Theory
(RST) (Mann and Thompson, 1988) or Discourse-
LTAG (Webber, 2004). Many of these formalisms
have a constituency structure, where textual units
(e.g., phrases, sentences) are organized into nested
constituents. For example, Figure 1 shows exam-
ples of a phrase structure tree and a sentence-level
discourse tree (RST) that respectively represent
how the phrases and clauses are hierarchically or-

ganized into a constituency structure. Developing
efficient and effective parsing solutions has always
been a key focus in NLP. In this work, we consider
both phrasal (syntactic) and discourse parsing.

In recent years, neural end-to-end parsing meth-
ods have outperformed traditional methods that
use grammar, lexicon and hand-crafted features.
These methods can be broadly categorized based
on whether they employ a greedy transition-based,
a globally optimized chart parsing or a greedy top-
down algorithm. Transition-based parsers (Dyer
et al., 2016; Cross and Huang, 2016; Liu and
Zhang, 2017; Wang et al., 2017) generate trees
auto-regressively as a form of shift-reduce deci-
sions. Though computationally attractive, the local
decisions made at each step may propagate errors
to subsequent steps due to exposure bias (Bengio
et al., 2015). Moreover, there may be mismatches
in shift and reduce steps, resulting in invalid trees.

Chart based methods, on the other hand, train
neural scoring functions to model the tree structure
globally (Durrett and Klein, 2015; Gaddy et al.,
2018; Kitaev and Klein, 2018; Zhang et al., 2020b;
Joty et al., 2012, 2013). By utilizing dynamic pro-
gramming, these methods can perform exact in-
ference to combine these constituent scores into
finding the highest probable tree. However, they
are generally slow with at least O(n?) time com-
plexity. Greedy top-down parsers find the split
points recursively and have received much atten-
tion lately due to their efficiency, which is usually
O(n?) (Stern et al., 2017a; Shen et al., 2018; Lin
et al., 2019; Nguyen et al., 2020). However, they
still suffer from exposure bias, where one incorrect
splitting step may affect subsequent steps.

Discourse parsing in RST requires an addi-
tional step — discourse segmentation which in-
volves breaking the text into contiguous clause-like
units called Elementary Discourse Units or EDUs
(Figure 1). Traditionally, segmentation has been

5795

Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 5795-5807
August 1-6, 2021. ©2021 Association for Computational Linguistics

considered separately and as a prerequisite step for
the parsing task which links the EDUs (and larger
spans) into a discourse tree (Soricut and Marcu,
2003; Joty et al., 2012; Wang et al., 2017). In this
way, the errors in discourse segmentation can prop-
agate to discourse parsing (Lin et al., 2019).

In this paper, we propose a generic top-down
neural framework for constituency parsing that we
validate on both syntactic and sentence-level dis-
course parsing. Our main contributions are:

* We cast the constituency parsing task into a se-
ries of conditional splitting decisions and use
a seq2seq architecture to model the splitting
decision at each decoding step. Our parsing
model, which is an instance of a Pointer Network
(Vinyals et al., 2015a), estimates the pointing
score from a span to a splitting boundary point,
representing the likelihood that the span will be
split at that point and create two child spans.

* The conditional probabilities of the splitting deci-
sions are optimized using a cross entropy loss and
structural consistency is maintained through a
global pointing mechanism. The training process
can be fully parallelized without requiring struc-
tured inference as in (Shen et al., 2018; Gomez
and Vilares, 2018; Nguyen et al., 2020).

* Our model enables efficient top-down decoding
with O(n) running time like transition-based
parsers, while also supporting a customized beam
search to get the best tree by searching through
a reasonable search space of high scoring trees.
The beam-search inference along with the struc-
tural consistency from the modeling makes our
approach competitive with existing structured
chart methods for syntactic (Kitaev and Klein,
2018) and discourse parsing (Zhang et al., 2020b).
Moreover, our parser does not rely on any hand-
crafted features (not even part-of-speech tags),
which makes it more efficient and be flexible to
different domains or languages.

* For discourse analysis, we demonstrate that our
method can effectively find the segments (EDUs)
by simply performing one additional step in the
top-down parsing process. In other words, our
method can parse a text into the discourse tree
without needing discourse segmentation as a pre-
requisite; instead, it produces the segments as a
by-product. To the best of our knowledge, this
is the first model that can perform segmentation
and parsing in a single embedded framework.

In the experiments with English Penn Tree-
bank, our model without pre-trained representa-
tions achieves 93.8 F1, outperforming all exist-
ing methods with similar time complexity. With
pre-training, our model pushes the F1 score to
95.7, which is on par with the SoTA while sup-
porting faster decoding with a speed of over 1,100
sentences per second (fastest so far). Our model
also performs competitively with SOTA methods
on the multilingual parsing tasks in the SPMRL
2013/2014 shared tasks. In discourse parsing,
our method establishes a new SoTA in end-to-end
sentence-level parsing performance on the RST
Discourse Treebank with an F1 score of 78.82.

We make our code available at
https://ntunlpsg.github.io/project/condition-
constituency-style-parser/

2 Parsing as a Splitting Problem

Constituency parsing (both syntactic and discourse)
can be considered as the problem of finding a set
of labeled spans over the input text (Stern et al.,
2017a). Let S(T') denote the set of labeled spans
for a parse tree T, which can formally be expressed
as (excluding the trivial singleton span layer):

S(T) == {((it jo),) YT for i < ;- (1)

where [, is the label of the text span (i, j;) encom-
passing tokens from index i to index j.

Previous approaches to syntactic parsing (Stern
et al., 2017a; Kitaev and Klein, 2018; Nguyen et al.,
2020) train a neural model to score each possible
span and then apply a greedy or dynamic program-
ming algorithm to find the parse tree. In other
words, these methods are span-based formulation.

In contrary, we formulate constituency parsing
as the problem of finding the splitting points in a
recursive, top-down manner. For each parent node
in a tree that spans over (4, j), our parsing model is
trained to point to the boundary between the tokens
at k and k + 1 positions to split the parent span into
two child spans (i, k) and (k + 1,). This is done
through the Pointing mechanism (Vinyals et al.,
2015a), where each splitting decision is modeled as
a multinomial distribution over the input elements,
which in our case are the token boundaries.

The correspondence between token- and
boundary-based representations of a tree is straight-
forward. After including the start (<sos>) and
end (<eos>) tokens, the token-based span (7, j)
is equivalent to the boundary-based span (i — 1, j)

5796

https://ntunlpsg.github.io/project/condition-constituency-style-parser/
https://ntunlpsg.github.io/project/condition-constituency-style-parser/

VP
S-VP

0 1 2 3 4 5 6
<sos> She enjoys playing tennis <eos>
2 3

Labeled span representation
S(T) = {((1,5), 5), (2, 5),), (2, 4), VP), (3, 4), S-VP)}
Boundary-based splitting representation
C(T) ={(0,5)~1, (1,5)-4, (1,4)~2, (2,4)- 3}

0

<sos> Meanwhile , competition from rivals

0

Same-unit

Elaboration

1 2 3 4 5 6 7 8 9 10 1 12
unencumbered by history is intensifying . <eos>
9

12 3 4 5 6 7

Labeled span representation

S(DT) = {((1, 8, 11), Same-Unitnn), ((1, 5, 8), Elaborationns)}

Boundary-based splitting representation

C(DT) ={(0,11)-8, (0,8)-5, (0,5)-5, (5,8)-8, (8,11)>11}

Figure 1: A syntactic tree at the left and a discourse tree (DT) at the right; both have a constituency structure. The internal nodes
in the discourse tree (Elaboration, Same-Unit) represent coherence relations and the edge labels indicate the nuclearity statuses
(‘N for Nucleus and ‘S’ for Satellite) of the child spans. Below the tree, we show the labeled span and splitting representations.
The bold splits in the DT representation (C(DT')) indicate the end of further splitting into smaller spans (i.e., they are EDUs).

and the boundary between i-th and (i+1)-th tokens
is indexed as i. For example, the (boundary-based)
span “enjoys playing tennis” in Figure 1 is defined
s (1,4). Similarly, the boundary between the to-
kens “enjoys” and “playing” is indexed with 2.!
Following the common practice in syntactic pars-
ing, we binarize the n-ary tree by introducing a
dummy label &. We also collapsed the nested la-
beled spans in the unary chains into unique atomic
labels, such as S-VP in Figure 1. Every span repre-
sents an internal node in the tree, which has a left
and a right child. Therefore, we can represent each
internal node by its split into left and right chil-
dren. Based on this, we define the set of splitting
decisions C(T) for a syntactic tree 7" as follows.

Proposition 1 A binary syntactic tree T of a sen-
tence containing n tokens can be transformed into
a set of splitting decisions C(T) = {(i,j)~-k :1 <
k < j} such that the parent span (i, j) is split into
two child spans (i, k) and (k, 7).

An example of the splitting representation of a tree
is shown in Figure 1 (without the node labels). Note
that our transformed representation has a one-to-
one mapping with the tree since each splitting de-
cision corresponds to one and only one internal
node in the tree. We follow a depth-first order of
the decision sequence, which in our preliminary
experiments showed more consistent performance
than other alternatives like breadth-first order.

Extension to End-to-End Discourse Parsing
Note that in syntactic parsing, the split position

"We use the same example from (Stern et al., 2017a; Shen
et al., 2018; Nguyen et al., 2020) to distinguish the differences
between the methods.

must be within the span but not at its edge, that
is, k must satisfy ¢ < k < j for each boundary
span (7, j). Otherwise, it will not produce valid
sub-trees. In this case, we keep splitting until each
span contains a single leaf token. However, for
discourse trees, each leaf is an EDU — a clause-like
unit that can contain one or multiple tokens.
Unlike previous studies which assume discourse
segmentation as a pre-processing step, we propose
a unified formulation that treats segmentation as
one additional step in the top-down parsing process.
To accommodate this, we relax Proposition 1 as:

Proposition 2 A binary discourse tree DT of a
text containing n tokens can be transformed into a
set of splitting decisions C(DT) = {(i,j)-k : 1 <
k < j} such that the parent span (i, j) gets split
into two child spans (i, k) and (k, j) for k < j or
a terminal span or EDU for k = j (end of splitting
the span further).

We illustrate it with the DT example in Figure
1. Each splitting decision in C(DT') represents ei-
ther the splitting of the parent span into two child
spans (when the splitting point is strictly within
the span) or the end of any further splitting (when
the splitting point is the right endpoint of the span).
By making this simple relaxation, our formulation
can not only generate the discourse tree (in the for-
mer case) but can also find the discourse segments
(EDUgs) as a by-product (in the latter case).

3 Seq2Seq Parsing Framework

Let C(T') and L(T') respectively denote the struc-
ture (in split representation) and labels of a tree T’
(syntactic or discourse) for a given text . We can
express the probability of the tree as:

5797

She [0}

VP . lD:lv ll:S

enjoys S-VP ho hy Ry

TR
CTTTTT]

She enjoys playing tennis

<so0s>

h.

il

he ks

|es

b ‘

il

<eos> hos his hia hog

3
’ 64

Figure 2: Our syntatic parser along with the decoding process for a given sentence. The input to the decoder at each step is the

representation of the span to be split. We predict the splitting point using a biaffine function between the corresponding decoder

state and the boundary-based encoder representations. A label classifier is used to assign labels to the left and right spans.

Po(T|w) = Py(L(T), C(T)|z) @
= Py(L(T)|C(T),) Po(C(T)|x)

This factorization allows us to first infer the tree
structure from the input text, and then find the cor-
responding labels. As discussed in the previous
section, we consider the structure prediction as a
sequence of splitting decisions to generate the tree
in a top-down manner. Specifically, at each de-
coding step t, the output y; represents the splitting
decision (i, j;) > k¢ and y~; represents the previ-
ous splitting decisions. Thus, we can express the
probability of the tree structure as follows:

P(C(D)w) =[] Polyely<s,)
Yyt €C(T)
(1) ©)

=11 Pollie,)= kel (G, 5)= k) <t)

t=1

This can effectively be modeled within a Seq2Seq
pointing framework as shown in Figure 2. At each
step ¢, the decoder autoregressively predicts the
split point k; in the input by conditioning on the
current input span (i, j;) and previous splitting
decisions (7, j) - k)<;. This conditional splitting
formulation (decision at step ¢ depends on previous
steps) can help our model to find better trees com-
pared to non-conditional top-down parsers (Stern
etal.,2017a; Shen et al., 2018; Nguyen et al., 2020),
thus bridging the gap between the global (but ex-
pensive) and the local (but efficient) models. The
labels L(T") can be modeled by using a label clas-
sifier, as described later in the next section.

3.1 Model Architecture

We now describe the components of our parsing
model: the sentence encoder, the span representa-
tion, the pointing model and the labeling model.

Sentence Encoder Given an input sequence of n
tokens « = (z1,...,x,), we first add <sos> and
<eos> markers to the sequence. After that, each
token ¢ in the sequence is mapped into its dense
vector representation e; as

char

e = e, e})

where e, e} are respectively the character

and word embeddings of token ¢. Similar to (Ki-
taev and Klein, 2018; Nguyen et al., 2020), we use
a character LSTM to compute the character embed-
ding of a token. We experiment with both randomly
initialized and pretrained token embeddings. When
pretrained embedding is used, the character embed-
ding is replaced by the pretrained token embedding.
The token representations are then passed to a 3-
layer Bi-LSTM encoder to obtain their contextual
representations. In the experiments, we find that
even without the POS-tags, our model performs
competitively with other baselines that use them.

Boundary and Span Representations To repre-
sent each boundary between positions k and k + 1,
we use the fencepost representation (Cross and
Huang, 2016; Stern et al., 2017a):

hi = [fx, brt1])

where fi and by, are the forward and backward
LSTM hidden vectors at positions k and k + 1, re-

5798

Wilfo, bi] + Wy[fs, be]
[f1 2]

J I \

uuuuu

<sos> She
0 1 2 3 4 5 6

enjoys playing tennis <eos>

Figure 3: Illustration of our boundary-based span encoder.
Here we have shown the representation for the boundary at 1
and the representation of the boundary-based span (0, 5) that
corresponds to the sentence “She enjoys playing tennis .”.

spectively. To represent the span (4, j), we compute
a linear combination of the two endpoints

h;; = Wih; + W1h; (6)

This span representation will be used as input to
the decoder. Figure 3 shows the boundary-based
span representations for our example.

The Decoder Our model uses a unidirectional
LSTM as the decoder. At each decoding step ¢,
the decoder takes as input the corresponding span
(4,7) (specifically, h; ;) and its previous state d;_1
to generate the current state d; and then apply a
biaffine function (Dozat and Manning, 2017) be-
tween d; and all of the encoded boundary represen-
tations (hg, h1, ..., h;,) as follows:

d, = MLPs(d;) hj = MLP,(h;) @)
sii = dy Wanh) + i wy, ®)
exp(st,i)

®

Q¢ =

> exp(sea)

where each MLP operation includes a linear trans-
formation with LeakyReLU activation to transform
d and h into equal-sized vectors, and Wy, €
R4 and w;, € IR? are respectively the weight
matrix and weight vector for the biaffine func-
tion. The biaffine scores are then passed through a
softmax layer to acquire the pointing distribution
a: € [0,1]" for the splitting decision.

When decoding the tree during inference, at each
step we only examine the ‘valid’ splitting points
between ¢ and j — for syntactic parsing, it is ¢ <
k < j and for discourse parsing, itis¢ < k < 3.

Label Classifier For syntactic parsing, we per-
form the label assignments for a span (i, j) as:

h! = MLP(h;); h} = MLP,(h;) (10)
Py(1]i, j) = softmax((h})"Wi.-hj
+(R) Wi + (h})"W, + b) (11)
l;,; = argmax Py(l|i, j) (12)
leL

where each of MLP; and MLP, includes a lin-
ear transformation with LeakyReLLU activations to
transform the left and right spans into equal-sized
vectors, and Wy, € R>*EX4 W, € R™>*E W, e
IR are the weights and b is a bias vector with
L being the number of phrasal labels.

For discourse parsing, we perform label assign-
ment after every split decision since the label here
represents the relation between the child spans.
Specifically, as we split a span (7, j) into two child
spans (i, k) and (k, j), we determine the relation
label as the following.

hi;, = MLP;([hi, ht]); hi; = MLP,([hi, h;]) (13)
Py(1|(i, k), (k, 7)) = softmax((hiz)" Wy, hj;

+(hin) Wi+ (hi;) "W, +b) (14)

k) (kg) = af%gfilaxpe(ll(%k), (k7)) (15)

where MLP;, MLP,., W;,., W;, W,.. b are similarly
defined.

Training Objective The total loss is simply the
sum of the cross entropy losses for predicting the
structure (split decisions) and the labels:

Lo (0) = Lepiit(Oc, 0a) + Liavel (O, Orabel) (16)

where 0 = {6, 04,0e1} denotes the overall
model parameters, which includes the encoder pa-
rameters 6. shared by all components, parameters
for splitting 6; and parameters for labeling 6ype;.

3.2 Top-Down Beam-Search Inference

As mentioned, existing top-down syntactic parsers
do not consider the decoding history. They also per-
form greedy inference. With our conditional split-
ting formulation, our method can not only model
the splitting history but also enhance the search
space of high scoring trees through beam search.
At each step, our decoder points to all the en-
coded boundary representations which ensures that
the pointing scores are in the same scale, allow-
ing a fair comparison between the total scores of
all candidate subtrees. With these uniform scores,
we could apply a beam search to infer the most

5799

probable tree using our model. Specifically, the
method generates the tree in depth-first order while
maintaining top-B (beam size) partial trees at each
step. It terminates exactly after n — 1 steps, which
matches the number of internal nodes in the tree.
Because beam size B is constant with regards to
the sequence length, we can omit it in the Big O
notation. Therefore, each decoding step with beam
search can be parallelized (O(1) complexity) using
GPUs. This makes our algorithm run at O(n) time
complexity, which is faster than most top-down
methods. If we strictly use CPU, our method runs
at O(n?), while chart-based parsers run at O(n?3).
Algorithm 1 illustrate the syntactic tree inference
procedure. We also propose a similar version of
the inference algorithm for discourse parsing in the
Appendix.

Algorithm 1 Syntactic Tree Inference with Beam
Search

Input: Sentence length n; beam width B; boundary-based
encoder states: (ho, b1, ..., hy,); label scores: Py(l|7,),
0<i<j<n,le{l,...,L},initial decoder state s.

Output: Parse tree T’

I: Lgq=n—1 /I Decoding length

2: beam = array of Ly items // List of empty beam items

3: init_tree= [(0,n), (0,0),...,(0,0)] // n — 2 paddings
0,0)

4: beam[0] = (0, s, init_tree)
item(log-prob,state,tree)

5: fort =1to Ly do

6: for (logp, s, tree) € beam[t — 1] do

7.

8

// Init 1st

(4,4) = tree[t — 1] /I Current span to split
a, s’ = decoder-step(s, h; ;) // a: split prob. dist.

9: for (k,pr) € top-B(a) and i < k < j do

10: curr-tree = tree

11: if £ > ¢+ 1 then

12: curr-tree[t] = (i, k)

13: end if

14: if j > k + 1 then

15: curr-tree[t + j — k — 1] = (k, j)

16: end if

17: push (logp + log(px), ', curr-tree) to beam([t]

18: end for

19: end for

20: prune beam([t] /l Keep top-B highest score trees

21: end for

22: logp*,s™,S" = arg max,,,, beam[L] /I §*: best
structure

23: labeled-spans = [(i,j, argmax; Py(l|t,5)) V(i,5) €
S

24: labeled-singletons = [(i,% + 1,argmax; Py(l|¢,i +
1)) fori ={0,...,n — 1}]

25: T = labeled-spans U labeled-singletons

By enabling beam search, our method can find
the best tree by comparing high scoring trees within
a reasonable search space, making our model com-
petitive with existing structured (globally) infer-
ence methods that use more expensive algorithms

like CKY and/or larger models (Kitaev and Klein,
2018; Zhang et al., 2020b).

4 Experiment

Datasets and Metrics To show the effectiveness
of our approach, we conduct experiments on both
syntactic and sentence-level RST parsing tasks.’
We use the standard Wall Street Journal (WSJ) part
of the Penn Treebank (PTB) (Marcus et al., 1993)
for syntactic parsing and RST Discourse Treebank
(RST-DT) (Lynn et al., 2002) for discourse parsing.
For syntactic parsing, we also experiment with the
multilingual parsing tasks on seven different lan-
guages from the SPMRL 2013-2014 shared task
(Seddah et al., 2013): Basque, French, German,
Hungarian, Korean, Polish and Swedish.

For evaluation on syntactic parsing, we report
the standard labeled precision (LP), labeled recall
(LR), and labelled F1 computed by evalb’. For
evaluation on RST-DT, we report the standard span,
nuclearity label, relation label F1 scores, computed
using the implementation of (Lin et al., 2019).*

4.1 English (PTB) Syntactic Parsing

Setup We follow the standard train/valid/test
split, which uses Sections 2-21 for training, Section
22 for development and Section 23 for evaluation.
This results in 39,832 sentences for training, 1,700
for development, and 2,416 for testing. For our
model, we use an LSTM encoder-decoder frame-
work with a 3-layer bidirectional encoder and 3-
layer unidirectional decoder. The word embedding
size is 100 while the character embedding size is
50; the LSTM hidden size is 400. The hidden di-
mension in MLP modules and biaffine function for
split point prediction is 500. The beam width B is
set to 20. We use the Adam optimizer (Kingma and
Ba, 2015) with a batch size of 5000 tokens, and an
initial learning rate of 0.002 which decays at the
rate .75 exponentially at every 5k steps. Model
selection for final evaluation is performed based on
the labeled F1 score on the development set.

Results without Pre-training From the results
shown in Table 1, we see that our model achieves
an F1 of 93.77, the highest among models that use

Extending the discourse parser to the document level may
require handling of intra- and multi-sentential constituents
differently, which we leave for future work.

‘http://nlp.cs.nyu.edu/evalb/

*https://github.com/ntunlpsg/
UnifiedParser_ RST

5800

http://nlp.cs.nyu.edu/evalb/
https://github.com/ntunlpsg/UnifiedParser_RST
https://github.com/ntunlpsg/UnifiedParser_RST

Model | LR LP Fl

Top-Down Inference
Stern et al. (2017a) 93.20 90.30 91.80
Shen et al. (2018) 92.00 91.70 91.80
Nguyen et al. (2020) 9291 92.75 92.78
Our Model 93.90 93.63 93.77

CKY/Chart Inference
Gaddy et al. (2018) 91.76 92.41 92.08
Kitaev and Klein (2018) [93.20 93.90 93.55
Wei et al. (2020) 933 94.1 93.7
Zhang et al. (2020b) 93.84 93.58 93.71

Other Approaches
Goémez and Vilares (2018) | - - 90.7
Liu and Zhang (2017) - - 91.8
Stern et al. (2017b) 92.57 92.56 92.56

Zhou and Zhao (2019) 93.64 93.92 93.78

Table 1: Results for single models (no pre-training) on
the PTB WSI test set, Section 23.

Model F1

Nguyen et al. (2020) 95.5
Our model 95.7
Kitaev et al. (2019) 95.6
Zhang et al. (2020b) 95.7
Wei et al. (2020) 95.8
Zhou and Zhao (2019) 95.8

Table 2: Results on PTB WSJ test set with pretraining.

top-down methods. Specifically, our parser outper-
forms Stern et al. (2017a); Shen et al. (2018) by
about 2 points in F1-score and Nguyen et al. (2020)
by ~1 point. Notably, without beam search (beam
width 1 or greedy decoding), our model achieves
an F1 of 93.40, which is still better than other top-
down methods. Our model also performs compet-
itively with CKY-based methods like (Kitaev and
Klein, 2018; Zhang et al., 2020b; Wei et al., 2020;
Zhou and Zhao, 2019), while these methods run
slower than ours.

Plus, Zhou and Zhao (2019) uses external su-
pervision (head information) from the dependency
parsing task. Dependency parsing models, in fact,
have a strong resemblance to the pointing mecha-
nism that our model employs (Ma et al., 2018). As
such, integrating dependency parsing information
into our model may also be beneficial. We leave
this for future work.

Results with Pre-training Similar to (Kitaev
and Klein, 2018; Kitaev et al., 2019), we also eval-

uate our parser with BERT embeddings (Devlin
etal., 2019). They fine-tuned Bert-large-cased on
the task, while in our work keeping it frozen was
already good enough (gives training efficiency). As
shown in Table 2, our model achieves an F1 of 95.7,
which is on par with SoTA models. However, our
parser runs faster than other methods. Specifically,
our model runs at O(n) time complexity, while
CKY needs O(n?). Comprehensive comparisons
on parsing speed are presented later.

4.2 SPMRL Multilingual Syntactic Parsing

We use the identical hyper-parameters and opti-
mizer setups as in English PTB. We follow the stan-
dard train/valid/test split provided in the SPMRL
datasets; details are reported in the Table 3.

Language ‘ Train Valid Test
Basque 7,577 948 946
French 14,759 1,235 2,541
German 40,472 5,000 5,000
Hungarian | 8,146 1,051 1,009
Korean 23,010 2,066 2,287
Polish 6,578 821 822
Swedish 5,000 494 666

Table 3: SPMRL Multilingual dataset split.

From the results in Table 4, we see that our
model achieves the highest F1 in French, Hungar-
ian and Korean and higher than the best baseline
by 0.06, 0.15 and 0.13, respectively. Our method
also rivals existing SOTA methods on other lan-
guages even though some of them use predicted
POS tags (Nguyen et al., 2020) or bigger models
(75M parameters) (Kitaev and Klein, 2018). Mean-
while, our model is smaller (31M), uses no extra
information and runs 40% faster.

4.3 Discourse Parsing

Setup For discourse parsing, we follow the stan-
dard split from (Lin et al., 2019), which has 7321
sentence-level discourse trees for training and 951
for testing. We also randomly select 10% of the
training for validation. Model selection for test-
ing is performed based on the F1 of relation labels
on the validation set. We use the same model set-
tings as the constituency parsing experiments, with
BERT as pretrained embeddings.’

SLin et al. (2019) used ELMo (Peters et al., 2018) as pre-
trained embeddings. With BERT, their model performs worse
which we have confirmed with the authors.

5801

Model ‘ Basque French German Hungarian Korean Polish Swedish
Bjorkelund et al. (2014)* 88.24 82.53 81.66 91.72 83.81 90.50 85.50
Coavoux and Crabbé (2017)* | 88.81 82.49 85.34 92.34 86.04 93.64 84.0
Kitaev and Klein (2018) 89.71 84.06 87.69 92.69 86.59 93.69 84.45
Nguyen et al. (2020)* 90.23 82.20 84.91 91.07 8536 93.99 86.87
Our Model 89.74 84.12 85.21 92.84 86.72 92.10 85.81

Table 4: Results on SPMRL test sets without pre-training. The sign ™ denotes that systems use predicted POS tags.

Approach ‘Span Nuclearity Relation

Parsing with gold EDU segmentation

Human Agreement | 957 90.4 83.0
Baselines

Wang et al. (2017) 95.6 87.8 77.6
Lin et al. (2019) (single) 96.94 90.89 81.28
Lin et al. (2019) (joint) 97.44 91.34 81.70
Our Model 97.37 91.95 82.10

End-to-End parsing

Baselines

Soricut and Marcu (2003) | 76.7 70.2 58.0
Joty et al. (2012) 82.4 76.6 67.5
Lin et al. (2019) (pipeline) | 91.14 85.80 76.94
Lin et al. (2019) (joint) 91.75 86.38 77.52
Our Model 92.02 87.05 78.82

Table 5: Results on discourse parsing tasks on the RST-
DT test set with and without gold segmentation.

Results Table 5 compares the results on the dis-
course parsing tasks in two settings: (i) when the
EDUs are given (gold segmentation) and (if) end-
to-end parsing. We see that our model outperforms
the baselines in both parsing conditions achieving
SoTA. When gold segmentation is provided, our
model outperforms the single-task training model
of (Lin et al., 2019) by 0.43%, 1.06% and 0.82%
absolute in Span, Nuclearity and Relation, respec-
tively. Our parser also surpasses their joint training
model, which uses multi-task training (segmenta-
tion and parsing), with 0.61% and 0.4% absolute
improvements in Nuclearity and Relation, respec-
tively. For end-to-end parsing, compared to the
best baseline (Lin et al., 2019), our model yields
0.27%, 0.67%, and 1.30% absolute improvements
in Span, Nuclearity, Relation, respectively. This
demonstrates the effectiveness of our conditional
splitting approach and end-to-end formulation of
the discourse analysis task. The fact that our model
improves on span identification indicates that our
method also yields better EDU segmentation.

4.4 Parsing Speed Comparison

We compare parsing speed of different models in
Table 6. We ran our models on both CPU (Intel

Xeon W-2133) and GPU (Nvidia GTX 1080 T1).

Syntactic Parsing The Berkeley Parser and ZPar
are two representative non-neural parsers without
access to GPUs. Stern et al. (2017a) employ max-
margin training and perform top-down greedy de-
coding on CPUs. Meanwhile, Kitaev and Klein
(2018); Zhou and Zhao (2019); Wei et al. (2020)
use a self-attention encoder and perform decoding
using Cython for acceleration. Zhang et al. (2020b)
perform CKY decoding on GPU. The parser pro-
posed by Gémez and Vilares (2018) is also effi-
cient as it treats parsing as a sequence labeling
task. However, its parsing accuracy is much lower
compared to others (90.7 F1 in Table 1).

We see that our parser is much more efficient
than existing ones. It utilizes neural modules to
perform splitting, which is optimized and paral-
lelized with efficient GPU implementation. It can
parse 1, 127 sentences/second, which is faster than
existing parsers. In fact, there is still room to im-
prove our speed by choosing better architectures,
like the Transformer which has O(1) running time
in encoding a sentence compared to O(n) of the
bi-LSTM encoder. Moreover, allowing tree gener-
ation by splitting the spans/nodes at the same tree
level in parallel at each step can boost the speed
further. We leave these extensions to future work.

Discourse Parsing For measuring discourse
parsing speed, we follow the same set up as Lin
et al. (2019), and evaluate the models with the
same 100 sentences randomly selected from the
test set. We include the model loading time for
all the systems. Since SPADE and CODRA need
to extract a handful of features, they are typically
slower than the neural models which use pretrained
embeddings. In addition, CODRA’s DCREF parser
has a O(n?) inference time complexity. As shown,
our parser is 4.7x faster than the fastest end-to-end
parser of Lin et al. (2019), making it not only ef-
fective but also highly efficient. Even when tested
only on the CPU, our model is faster than all the
other models which run on GPU or CPU, thanks

5802

System Speed (Sents/s) Speedup
Syntactic Parser

Petrov and Klein (2007) (Berkeley) 6 1.0x
Zhu et al. (2013)(ZPar) 90 15.0x
Stern et al. (2017a) 76 12.7x
Shen et al. (2018) 111 18.5x
Nguyen et al. (2020) 130 21.7x
Zhou and Zhao (2019) 159 26.5x
Wei et al. (2020) 220 36.7x
Go6mez and Vilares (2018) 780 130x
Kitaev and Klein (2018) (GPU) 830 138.3x
Zhang et al. (2020b) 924 154x
Our model (GPU) 1127 187.3x
End-to-End Discourse parsing (Segmenter + Parser)
CODRA (Joty et al., 2015) 3.05 1.0x
SPADE (Soricut and Marcu, 2003) 4.90 1.6x
(Lin et al., 2019) 28.96 9.5x
Our end-to-end parser (CPU) 59.03 19.4x
Our end-to-end parser (GPU) 135.85 44.5x

Table 6: Speed comparison of our parser with existing
syntactic and discourse parsers.

to the end-to-end formulation that does not need
EDU segmentation beforehand.

5 Related Work

With the recent popularity of neural architectures,
such as LSTMs (Hochreiter and Schmidhuber,
1997) and Transformers (Vaswani et al., 2017), var-
ious neural models have been proposed to encode
the input sentences and infer their constituency
trees. To enforce structural consistency, such meth-
ods employ either a greedy transition-based (Dyer
et al., 2016; Liu and Zhang, 2017), a globally op-
timized chart parsing (Gaddy et al., 2018; Kitaev
and Klein, 2018), or a greedy top-down algorithm
(Stern et al., 2017a; Shen et al., 2018). Meanwhile,
researchers also tried to cast the parsing problem
into tasks that can be solved differently. For exam-
ple, Gémez and Vilares (2018); Shen et al. (2018)
proposed to map the syntactic tree of a sentence
containing n tokens into a sequence of n — 1 la-
bels or scalars. However, parsers of this type suffer
from the exposure bias during inference. Beside
these methods, Seq2Seq models have been used
to generate a linearized form of the tree (Vinyals
et al., 2015b; Kamigaito et al., 2017; Suzuki et al.,
2018; Fernandez-Gonzalez and G6mez-Rodriguez,
2020a). However, these methods may generate in-
valid trees when the open and end brackets do not
match.

In discourse parsing, existing parsers receive the
EDUs from a segmenter to build the discourse tree,
which makes them susceptible to errors when the
segmenter produces incorrect EDUs (Joty et al.,

2012, 2015; Lin et al., 2019; Zhang et al., 2020a;
Liu et al., 2020). There are also attempts which
model constituency and discourse parsing jointly
(Zhao and Huang, 2017) and do not need to perform
EDU preprocessing. It is based on the finding that
each EDU generally corresponds to a constituent in
constituency tree, i.e., discourse structure usually
aligns with constituency structure. However, it has
the drawback that it needs to build joint syntacto-
discourse data set for training which is not easily
adaptable to new languages and domains.

Our approach differs from previous methods in
that it represents the constituency structure as a se-
ries of splitting representations, and uses a Seq2Seq
framework to model the splitting decision at each
step. By enabling beam search, our model can
find the best trees without the need to perform an
expensive global search. We also unify discourse
segmentation and parsing into one system by gen-
eralizing our model, which has been done for the
first time to the best of our knowledge.

Our splitting mechanism shares some similari-
ties with Pointer Network (Vinyals et al., 2015a;
Ma et al., 2018; Fernandez-Gonzalez and Gémez-
Rodriguez, 2019, 2020b) or head-selection ap-
proaches (Zhang et al., 2017; Kurita and Sggaard,
2019), but is distinct from them that in each decod-
ing step, our method identifies the splitting point
of a span and generates a new input for future steps
instead of pointing to generate the next decoder
input.

6 Conclusion

We have presented a novel, generic parsing method
for constituency parsing based on a Seq2Seq frame-
work. Our method supports an efficient top-down
decoding algorithm that uses a pointing function
for scoring possible splitting points. The pointing
mechanism captures global structural properties
of a tree and allows efficient training with a cross
entropy loss. Our formulation, when applied to
discourse parsing, can bypass discourse segmenta-
tion as a pre-requisite step. Through experiments
we have shown that our method outperforms all
existing top-down methods on English Penn Tree-
bank and RST Discourse Treebank sentence-level
parsing tasks. With pre-trained representations, our
method rivals state-of-the-art methods, while being
faster. Our model also establishes a new state-of-
the-art for sentence-level RST parsing.

5803

References

Yoav Artzi, Nicholas FitzGerald, and Luke Zettle-
moyer. 2013. Semantic parsing with Combinatory
Categorial Grammars. In Proceedings of the 51st
Annual Meeting of the Association for Computa-
tional Linguistics (Tutorials), page 2, Sofia, Bul-
garia. Association for Computational Linguistics.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, UIf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178-186, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and
Noam Shazeer. 2015. Scheduled sampling for se-
quence prediction with recurrent neural networks.
In Advances in Neural Information Processing Sys-
tems, volume 28, pages 1171-1179. Curran Asso-
ciates, Inc.

Anders Bjorkelund, Ozlem Cetinoglu, Agnieszka
Falenska, Richard Farkas, Thomas Mueller, Wolf-
gang Seeker, and Zsolt Szanto. 2014. The ims-
wroclaw-szeged-cis entry at the spmrl 2014 shared
task: Reranking and morphosyntax meet unlabeled
data. In Proceedings of the First Joint Workshop
on Statistical Parsing of Morphologically Rich Lan-
guages and Syntactic Analysis of NonCanonical
Languages, pages 97-102.

Maximin Coavoux and Benoit Crabbé. 2017. Multi-
lingual lexicalized constituency parsing with word-
level auxiliary tasks. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 331-336, Valencia, Spain. Association
for Computational Linguistics.

James Cross and Liang Huang. 2016. Span-based con-
stituency parsing with a structure-label system and
provably optimal dynamic oracles. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 1-11, Austin,
Texas. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings.

Greg Durrett and Dan Klein. 2015. Neural CRF pars-
ing. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguis-
tics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Pa-
pers), pages 302-312, Beijing, China. Association
for Computational Linguistics.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network
grammars. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 199-209, San Diego, California.
Association for Computational Linguistics.

Daniel Ferndndez-Gonzdlez and Carlos Godmez-
Rodriguez. 2019. Left-to-right dependency parsing
with pointer networks. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 710-716, Minneapolis, Minnesota.
Association for Computational Linguistics.

Daniel Fernindez-Gonzédlez and Carlos GOmez-
Rodriguez. 2020a. Enriched in-order linearization
for faster sequence-to-sequence constituent parsing.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
4092-4099, Online. Association for Computational
Linguistics.

Daniel Fernidndez-Gonzdlez and Carlos Goémez-
Rodriguez. 2020b. Transition-based semantic
dependency parsing with pointer networks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
7035-7046, Online. Association for Computational
Linguistics.

David Gaddy, Mitchell Stern, and Dan Klein. 2018.
What’s going on in neural constituency parsers? an
analysis. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume I (Long Papers), pages 999-1010,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Carlos Gémez, Rodriguez and David Vilares. 2018.
Constituent parsing as sequence labeling. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1314—
1324, Brussels, Belgium. Association for Computa-
tional Linguistics.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735-1780.

Shafiq Joty, Giuseppe Carenini, and Raymond Ng.
2012. A novel discriminative framework for
sentence-level discourse analysis. In Proceedings
of the 2012 Joint Conference on Empirical Methods

5804

https://proceedings.neurips.cc/paper/2015/file/e995f98d56967d946471af29d7bf99f1-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/e995f98d56967d946471af29d7bf99f1-Paper.pdf
https://doi.org/10.18653/v1/D16-1001
https://doi.org/10.18653/v1/D16-1001
https://doi.org/10.18653/v1/D16-1001
https://doi.org/10.3115/v1/P15-1030
https://doi.org/10.3115/v1/P15-1030
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/N19-1076
https://doi.org/10.18653/v1/N19-1076
https://doi.org/10.18653/v1/2020.acl-main.376
https://doi.org/10.18653/v1/2020.acl-main.376
https://doi.org/10.18653/v1/2020.acl-main.629
https://doi.org/10.18653/v1/2020.acl-main.629
https://doi.org/10.18653/v1/N18-1091
https://doi.org/10.18653/v1/N18-1091
https://doi.org/10.18653/v1/D18-1162

in Natural Language Processing and Computational
Natural Language Learning, pages 904-915, Jeju Is-
land, Korea. Association for Computational Linguis-
tics.

Shafiq Joty, Giuseppe Carenini, Raymond Ng, and
Yashar Mehdad. 2013. Combining intra- and multi-
sentential rhetorical parsing for document-level dis-
course analysis. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 486—496,
Sofia, Bulgaria. Association for Computational Lin-
guistics.

Shafiq Joty, Giuseppe Carenini, and Raymond T. Ng.
2015. CODRA: A novel discriminative framework
for rhetorical analysis. Computational Linguistics,
41(3):385-435.

Hidetaka Kamigaito, Katsuhiko Hayashi, Tsutomu
Hirao, Hiroya Takamura, Manabu Okumura, and
Masaaki Nagata. 2017. Supervised attention for
sequence-to-sequence constituency parsing. In Pro-
ceedings of the Eighth International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 7-12, Taipei, Taiwan. Asian
Federation of Natural Language Processing.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Nikita Kitaev, Steven Cao, and Dan Klein. 2019. Multi-
lingual constituency parsing with self-attention and
pre-training. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3499-3505, Florence, Italy. Associa-
tion for Computational Linguistics.

Nikita Kitaev and Dan Klein. 2018. Constituency pars-
ing with a self-attentive encoder. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2676-2686, Melbourne, Australia. Associa-
tion for Computational Linguistics.

Shuhei Kurita and Anders Sggaard. 2019. Multi-task
semantic dependency parsing with policy gradient
for learning easy-first strategies. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 2420-2430, Florence,
Italy. Association for Computational Linguistics.

Xiang Lin, Shafiq Joty, Prathyusha Jwalapuram, and
M Saiful Bari. 2019. A unified linear-time frame-
work for sentence-level discourse parsing. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4190—
4200, Florence, Italy. Association for Computational
Linguistics.

Jiangming Liu and Yue Zhang. 2017. Shift-reduce
constituent parsing with neural lookahead features.

Transactions of the Association for Computational
Linguistics, 5:45-58.

Zhengyuan Liu, Ke Shi, and Nancy Chen. 2020. Mul-
tilingual neural RST discourse parsing. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 6730—6738, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Carlson Lynn, Daniel Marcu, and Mary Ellen
Okurowski. 2002. Rst discourse treebank (rst—dt)
1dc2002t07. Linguistic Data Consortium.

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng,
Graham Neubig, and Eduard Hovy. 2018. Stack-
pointer networks for dependency parsing. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1403-1414, Melbourne, Australia.
Association for Computational Linguistics.

William Mann and Sandra Thompson. 1988. Rhetori-
cal Structure Theory: Toward a Functional Theory
of Text Organization. Text, 8(3):243-281.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of english: The penn treebank. Comput. Lin-
guist., 19(2):313-330.

Thanh-Tung Nguyen, Xuan-Phi Nguyen, Shafiq Joty,
and Xiaoli Li. 2020. Efficient constituency pars-
ing by pointing. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3284-3294, Online. Association for
Computational Linguistics.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proc. of NAACL.

Slav Petrov and Dan Klein. 2007. Improved inference
for unlexicalized parsing. In Human Language Tech-
nologies 2007: The Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics; Proceedings of the Main Conference,
pages 404—411, Rochester, New York. Association
for Computational Linguistics.

Djamé Seddah, Reut Tsarfaty, Sandra Kiibler, Marie
Candito, Jinho D. Choi, Richard Farkas, Jen-
nifer Foster, Takes Goenaga, Koldo Gojenola Gal-
letebeitia, Yoav Goldberg, Spence Green, Nizar
Habash, Marco Kuhlmann, Wolfgang Maier, Joakim
Nivre, Adam Przepiérkowski, Ryan Roth, Wolfgang
Seeker, Yannick Versley, Veronika Vincze, Marcin
Wolinski, Alina Wroblewska, and Eric Villemonte
de la Clergerie. 2013. Overview of the SPMRL
2013 shared task: A cross-framework evaluation of
parsing morphologically rich languages. In Proceed-
ings of the Fourth Workshop on Statistical Parsing of
Morphologically-Rich Languages, pages 146-182,
Seattle, Washington, USA. Association for Compu-
tational Linguistics.

5805

https://www.aclweb.org/anthology/P13-1048
https://www.aclweb.org/anthology/P13-1048
https://www.aclweb.org/anthology/P13-1048
https://www.aclweb.org/anthology/I17-2002
https://www.aclweb.org/anthology/I17-2002
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/P19-1232
https://doi.org/10.18653/v1/P19-1232
https://doi.org/10.18653/v1/P19-1232
https://doi.org/10.18653/v1/P19-1410
https://doi.org/10.18653/v1/P19-1410
https://doi.org/10.18653/v1/2020.coling-main.591
https://doi.org/10.18653/v1/2020.coling-main.591
https://doi.org/10.18653/v1/P18-1130
https://doi.org/10.18653/v1/P18-1130

Yikang Shen, Zhouhan Lin, Athul Paul Jacob, Alessan-
dro Sordoni, Aaron Courville, and Yoshua Bengio.
2018. Straight to the tree: Constituency parsing
with neural syntactic distance. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1171-1180, Melbourne, Australia. Association for
Computational Linguistics.

Radu Soricut and Daniel Marcu. 2003. Sentence level
discourse parsing using syntactic and lexical infor-
mation. In Proceedings of the 2003 Human Lan-
guage Technology Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics, pages 228-235.

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017a.
A minimal span-based neural constituency parser. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2017,
Vancouver, Canada, July 30 - August 4, Volume 1:
Long Papers, pages 818-827.

Mitchell Stern, Daniel Fried, and Dan Klein. 2017b.
Effective inference for generative neural parsing. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
1695-1700, Copenhagen, Denmark. Association for
Computational Linguistics.

Jun Suzuki, Sho Takase, Hidetaka Kamigaito, Makoto
Morishita, and Masaaki Nagata. 2018. An empirical
study of building a strong baseline for constituency
parsing. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 2: Short Papers), pages 612-618, Mel-
bourne, Australia. Association for Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998—-6008. Curran Asso-
ciates, Inc.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015a. Pointer networks. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 28, pages 2692—2700. Curran Asso-
ciates, Inc.

Oriol Vinyals, L ukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015b. Gram-
mar as a foreign language. In Advances in Neural
Information Processing Systems, volume 28, pages
2773-2781. Curran Associates, Inc.

Yizhong Wang, Sujian Li, and Houfeng Wang. 2017.
A two-stage parsing method for text-level discourse
analysis. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics

(Volume 2: Short Papers), pages 184—188. Associa-
tion for Computational Linguistics.

B. Webber. 2004. D-LTAG: Extending Lexicalized
TAG to Discourse. Cognitive Science, 28(5):751—
779.

Yang Wei, Yuanbin Wu, and Man Lan. 2020. A span-
based linearization for constituent trees. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3267—
3277, Online. Association for Computational Lin-
guistics.

Longyin Zhang, Yuqing Xing, Fang Kong, Peifeng Li,
and Guodong Zhou. 2020a. A top-down neural
architecture towards text-level parsing of discourse
rhetorical structure. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 6386—-6395, Online. Association
for Computational Linguistics.

Xingxing Zhang, Jianpeng Cheng, and Mirella Lapata.
2017. Dependency parsing as head selection. In
Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 1, Long Papers, pages 665-676,
Valencia, Spain. Association for Computational Lin-
guistics.

Yu Zhang, Houquan Zhou, and Zhenghua Li. 2020b.
Fast and accurate neural crf constituency parsing.
In Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, 1JCAI-
20, pages 4046-4053. International Joint Confer-
ences on Artificial Intelligence Organization. Main
track.

Kai Zhao and Liang Huang. 2017. Joint syntacto-
discourse parsing and the syntacto-discourse tree-
bank. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 2117-2123, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Junru Zhou and Hai Zhao. 2019. Head-driven phrase
structure grammar parsing on penn treebank. In Pro-
ceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, Florence,
Italy, July 28- August 2, 2019, Volume 1: Long Pa-
pers, pages 2396-2408.

Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang,
and Jingbo Zhu. 2013. Fast and accurate shift-
reduce constituent parsing. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
434-443, Sofia, Bulgaria. Association for Computa-
tional Linguistics.

Appendix

6.1 Discourse Parsing Architecture

Figure 4 illustrates our end-to-end model architec-
ture for discourse parsing.

5806

https://doi.org/10.18653/v1/D17-1178
https://doi.org/10.18653/v1/P18-2097
https://doi.org/10.18653/v1/P18-2097
https://doi.org/10.18653/v1/P18-2097
https://proceedings.neurips.cc/paper/2015/file/277281aada22045c03945dcb2ca6f2ec-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/277281aada22045c03945dcb2ca6f2ec-Paper.pdf
https://doi.org/10.18653/v1/2020.acl-main.569
https://doi.org/10.18653/v1/2020.acl-main.569
https://doi.org/10.18653/v1/2020.acl-main.569
https://www.aclweb.org/anthology/E17-1063
https://doi.org/10.24963/ijcai.2020/560
https://doi.org/10.18653/v1/D17-1225
https://doi.org/10.18653/v1/D17-1225
https://doi.org/10.18653/v1/D17-1225

Same-unit

N N
Elaboration is intensifying .
N s 9 10 11
Meanwhile , competition from rivals ~ unencumbered by history
1 2 3 4 5 6 7 8
[!] ! I I ! !]]] !
[b [| [
[! ! ! | ! ! ! ! ! ! !
lo:ss:8
I !] I I ! ! ! | I] !
lo:gs:11
!] I I I I I] !] I]
hy hy hy hy hy hs he h; hg hy hio hiy
<Js> Merhe . cump‘el“un ﬁJm rivals unencumbered by history is intensifying <eos> ho,11 hog hos hsg hg11

Figure 4: Our discourse parser a long with the decoding process for a given sentence. The input to the decoder at
each step is the representation of the span to be split. We predict splitting point using the biaffine function between
the corresponding decoder state and the boundary representations. The relationship between left and right spans
are assigned with the label using the label classifier.

6.2 Discourse Parsing Inference Algorithms

Algorithm 2 shows the end-to-end discourse pars-
ing inference process.

Algorithm 2 Discourse Inference

]

Input: Sentence length n; boundary encoder states:
(ho, h1, ..., hy);label scores: P(l|(i, k), (k,7)),0 <i <
k < j < n,l € L, initial decoder state st.

Output: Parse tree 7
ST =[(1,n)] /I stack of spans
S —

while ST # @ do
(i,5) = pop(ST)
prob, st = dec(st, (i, 7))
k = argmax; . ; prob
curr_partial_tree = partial_tree
ifj—1>k >4+ 1then
push(ST, (k,j))
push(ST, (i, k))
elseif) —1 > k =1¢+ 1 then
push(ST, (k, 7))
elseif k =35 — 1> ¢+ 1then
push(ST, (i, k))
end if
if £ # j then
push(S((i, k, 7))
end if
end while
T = [((G, k, 5), argmaz: P(I|(i, k) (k, §))V(i, k, 5) €]

5807

