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Abstract

A few approaches have been developed to im-
prove neural machine translation (NMT) mod-
els with multiple passes of decoding. How-
ever, their performance gains are limited be-
cause of lacking proper policies to terminate
the multi-pass process. To address this issue,
we introduce a novel architecture of Rewriter-
Evaluator. Translating a source sentence in-
volves multiple rewriting passes. In every pass,
a rewriter generates a new translation to im-
prove the past translation. Termination of this
multi-pass process is determined by a score
of translation quality estimated by an evalua-
tor. We also propose prioritized gradient de-
scent (PGD) to jointly and efficiently train the
rewriter and the evaluator. Extensive experi-
ments on three machine translation tasks show
that our architecture notably improves the per-
formances of NMT models and significantly
outperforms prior methods. An oracle exper-
iment reveals that it can largely reduce perfor-
mance gaps to the oracle policy. Experiments
confirm that the evaluator trained with PGD is
more accurate than prior methods in determin-
ing proper numbers of rewriting.

1 Introduction

Encoder-Decoder architecture (Sutskever et al.,
2014) has been widely used in natural language
generation, especially neural machine translation
(NMT) (Bahdanau et al., 2015; Gehring et al., 2017;
Vaswani et al., 2017; Zhang et al., 2019; Kitaev
et al., 2020). Given a source sentence, an en-
coder firstly converts it into hidden representations,
which are then conditioned by a decoder to produce
a target sentence. In analogy to the development
of statistical machine translation (SMT) (Och and
Ney, 2002; Shen et al., 2004; Zhang and Gildea,
2008), some recent methods in NMT attempt to im-
prove the encoder-decoder architecture with multi-
pass decoding (Xia et al., 2017; Zhang et al., 2018;

Geng et al., 2018; Niehues et al., 2016). In these
models, more than one translation is generated for
a source sentence. Except for the first translation,
each of the later translations is conditioned on the
previous one. While these methods have achieved
promising results, they lack a proper termination
poqlicy for this multi-turn process. For instance,
Xia et al. (2017); Zhang et al. (2018) adopt a fixed
number of decoding passes, which is inflexible
and can be sub-optimal. Geng et al. (2018) utilize
reinforcement learning (RL) (Sutton et al., 2000)
to automatically decide the number of decoding
passes. However, RL is known to be unstable due
to the high variance in gradient estimation (Boyan
and Moore, 1995).

To address this problem, we introduce a novel
architecture, Rewriter-Evaluator. This architecture
contains a rewriter and an evaluator. The trans-
lation process involves multiple passes. Given a
source sentence, at every turn, the rewriter gener-
ates a new target sequence to improve the transla-
tion from the prior pass, and the evaluator measures
the translation quality to determine whether to end
the iterative rewriting process. Hence, the transla-
tion process is continued until a certain condition is
met, such as no significant improvement in the mea-
sured translation quality. In implementations, the
rewriter is a conditional language model (Sutskever
et al., 2014) and the evaluator is a text matching
model (Wang et al., 2017).

We also propose prioritized gradient descent
(PGD) that facilitates training the rewriter and the
evaluator both jointly and efficiently. PGD uses a
priority queue to store previous translation cases.
The queue stores translations with descending order
of their scores, computed from the evaluator. The
capacity of the queue is limited to be a few times of
batch size. Due to its limited size, the queue pops
those translations with high scores and only keeps
the translations with lower scores. The samples in
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Figure 1: General architecture of Rewriter-Evaluator.

the queue are combined together with new cases
from the training data to train the rewriter.

Rewriter-Evaluator has been applied to improve
two mainstream NMT models, RNNSearch (Bah-
danau et al., 2015) and Transformer (Vaswani
et al., 2017). We have conducted extensive experi-
ments on three translation tasks, NIST Chinese-
to-English, WMT’18 Chinese-to-English, and
WMT’14 English-to-German. The results show
that our architecture notably improves the perfor-
mance of NMT models and significantly outper-
forms related approaches. We conduct oracle ex-
periment to understand the source of improvements.
The oracle can pick the best translation from all the
rewrites. Results indicate that the evaluator helps
our models achieve the performances close to the
oracle, outperforming the methods of fixing the
number of rewriting turns. Compared against aver-
aged performances using a fixed number of rewrit-
ing iterations, performance gaps to the oracle can
be reduced by 80.7% in the case of RNNSearch and
75.8% in the case of Transformer. Quantitatively,
we find the evaluator trained with PGD is signif-
icantly more accurate in determining the optimal
number of rewriting turns. For example, whereas
the method in Geng et al. (2018) has 50.2% ac-
curacy in WMT’14, the evaluator achieves 72.5%
accuracy on Transformer.

2 Rewriter-Evaluator

Rewriter-Evaluator consists of iterative processes
involving a rewriting process ψ and an evaluation
process φ. The process of translating an n-length
source sentence x = [x1, x2, · · · , xn] is an appli-
cation of the above processes. Assume we are at
the k-th iteration (k ≥ 1). The rewriter ψ gener-

ates a target sequence z(k) = [z
(k)
1 , z

(k)
2 , · · · , z(k)lk

]
given the source sentence x and the past trans-
lation z(k−1) = [z

(k−1)
1 , z

(k−1)
2 , · · · , z(k−1)lk−1

] from
the (k − 1)-th turn. lk and lk−1 are the sentence
lengths. The evaluator φ estimates the translation
quality score q(k) of the new translation z(k), which
is used for determining whether to end the multi-
turn process. Formally, the k-th pass of a transla-
tion process is defined as{

z(k) = ψ(x, z(k−1))

q(k) = φ(x, z(k))
. (1)

Initially, z(0) and q(0) are respectively set as an
empty string and −∞.

The above procedure is repeatedly carried out un-
til not much improvement in the estimated quality
score can be achieved, i.e.,

q(k) + ε < q(k−1), ε > 0, (2)

where ε is a small value tuned on the development
set. Alternatively, the procedure is terminated if
a certain number of iterations K > 0 is reached.
In the former case, we adopt z(k−1) as the final
translation. In the latter case, the last translation
z(K) is accepted.

2.1 Architecture
A general architecture of Rewriter-Evaluator us-
ing Encoder-Decoder is illustrated in Fig. 1. The
rewriter ψ consists of a source encoder fSE , a
target decoder fTE , and a decoder gDEC . The
evaluator φ shares encoders with the rewriter and
contains an estimator gEST .

Assume it is at the k-th pass. Firstly, the source
encoder fSE casts the source sentence x into word
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Algorithm 1: Prioritized Gradient Descent (PGD)
Input: rewriter ψ, evaluator φ, training set T , batch size B, and expected iteration number E.
Output: well-trained rewriter ψ and well-trained evaluator φ.

1 Initialize an empty priority queue A with the capacity C ← B × E.
2 while Models are not converged do
3 Pop B cases with high quality scores from priority queue A and discard them.
4 Randomly sample a B-sized batch of training cases S from T .
5 for (x,y) ∈ S do
6 Push the quadruple (x,y, [“SOS”, “EOS”],−∞) into queue A.

7 Initialize an empty priority queue D of limited size C.
8 Initialize an empty list F to collect samples for training.
9 for (x,y, z(k−1), r(k−1)) ∈ A do

10 Obtain translation z(k) and quality score q(k), respectively, using Eq. (5) and Eq. (6).
11 Push sample (x,y, z(k), q(k)) into list F .
12 Compute quality rate r(k) using Eq. (9).
13 Push quadruple (x,y, z(k), r(k)) into queue D.

14 Optimize rewriter ψ with the samples in list F to reduce loss in Eq. (7).
15 Optimize evaluator φ with the samples in list F to reduce loss in Eq. (8).
16 Update priority queue A: A← D.

representations hi, 1 ≤ i ≤ n:

H = [h1;h2; · · · ;hn] = fSE(x), (3)

where operation [; ] is row-wise vector concatena-
tion. Similarly, the translation z(k−1) from the pre-
vious turn k − 1 is encoded as

P(k−1) = [p
(k−1)
1 ;p

(k−1)
2 ; · · · ;p(k−1)

lk−1
]

= fTE(z(k−1))
. (4)

Then, the decoder gDEC of the rewriter ψ produces
a new translation z(k) as

z(k) = gDEC(H,P(k−1)). (5)

Ultimately, the evaluator φ scores the new transla-
tion z(k) with the estimator gEST :{

P(k) = fTE(z(k))

q(k) = gEST (H,P(k))
. (6)

The implementation can be applied to a vari-
ety of architectures. The encoders, fSE and fTE ,
can be any sequence model, such as CNN (Kim,
2014). The decoder gDEC is compatible with any
language model (e.g., Transformer). The estimator
gEST is a text matching model, e.g., ESIM (Chen
et al., 2017). In Sec. 4, we apply this implementa-
tion to improve generic NMT models.

2.2 Training Criteria
We represent the ground truth target sentence as
a (m + 1)-length sequence y = [y0, y1, · · · , ym].
The rewriter ψ is trained via teacher forcing. We
use oi to denote the probability of the i-th target
word, which is the prediction of feeding its prior
words [y0, y1, · · · , yi−1] into the decoder gDEC .
The training loss for the rewriter is

J ψ =
∑

1≤i≤m
− log(oi[yi]). (7)

where y0 = “[SOS]” and ym = “[EOS]”, marking
the ends of a target sentence.

For the evaluator φ, we incur a hinge loss be-
tween the translation score of the ground truth y
and that of the current translation z(k) as{

q∗ = φ(x,y)

J φ = max(0, 1− q∗ + q(k))
. (8)

At training time, translation z(k) is generated via
greedy search, instead of beam search, to reduce
training time.

3 Prioritized Gradient Descent

We present prioritized gradient descent (PGD) to
train the proposed architecture. Instead of the ran-
dom sampling used in stochastic gradient descent
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Figure 2: RNNSearch with Rewriter-Evaluator.

(SGD) (Bottou and Bousquet, 2008), PGD uses a
priority queue to store previous training cases that
receive low scores from the evaluator. Randomly
sampled training cases together with those from
the priority queue are used for training.

Details of PGD are illustrated in Algorithm 1.
Initially, we set a priority queue A (1-st line) with
a limited size C = B ×E. B is the batch size. E,
the expected number of rewriting iterations, is set
as K

2 . The queue A is ordered with a quality rate in
descending order, where the top one corresponds
to the highest rate. The quality rate of a certain
sample (x,y, z(k)) is computed as

r(k) = (1− ρ) ∗ BLEU(z(k),y) + ρ ∗ q(k), (9)

where the weight ρ is controlled by an anneal-
ing schedule j

j+1 with j being the current train-
ing epoch and BLEU (Papineni et al., 2002). The
rate r(k) is dominated by BLEU in the first few
epochs, and is later dominated by the evaluation
score q(k) with an increasing number of epochs.
This design is to mitigate the cold start problem
when training an evaluator φ. At every training
epoch, PGD firstly discards a certain number of
previous training samples with high quality rates
(3-rd line) from queue A. It then replaces them
with newly sampled samples S (4-th to 6-th lines).
Every sample (x,y, z(k−1), r(k−1)) in queue A is
then rewritten into a new translation z(k) by the
rewriter. These are scored by the evaluator φ (10-th
lines). These new samples are used to respectively
train the rewriter ψ and the evaluator φ (14-th to
15-th lines) with Eq. (7) and Eq. (8).

PGD keeps low-quality translations in the queue
A for multi-pass rewriting until they are popped
out from queue A with high scores from the eval-

uator φ. Hence, the evaluator φ is jointly trained
with the rewriter to learn discerning the quality of
translations from the rewriter ψ, in order to help
the rewriter reduce loss in Eq. (7).

PGD uses a large queue (B×E) to aggregate the
past translations and newly sampled cases. Com-
putationally, this is more efficient than explicit B
times of rewriting to obtain samples. This requires
extra memory space in exchange for lowing train-
ing time. In Sec. 5.7, we will show that the addi-
tional increase of training time by PGD is less than
20%, which is tolerable.

4 Applications

Following Sec. 2.1, we use Rewriter-Evaluator to
improve RNNSearch and Transformer.

RNNSearch w/ Rewriter-Evaluator. The im-
proved RNNSearch is illustrated in Fig. 2. The
two encoders (i.e., fSE and fTE) and the decoder
gDEC are GRU (Chung et al., 2014). We omit com-
putation details of these modules and follow their
settings in Bahdanau et al. (2015). Note that, at
every decoding step, the hidden state of decoder
is attended to not only hi, 1 ≤ i ≤ n but also
p
(k−1)
j , 1 ≤ j ≤ lk−1.
We apply co-attention mechanism (Parikh et al.,

2016) to model the estimator fEST . Firstly, we
capture the semantic alignment between the source
sentence x and the translation z(k−1) as

αi,j = hTi Wp
(k−1)
j

h̃i =
∑
j

exp(αi,j)∑
j′ exp(αi,j′)

p
(k−1)
j

p̃
(k−1)
j =

∑
i

exp(αi,j)∑
i′ exp(αi′,j)

hi

. (10)

Then, we use average pooling to extract features
and compute the quality score:

q(k−1) = vT
(∑

i h̃i
n
⊕
∑

j p̃
(k−1)
j

lk−1

)
, (11)

where ⊕ is column-wise vector concatenation.

Transformer w/ Rewriter-Evaluator. The
Transformer (Vaswani et al., 2017) is modified to
an architecture in Fig. 3. The input to the encoder
contains a source sentence x, a special symbol
“ALIGN”, and the past translation z(k−1):

x′ = x� [“ALIGN”]� z(k−1), (12)
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Figure 3: Transformer with Rewriter-Evaluator.

where operation � denotes the concatenation of
two sequences.

The following mask matrix is applied to every
layer in the encoder: 1n×n 0T1×n 0n×lk−1

11×n 1 11×lk−1

0lk−1×n 0T1×lk−1
1lk−1×lk−1

 . (13)

In this way, the words in x can’t attend to those
in z(k−1) and vice versa. “ALIGN” can attend to
the words both in x and z(k−1). This design is to
avoid cross-sentence attention in encoder layers.
In earlier studies, we find it slightly improves the
performances of models.

We denote the representation for “ALIGN” in
the final encoder layer as hALIGN . The estimator
fEST obtains the quality score as

q(k−1) = vThALIGN , (14)

in which v is a learnable vector.

5 Experiments

We have conducted extensive experiments on
three machine translation tasks: NIST Chinese-to-
English (Zh→En), WMT’18 Chinese-to-English,
and WMT’14 English-to-German (En→De). The
results show that Rewriter-Evaluator significantly
improves the performances of NMT models and
notably outperforms prior post-editing methods.
Oracle experiment verifies the effectiveness of the
evaluator. Termination accuracy analysis shows our
evaluator is much more accurate than prior meth-
ods in determining the optimal number of rewriting
turns. We also perform ablation studies to explore
the effects of some components.

5.1 Experimental Setup

For NIST Zh→En, the training set contains 1.25M
sentence pairs extracted from LDC corpora, includ-
ing LDC2002E18, LDC2003E07, LDC2003E14,
a portion of LDC2004T07, LDC2004T08, and
LDC2005T06. We adopt NIST 2002 (MT02) as the
validation set. We use NIST 2003 (MT03), NIST
2004 (MT04), NIST 2005 (MT05), and NIST 2006
(MT06) for tests. For WMT’18 Zh→En1, we use
18.4M preprocessed data, with byte pair encoding
(BPE) tokenization (Sennrich et al., 2016). We use
newstest2017 for validation and newstest2018 for
test. For WMT’14 En→De2, following the same
setting as in Vaswani et al. (2017), we use 4.5M
preprocessed data that is tokenized via BPE with
32k merge operations and a shared vocabulary for
English and German. We use newstest2013 for
development and newstest2014 for test.

We train all the models with 150k steps for
NIST Zh→En, 300k steps for WMT’18 Zh→En,
and 300k steps for WMT’14 En→De. We select
the model that performs the best on validations
and report their performances on test sets. Us-
ing multi-bleu.perl3, we measure case-insensitive
BLEU scores and case-sensitive ones for NIST
Zh→En and WMT’14 En→De, respectively. For
WMT’18 Zh→En, we use the case-sensitive BLEU
scores calculated by mteval-v13a.pl4. The improve-
ments of the proposed models over the baselines
are statistically significant with a reject probability
smaller than 0.05 (Koehn, 2004).

For RNNSearch, the dimensions of word embed-
dings and hidden layers are both 600. Encoder has
3 layers and decoder has 2 layers. Dropout rate is
set to 0.2. For Transformer, we follow the setting
of Transformer-Base in Vaswani et al. (2017). Both
models use beam size of 4 and the maximum num-
ber of training tokens at every step is 4096. We
use Adam (Kingma and Ba, 2014) for optimiza-
tion. In all the experiments, the proposed models
run on NVIDIA Tesla V100 GPUs. For Rewriter-
Evaluator, the maximum number of rewriting iter-
ations K is 6 and termination threshold ε is 0.05.
Hyper-parameters are obtained by grid search, ex-
cept for the Transformer backbone.

1http://www.statmt.org/wmt18/translation-task.html.
2http://www.statmt.org/wmt14/translation-task.html.
3https://github.com/moses-smt/mosesdecoder/blob/

master/scripts/generic/multi-bleu.perl.
4https://github.com/moses-smt/mosesdecoder/blob/

master/scripts/generic/mteval-v13a.pl.
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Method
NIST Zh→En

MT03 MT04 MT05 MT06 Avg.
Deliberation Networks (Xia et al., 2017) 37.82 40.56 37.67 37.20 38.31

ABD-NMT (Zhang et al., 2018) 38.01 41.20 38.07 37.59 38.71
Adaptive Multi-pass Decoder (Geng et al., 2018) 38.39 41.43 38.54 37.86 39.05

Our Work

RNNsearch 37.20 40.42 36.75 36.29 37.67
w/ Rewriter-Evaluator 40.01 43.25 39.97 39.83 40.77

Transformer 46.75 47.93 47.61 46.58 47.22
w/ Rewriter-Evaluator 47.88 48.71 48.56 47.92 48.27

Table 1: Experiment results of the proposed models and all the baselines on NIST Zh→En.

Method WMT’14 En→De WMT’18 Zh→En
Adaptive Multi-pass Decoder (Geng et al., 2018) 26.55 22.39

Our Work

RNNsearch 25.79 21.47
w/ Rewriter-Evaluator 27.86 23.71

Transformer 27.53 23.65
w/ Rewriter-Evaluator 28.91 25.08

Table 2: Experiment results on WMT’14 En→De and WMT’18 Zh→En.

5.2 Results on NIST Chinese-to-English

We adopt the following related baselines: 1) Delib-
eration Networks (Xia et al., 2017) adopts a sec-
ond decoder to polish the raw sequence produced
by the first-pass decoder; 2) ABD-NMT (Zhang
et al., 2018) uses a backward decoder to generate a
translation and a forward decoder to refine it with
attention mechanism; 3) Adaptive Multi-pass De-
coder (Geng et al., 2018) utilizes RL to model the
iterative rewriting process.

Table 1 shows the results of the proposed mod-
els and the baselines on NIST. Baseline BLEU
scores are from Geng et al. (2018). There are three
observations. Firstly, Rewriter-Evaluator signif-
icantly improves the translation quality of NMT
models. The averaged BLEU score of RNNSearch
is raised by 3.1% and that of Transformer is in-
creased by 1.05%. Secondly, the proposed archi-
tecture notably outperforms prior multi-pass de-
coding methods. The performance of RNNSearch
w/ Rewriter-Evaluator surpasses those of Deliber-
ation Network by 2.46%, ABD-NMT by 2.06%,
and Adaptive Multi-pass Decoder by 1.72%. Be-
cause all of these systems use the same backbone
of RNN-based NMT models, these results validate
that Rewriter-Evaluator is superior to other alter-
native methods. Lastly, the proposed architecture
can improve Transformer backbone by 1.05% on
average, and the improvements are consistently ob-
served on tasks from MT03 to MT06.

5.3 Results on WMT Tasks

To further confirm the effectiveness of the pro-
posed architecture, we make additional compar-
isons on WMT’14 En→De and WMT’18 Zh→En.
The results are demonstrated in Table 2. Because
the above methods don’t have results on the two
datasets, we re-implement Adaptive Multi-pass De-
coding for comparisons.

These results are consistent with the observa-
tions in Sec. 5.2. We can see that the new architec-
ture can improve BLEU scores on both RNNSearch
and Transformer backbones. For example, the im-
provements on RNNSearch backbone are 2.13%
on WMT’14 and 2.24% on WMT’18. On Trans-
former backbone, scores are raised by 1.38% on
WMT’14 and 1.43% on WMT’18 . Furthermore,
RNNSearch w/ Rewriter-Evaluator outperforms
Adaptive Multi-pass Decoder by 1.31% and 1.32%,
respectively, on the two tasks. Interestingly, the pro-
posed architecture on RNNSearch backbone even
surpasses Transformer on these two datasets. For
example, the BLEU score on WMT’14 increases
from 27.53% to 27.86%.

5.4 Oracle Experiment

We conduct oracle experiments on the test set of
WMT’14 En→De to understand potential improve-
ments of our architecture. An oracle selects the iter-
ation that the corresponding rewrite has the highest
BLEU score. Its BLEU scores are shown on the
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Figure 4: The oracle experiment conducted on WMT’14 En→De.

Method NIST Zh→En WMT’14 En→De WMT’18 Zh→En
Adaptive Multi-pass Decoder 58.27 30.62 50.18

RNNSearch w/ Rewriter-Evaluator 75.23 71.58 60.53
Transformer w/ Rewriter-Evaluator 73.66 72.46 58.91

Table 3: PAT scores of different methods on NIST, WMT’14, and WMT’18.

red dashed lines in Fig. 4. The numbers on the
green vertical bars are the BLEU scores of adopt-
ing a fixed number of rewriting iterations. Their
averaged number is shown on the dashed blue line.
BLEU score from using our evaluator is shown on
the solid dark-blue line.

Results show that the evaluator, with 27.86%
BLEU score and 28.91 BLEU score, is much better
than the strategies of using a fixed number of rewrit-
ing turns. The gaps between oracle and the aver-
aged performance by RNNSearch and Transformer
with fixed iterations are 1.92% and 1.90%. Using
the evaluator, these gaps are reduced relatively by
80.7% for RNNSearch and 75.8% for Transformer,
respectively, down to 0.37% and 0.46%. These
results show that the evaluator is able to learn an
appropriate termination policy, approximating the
performances of oracle policy.

5.5 Termination Accuracy Analysis
We define a metric, percentage of accurate termina-
tions (PAT), to measure how precise a termination
policy can be. PAT is computed as

1

|U |
∑

(x,y)∈U

δ(wq(x,y) = wb(x,y)), (15)

where δ is the indicator function that outputs 1 if
its argument is true and 0 otherwise. For each pair
(x,y) in the test set U , wq(x,y) is the turn in-
dex k with the highest quality score maxk q

(k) and
wb(x,y) is the one with the highest BLEU score

Param. Sharing K NIST WMT’14 WMT’18
7 6 42.25 26.17 23.88

3 2 41.83 25.64 23.26
3 4 42.37 26.21 23.98
3 6 42.79 26.43 24.11
3 8 42.83 26.37 24.09

Table 4: Ablation studies conducted on the validation
sets of NIST, WMT’14, and WMT’18.

maxk BLEU(z
(k),y). The translations z(k), 1 ≤

k ≤ K and their scores q(k), 1 ≤ k ≤ K are
obtained using Eq. 5 and Eq. 6.

For fair comparisons, the maximum number of
rewritings is set to 6 for both Rewriter-Evaluator
and Adaptive Multi-pass Decoder (Geng et al.,
2018). Results in Table 3 show that PAT scores
from Rewriter-Evaluator are much higher than
those of Adaptive Multi-pass Decoder. For in-
stance, RNNSearch w/ Rewriter-Evaluator sur-
passes Adaptive Multi-pass Decoder by 40.96%
on WMT’14 and 10.35% on WMT’18.

5.6 Ablation Studies
Table 4 shows the results of ablation studies on
NIST, WMT’14, and WMT’18.

Parameter Sharing. The encoders from Eq. (3)
and Eq. (4) are shared between the rewriter and
the evaluator. We find this improves the perfor-
mances of the proposed models. For example, on
NIST, sharing encoders increases our BLEU score



5708

Method
WMT’14 En→De
Training Test

RNNSearch 7h56m 11m26s
w/ Rewriter-Evaluator 9h17m 39m50s

Transformer 5h23m 14m11s
w/ Rewriter-Evaluator 6h36m 52m02s

Table 5: Running time comparisons on WMT’14.

from 42.25% to 42.79% with the same maximum
iteration number of K.

Maximum Number of Iterations. Increasing
the maximum number of turns K generally im-
proves the BLEU scores. For instance, on NIST,
K = 8 outperforms K = 2 by 1.0%, K = 4 by
0.46%, and K = 6 by 0.04%. However, described
in Sec. 5.7, large K (e.g., 8) can increase inference
time cost. Moreover, additional gains in perfor-
mance from K = 8 is small. We therefore set
K = 6 by default.

5.7 Running Time Comparisons

While achieving improved translation quality, the
models are trained with multiple passes of trans-
lation. Therefore, a natural question is on the in-
crease of training time and test time. We report
results on 4 GPUs with the maximum rewriting
turns K = 6 and the beam size set to 8. Results on
WMT’14 are listed in Table 5.

It shows that Rewriter-Evaluator increases the
test time by approximately 4 times, because of
multiple passes of decoding. However, training
time is only relatively increased by 15% and 18%,
respectively on RNNSearch and Transformer, due
to the large priority queue used in PGD to store
previous translation cases.

6 Related Work

Multi-pass decoding has been well studied in sta-
tistical machine translation (Brown et al., 1993;
Koehn et al., 2003, 2007; Och and Ney, 2004; Chi-
ang, 2005; Dyer et al., 2013). Och (2003); Och
and Ney (2002) propose training models with mini-
mum error rate criterion on lattices from first-pass
decoder. Marie and Max (2015) introduce an itera-
tive method to refine search space generated from
simple feature with additional information from
more complex feature. Shen et al. (2004) investi-
gate reranking of hypothesis using neural models
trained with discriminative criterion. Neubig et al.

(2015) propose to reconfirm effectiveness of rerank-
ing. Chen et al. (2008) present a regeneration of
search space from techniques such as n-gram ex-
pansion. These approaches are however applied
to shallow models such as log-linear models (Och
and Ney, 2002).

Our work is closely related to recent efforts in
multi-pass decoding on NMT. In these recent works
(Xia et al., 2017; Zhang et al., 2018; Geng et al.,
2018), the models generate multiple target sen-
tences for a source sentence and, except for the
first one, each of them is based on the sentence gen-
erated in the previous turn. For example, Xia et al.
(2017) propose Deliberation Networks that uses
a second decoder to polish the raw sequence pro-
duced by the first-pass decoder. While these meth-
ods have achieved promising results, they lack a
proper termination policy for the multi-pass transla-
tion process. Zhang et al. (2018) adopt a predefined
number of decoding passes, which is not flexible.
Geng et al. (2018) incorporate post-editing mecha-
nism into NMT model via RL. However, RL can be
unstable for training because of the high variance
in gradient estimation. The lack of a proper termi-
nation policy results in premature terminations or
over-translated sentences, which can largely limit
the performance gains of these methods.

7 Conclusion

This paper has introduced a novel architecture,
Rewriter-Evaluator, that achieves a proper termi-
nation policy for multi-pass decoding in NMT. At
every translation pass, given the source sentence
and its past translation, a rewriter generates a new
translation, aiming at making further performance
improvements over the past translations. An evalu-
ator estimates the translation quality to determine
whether to complete this iterative rewriting pro-
cess. We also propose PGD that facilitates train-
ing the rewriter and the evaluator both jointly and
efficiently. We have applied Rewriter-Evaluator
to improve mainstream NMT models. Extensive
experiments have been conducted on three transla-
tion tasks, NIST Zh→En, WMT’18 Zh→En, and
WMT’14 En→De, showing that our architecture
notably improves the results of NMT models and
significantly outperforms other related methods.
An oracle experiment and a termination accuracy
analysis show that the performance gains can be
attributed to the improvements in completing the
rewriting process at proper iterations.
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