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Abstract

Finding codes given natural language query is
beneficial to the productivity of software de-
velopers. Future progress towards better se-
mantic matching between query and code re-
quires richer supervised training resources. To
remedy this, we introduce the CoSQA dataset.
It includes 20,604 labels for pairs of natural
language queries and codes, each annotated by
at least 3 human annotators. We further intro-
duce a contrastive learning method dubbed Co-
CLR to enhance query-code matching, which
works as a data augmenter to bring more arti-
ficially generated training instances. We show
that evaluated on CodeXGLUE with the same
CodeBERT model, training on CoSQA im-
proves the accuracy of code question answer-
ing by 5.1%, and incorporating CoCLR brings
a further improvement of 10.5%. 1.

1 Introduction

With the growing population of software develop-
ers, natural language code search, which improves
the productivity of the development process via
retrieving semantically relevant code given natural
language queries, is increasingly important in both
communities of software engineering and natural
language processing (Allamanis et al., 2018; Liu
et al., 2020a). The key challenge is how to effec-
tively measure the semantic similarity between a
natural language query and a code.

There are recent attempts to utilize deep neu-
ral networks (Gu et al., 2018; Wan et al., 2019;
Feng et al., 2020), which embed query and code as
dense vectors to perform semantic matching in a
unified vector space. However, these models are

∗Work done during internship at Microsoft Research Asia.
1The CoSQA data and leaderboard are available

at https://github.com/microsoft/CodeXGLUE/tree/main/Text-
Code/NL-code-search-WebQuery. The code is available at
https://github.com/Jun-jie-Huang/CoCLR

python check if path is absolute path or relative pathQuery:
Code: def is_relative_url(url):

"""simple method to determine if a url is relative or absolute"""
if url.startswith("#"):
return None

if url.find("://") > 0 or url.startswith("//"):
# either 'http(s)://...' or '//cdn...' and therefore absolute 
return False

return True

Label: 1

capitalize letters in string pythonQuery:
Code: def snake_to_camel(s: str) -> str:

""" Convert string from snake case to camel case. """
fragments = s.split('_’)
return fragments[0] + ''.join(x.title() for x in fragments[1:])

Label: 0

Example 2: 

Example 1: 

Figure 1: Two examples in CoSQA. A pair of a web
query and a Python function with documentation is an-
notated with “1” or “0”, representing whether the code
answers the query or not.

mostly trained on pseudo datasets in which a natu-
ral language query is either the documentation of a
function or a tedious question from Stack Overflow.
Such pseudo queries do not reflect the distribu-
tion of real user queries that are frequently issued
in search engines. To the best of our knowledge,
datasets that contain real user web queries include
Lv et al. (2015), CodeSearchNet Challenge (Hu-
sain et al., 2019), and CodeXGLUE 2 (Lu et al.,
2021). These three datasets only have 34, 99, and
1,046 queries, respectively, for model testing. The
area lacks a dataset with a large amount of real
user queries to support the learning of statistical
models like deep neural networks for matching the
semantics between natural language web query and
code.

To address the aforementioned problems, we in-
troduce CoSQA, a dataset with 20,604 pairs of web
queries and code for Code Search and Question
Answering, each with a label indicating whether

2https://github.com/microsoft/CodeXGLUE

https://github.com/microsoft/CodeXGLUE/tree/main/Text-Code/NL-code-search-WebQuery
https://github.com/microsoft/CodeXGLUE/tree/main/Text-Code/NL-code-search-WebQuery
https://github.com/Jun-jie-Huang/CoCLR
https://github.com/microsoft/CodeXGLUE
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Dataset Size Natural Language Code human-annotated ?

CodeSearchNet (Husain et al., 2019) 2.3M Documentation Function No
Gu et al. (2018) 18.2M Documentation Function No
Miceli Barone and Sennrich (2017) 150.4K Documentation Function No
StaQC (manual) (Yao et al., 2018) 8.5K Stack Overflow question Code block Yes
StaQC (auto) (Yao et al., 2018) 268K Stack Overflow question Code block No
CoNaLa (manual) (Yin et al., 2018) 2.9K Stack Overflow question Statements Yes
CoNaLa (auto) (Yin et al., 2018) 598.2K Stack Overflow question Statements No
SO-DS (Heyman and Cutsem, 2020) 12.1K Stack Overflow question Code block No
Nie et al. (2016) 312.9K Stack Overflow question Code block No
Li et al. (2019) 287 Stack Overflow question Function Yes
Yan et al. (2020) 52 Stack Overflow question Function Yes

Lv et al. (2015) 34 Web query Function Yes
CodeSearchNet (Husain et al., 2019) 99 Web query Function Yes
CodeXGLUE WebQueryTest 2 1K Web query Function Yes
CoSQA (ours) 20.6K Web query Function Yes

Table 1: Overview of existing datasets on code search and code question answering. Some datasets containing
both unlabelled data and labelled data are listed in separate lines.

the code can answer the query or not. The queries
come from the search logs of the Microsoft Bing
search engine, and the code is a function from
GitHub3. To scale up the annotation process on
such a professional task, we elaborately curate po-
tential positive candidate pairs and perform large
scale annotation where each pair is annotated by at
least three crowd-sourcing workers. Furthermore,
to better leverage the CoSQA dataset for query-
code matching, we propose a code contrastive learn-
ing method (CoCLR) to produce more artificially
generated instances for training.

We perform experiments on the task of query-
code matching on two tasks: code question answer-
ing and code search. On code question answering,
we find that the performance of the same Code-
BERT model improves 5.1% after training on the
CoSQA dataset, and further boosts 10.5% after
incorporating our CoCLR method. Moreover, ex-
periments on code search also demonstrate similar
results.

2 Related Work

In this part, we describe existing datasets and meth-
ods on code search and code question answering.

2.1 Datasets

A number of open-sourced datasets with a large
amount of text-code pairs have been proposed for
the purposes of code search (Husain et al., 2019;
Gu et al., 2018; Nie et al., 2016) and code ques-
tion answering (Yao et al., 2018; Yin et al., 2018;

3We study on Python in this work, and we plan to extend
to more programming languages in the future.

Heyman and Cutsem, 2020). There are also high-
quality but small scale testing sets curated for code
search evaluation (Li et al., 2019; Yan et al., 2020;
Lv et al., 2015). Husain et al. (2019), Gu et al.
(2018) and Miceli Barone and Sennrich (2017)
collect large-scale unlabelled text-code pairs by
leveraging human-leaved comments in code func-
tions from GitHub. Yao et al. (2018) and Yin et al.
(2018) automatically mine massive code answers
for Stack Overflow questions with a model trained
on a human-annotated dataset. Nie et al. (2016)
extract the Stack Overflow questions and answers
with most likes to form text-code pairs. Among all
text-code datasets, only those in Lv et al. (2015),
CodeSearchNet Challenge (Husain et al., 2019) and
CodeXGLUE2 contain real user web queries, but
they only have 34, 99 and 1,046 queries for test-
ing and do not support training data-driven models.
Table 1 illustrates an overview of these datasets.

2.2 Code Search Models

Models for code search mainly can be divided into
two categories: information retrieval based models
and deep learning based models. Information re-
trieval based models match keywords in the query
with code sequence (Bajracharya et al., 2006; Liu
et al., 2020b). Keyword extension by query ex-
pansion and reformulation is an effective way to
enhance the performance (Lv et al., 2015; Lu et al.,
2015; Nie et al., 2016; Rahman et al., 2019; Rah-
man, 2019). deep learning based models encode
query and code into vectors and utilize vector simi-
larities as the metric to retrieve code (Sachdev et al.,
2018; Ye et al., 2016; Gu et al., 2018; Cambronero
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et al., 2019; Yao et al., 2019; Liu et al., 2019a;
Feng et al., 2020; Zhao and Sun, 2020). There are
also ways to exploit code structures to learn better
representations for code search (Wan et al., 2019;
Haldar et al., 2020; Guo et al., 2020).

3 CoSQA Dataset

In this section, we introduce the construction of
the CoSQA dataset. We study Python in this work,
and we plan to extend to more programming lan-
guages in the future. Each instance in CoSQA is
a pair of natural language query and code, which
is annotated with “1” or “0” to indicate whether
the code can answer the query. We first describe
how to curate web queries, obtain code functions,
and get candidate query-code pairs. After that, we
present the annotation guidelines and statistics.

3.1 Data Collection

Query Curation We use the search logs from
the Microsoft Bing search engine as the source of
queries. Queries without the keyword “python” are
removed. Based on our observation and previous
work (Yao et al., 2018; Yan et al., 2020), there are
seven basic categories of code-related web queries,
including: (1) code searching, (2) debugging, (3)
conceptual queries, (4) tools usage, (5) program-
ming knowledge, (6) vague queries and (7) others.
Basically, queries in (2)-(7) categories are not likely
to be answered only by a code function, since they
may need abstract and general explanations in nat-
ural language. Therefore, we only target the first
category of web queries that have code searching
intent, i.e., queries that can be answered by a piece
of code.

To filter out queries without code searching in-
tent, we manually design heuristic rules based on
exact keyword matching. For example, queries
with the word of benefit or difference are likely to
seek a conceptual comparison rather than a code
function, so we remove all queries with such key-
words. Based on the observations, we manually col-
lect more than 100 keywords in total. Table 2 dis-
plays a part of selected keywords used for removing
unqualified queries and more details can be found
in Appendix A. To evaluate the query filtering al-
gorithm, we construct a human-annotated testset.
We invite three experienced python programmers
to label 250 randomly sampled web queries with a
binary label of having/not having searching intent.
Then we evaluate the accuracy of intent predictions

Categories Some Keywords

Debugging exception, index out of, ignore, stderr, . . .

Conceptual
Queries

vs, versus, difference, advantage, benefit,
drawback, how many, what if, why, . . .

Programming
Knowledge

tutorial, advice, argument, suggestion, state-
ment, declaration, operator, . . .

Tools
Usage

console, terminal, open python, studio, ide,
ipython, jupyter, vscode, vim, . . .

Others unicode, python command, “@”, “()”, . . .

Table 2: Selected keywords for our heuristic rules to
filter out web queries without code search intent in five
categories. Vague queries are morphologically variable,
so we ignore this category.

given keyword-based rules and those given by hu-
mans. We find the F1 score achieves 67.65, and
the accuracy is up to 82.40. This demonstrates the
remarkable effectiveness of our rule-based query
filtering algorithm.

Code Collection The selection of code format
is another important issue in constructing query-
code matching dataset, which includes a statement
(Yin et al., 2018), a code snippet/block (Yao et al.,
2018), a function (Husain et al., 2019), etc. In
CoSQA, we simplify the task and adopt a compete
Python function with paired documentation to be
the answer to the query for the following reasons.
First, it is complete and independent in functional-
ity which may be more prone to answering a query.
Second, it is syntactically correct and formally con-
sistent which enables parsing syntax structures for
advanced query-code matching. Additionally, a
complete code function is often accompanied with
documentation wrote by programmers to help un-
derstand its functionality and usage, which is bene-
ficial for query-code matching (see Section 6.4 for
more details).

We take the CodeSearchNet Corpus (Husain
et al., 2019) as the source for code functions, which
is a large-scale open-sourced code corpus allowing
modification and redistribution. The corpus con-
tains 2.3 million functions with documentation and
4.1 million functions without documentation from
public GitHub repositories spanning six program-
ming languages (Go, Java, JavaScript, PHP, Python,
and Ruby). In CoSQA, we only keep complete
Python functions with documentation and remove
those with non-English documentation or special
tokens (e.g. “〈img...〉” or “http : //”).
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Query Code Explanations

(1) boolean function
to check if variable is

a string python

def is_string(val):
""" Determines whether the passed value is a string,

safe for 2/3. """
try:

basestring
except NameError:

return isinstance(val, str)
return isinstance(val, basestring) ☺

Code can fully satisfy the demand
of the query. Therefore the code is
a correct answer.

(2) python check if
argument is list

def is_listish(obj):
""" Check if something quacks like a list. """
if isinstance(obj, (list, tuple, set)):

return True
return is_sequence(obj)

☺
Code meets the demand of check-
ing list type, and the tuple and set
types, which exceeds query’s de-
mand. It is a correct answer.

(3). python measure
distance between 2

points

def vector_distance(a, b):
""" The Euclidean distance between two vectors. """
a = np.array(a)
b = np.array(b)
return np.linalg.norm(a - b)

☺
Code computes Euclidean dis-
tance, which is one category of
vector distances. So it is correct.

(4) python measure
distance between 2

points

def dist_sq(self, other):
""" Distance squared to some other point. """
dx = self.x - other.x
dy = self.y - other.y
return dx**2 + dy**2

☺
Code computes square distance,
which is another category of vector
distances.

(5) read write in the
same file python

def file_read(filename):
""" Read a file and close it. Returns the file source. """
fobj = open(filename,'r’);
source = fobj.read();
fobj.close()
return source


Query asks for reading and writing,
but code only implements reading.
The code satisfies 50% of the de-
mands and is not a correct answer.

(6) python get the
value in the list

starting with the str

def get_list_index(lst, index_or_name):
""" Return the index of an element in the list. 

Args: 
lst (list): The list. 
index_or_name (int or str): Value of the reference

element, or directly its numeric index.
Returns: (int) Index of the element in the list. """

if isinstance(index_or_name, six.integer_types):
return index_or_name

return lst.index(index_or_name)


The query is looking for an ele-
ment in the list that starts with a
specific str, but the code does not
have the function of starting with
the str, and it returns index instead
of value. There are two unsatisfied
areas, which is less than 50%.

(7) python check if
something is an array

def is_number(obj):
""" Check if obj is number. """
return isinstance(obj,(int,float,np.int_,np.float_)) A small part of code is relevent to

the query but is can not answer.

Table 3: Examples and explanations of query-code pairs for correct and incorrect answers.

Candidate Query-code Pairs Obviously, it is
not possible to annotate all query-code pairs. To
improve efficiency, we wipe off low-confidence in-
stances before annotation. Specifically, we employ
a CodeBERT-based matching model (Feng et al.,
2020) to retrieve high-confidence codes for every
query. The CodeBERT encoder is fine-tuned on
148K automated-minded Python Stack Overflow
question-code pairs (StaQC) (Yao et al., 2018) with
the default parameters. A cosine similarity score on
the pooled [CLS] embeddings of query and code
is computed to measure the relatedness. To guar-
antee the quality of candidates, we automatically
remove low-quality query-code pairs according to
the following evaluation metrics.

• To ensure the code may answer the query, we
only keep the code with the highest similar-
ity to the query and remove the pairs with a
similarity below 0.5.

• To increase the code diversity and control the

code frequency, we restrict the maximum oc-
currence of each code to be 10.

3.2 Data Annotation

Annotating such a domain-specific dataset is dif-
ficult since it requires the knowledge of Python.
Even experienced programmers do not necessarily
understand all code snippets. To ensure the fea-
sibility and control annotation quality, we design
comprehensive annotation guidelines and take a
two-step annotation procedure.

Annotation Guidelines Our annotation guide-
line is developed through several pilots and fur-
ther updated with hard cases as the annotation pro-
gresses. Annotation participants are asked to make
a two-step judgment for each instance: intent anno-
tation and answer annotation.

In the first step of intent annotation, annotators
are asked to judge whether the query has the intent
to search for a code. They will skip the second
step if the query is without code search intent. As
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shown in Section 3.1, vague queries are hard to
be filtered out by our heuristic intent filtering algo-
rithm. Therefore, it is necessary to take this step to
remove such queries so that we can focus more on
the matching between query and code rather than
query discrimination.

In the second step of answer annotation, annota-
tors are asked to judge whether the code can answer
the query. They should label the instance with “1”
if the code is a correct answer; otherwise, it is la-
beled “0”. In this step, judgment should be made
after comprehensively considering the relevance
between query with documentation, query with
function header, and query with function body.

During annotation, it is often the case that a code
function can completely answer the query, which
means that the code can satisfy all the demands in
the query and it is a correct answer. (Case (1) in Ta-
ble 3.) But more often, the code can not completely
answer the query. It may exceed, partially meet
or even totally dissatisfy the demands of the query.
Therefore we divide such situations into four cate-
gories and give explanations and examples (Table
3) for each category:

• If code can answer the query and even exceed
the demand of the query, it is a correct answer.
(Case (2) in Table 3.)

• If code can meet a certain category of the
query demands, it is also a correct answer.
(Case (3) and Case (4) in Table 3.)

• If code satisfies no more than 50% of the query
demands, the code can not correctly answer
the query. (Case (5) and Case (6) in Table 3.)

• If a small part of the code is relevant to the
query, the code can not be a correct answer.
(Case (7) in Table 3.)

Annotation We ask more than 100 participants,
who all have a good grasp of programming knowl-
edge, to judge the instances according to the anno-
tation guideline. Participants are provided with the
full guidelines and allowed to discuss and search
on the internet during annotation. When annotation
is finished, each query-code pair has been anno-
tated by at least three participants. We remove
the pairs whose inter-annotator agreement (IAA) is
poor, where Krippendorff’s alpha coefficient (Krip-
pendorff, 1980) is used to measure IAA. We also
remove pairs with no-code-search-intent queries.

Finally, 20,604 labels for pairs of web query and
code are retained, and their average Krippendorff’s
alpha coefficient is 0.63. Table 4 shows the statis-
tics of CoSQA.

# of query avg. length # of tokens
query 20,604 6.60 6,784
code 6,267 71.51 28,254

Table 4: Statistics of our CoSQA dataset.

4 Tasks

Based on our CoSQA dataset, we explore two tasks
to study the problem of query-code matching: code
search and code question answering.

The first task is natural language code search,
where we formulate it as a text retrieval problem.
Given a query qi and a collection of codes C =
{c1, . . . , cH} as the input, the task is to find the
most possible code answer c∗. The task is evaluated
by Mean Reciprocal Rank (MRR).

The second task is code question answering,
where we formulate it as a binary classification
problem. Given a natural language query q and
a code sequence c as the input, the task of code
question answering predicts a label of “1” or “0”
to indicate whether code c answers query q or not.
The task is evaluated by accuracy score.

5 Methodology

In this section, we first describe the model for
query-code matching and then present our code
contrastive learning method (CoCLR) to augment
more training instances.

5.1 Siamese Network with CodeBERT

The base model we use in this work is a siamese
network, which is a kind of neural network with
two or more identical subnetworks that have the
same architecture and share the same parameters
and weights (Bromley et al., 1994). By deriving
fixed-sized embeddings and computing similari-
ties, siamese network systems have proven effec-
tive in modeling the relationship between two text
sequences (Conneau et al., 2017; Yang et al., 2018;
Reimers and Gurevych, 2019).

We use a pretrained CodeBERT (Feng et al.,
2020) as the encoder to map any text sequence to a
d-dimensional real-valued vectors. CodeBERT is a
bimodal model for natural language and program-
ming language which enables high-quality text and
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CodeBERT CodeBERT

𝑞𝑢𝑒𝑟𝑦𝑛 𝑐𝑜𝑑𝑒𝑛

CodeBERT

𝑞𝑢𝑒𝑟𝑦𝑛
′

rewrite

CodeBERT CodeBERT

𝑞𝑢𝑒𝑟𝑦1 𝑐𝑜𝑑𝑒1

CodeBERT

𝑞𝑢𝑒𝑟𝑦1
′

rewrite
…

…

…

CodeBERT CodeBERT

𝑞𝑢𝑒𝑟𝑦𝑖 𝑐𝑜𝑑𝑒𝑖

Figure 2: The frameworks of the siamese network with CodeBERT (left) and our CoCLR method (right). The blue
line denotes the original training example. The red lines and dashed lines denote the augmented examples with
in-batch augmentation and query-rewritten augmentation, respectively.

code embeddings to be derived. Specifically, it
shares exactly the same architecture as RoBERTa
(Liu et al., 2019b), which is a bidirectional Trans-
former with 12 layers, 768 dimensional hidden
states, and 12 attention heads, and is repretrained
by masked language modeling and replaced token
detection objectives on CodeSearchNet corpus (Hu-
sain et al., 2019).

For each query qi and code ci, we concatenate a
[CLS] token in front of the sequence and a [SEP ]
token at the end. Then we feed the query and code
sequences into the CodeBERT encoder to obtain
contextualized embeddings, respectively. Here we
use the pooled output of [CLS] token as the repre-
sentations:
qi = CodeBERT(qi), ci = CodeBERT(ci). (1)

Next we perform query-code matching through
a multi-layer perceptron. Following Chen et al.
(2017) and Mou et al. (2016), we concatenate the
query embedding qi and code embedding ci with
the element-wise difference qi − ci and element-
wise product qi

⊙
ci, followed by a 1-layer feed-

forward neural network, to obtain a relation embed-
ding:

r(i,i) = tanh(W1 · [qi, ci,qi − ci,qi

⊙
ci]). (2)

We expect such an operation can help sharpen the
cross information between query and code to cap-
ture better matching relationships such as contra-
diction.

Then we put the relation embedding r(i,i) into a
final 1-layer perceptron classifier with a sigmoid
output layer: s(i,i) = sigmoid(W2 · r(i,i)). Score
s(i,i) can be viewed as the similarity of query qi
and code ci.

To train the base siamese network, we use a
binary cross entropy loss as the objective function:

Lb = −[yi · log s(i,i) + (1− yi) log(1− s(i,i))], (3)

where yi is the label of (qi, ci).

5.2 Code Contrastive Learning

Now we incorporate code contrastive learning into
the siamese network with CodeBERT. Contrastive
learning aims to learn representations by enforcing
similar objects to be closer while keeping dissimilar
objects further apart. It is often accompanied with
leveraging task-specific inductive bias to augment
similar and dissimilar examples. In this work, given
an example of query and code (qi, ci), we define
our contrastive learning task on example itself, in-
batch augmented examples (qi, cj), and augmented
example with rewritten query (q′i, ci). Hence, the
overall training objective can be formulated as:

L = Lb + Lib + Lqr. (4)

In-Batch Augmentation (IBA) A straightfor-
ward augmentation method is to use in-batch data,
where a query and a randomly sampled code are
considered as dissimilar and forced away by the
models. Specifically, we randomly sample n exam-
ples {(q1, c1), (q2, c2), . . . , (qn, cn)} from a mini-
batch. For (qi, ci), we pair query qi with the other
N − 1 codes within the mini-batch and treat the
N − 1 pairs as dissimilar. Let s(i,j) denote the sim-
ilarity of query qi and code cj , the loss function of
the example with IBA is defined as:

Lib = −
1

n− 1

n∑
j = 1
j 6= i

log(1− s(i,j)), (5)

Query-Rewritten Augmentation (QRA) The
in-batch augmentation only creates dissimilar pairs
from the mini-batch, which ignores to augment sim-
ilar pairs for learning positive relations. To remedy
this, we propose to augment positive examples by
rewriting queries. Inspired by the feature that web
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queries are often brief and not necessarily grammat-
ically correct, we assume that the rewritten query
with minor modifications shares the same seman-
tics as the original one. Therefore, an augmented
pair with a rewritten query from a positive pair can
also be treated as positive.

Specifically, given a pair of query qi and code
ci with yi = 1, we rewrite qi into q′i in one of the
three ways: randomly deleting a word, randomly
switching the position of two words, and randomly
copying a word. As shown in Section 6.3, switch-
ing position best helps increase the performance.

For any augmented positive examples, we also
apply IBA on them. Therefore the loss function for
the example with QRA is:

Lqr = L′b + L′ib, (6)

where L′b and L′ib can be obtained by Eq. 3 and Eq.
5 by only change qi to q′i.

6 Experiments

We experiment on two tasks, including code ques-
tion answering and natural language code search.
We report model comparisons and give detailed
analyses from different perspectives.

6.1 Experiment Settings
We train the models on the CoSQA dataset and eval-
uate them on two tasks: code question answering
and code search.

On code question answering, we randomly split
CoSQA into 20,000 training and 604 validation
examples. As for the test set, we directly use the
WebQueryTest in CodeXGLUE benchmark, which
is a testing set of Python code question answer-
ing with 1,046 query-code pairs and their expert
annotations.

On code search, we randomly divide the CoSQA
into training, validation, and test sets in the number
of 19604:500:500, and restrict the instances for
validation and testing are all positive. We fix a code
database with 6,267 different codes in CoSQA.

Baseline Methods CoSQA is a new dataset, and
there are no previous models designed specifically
for it. Hence, we simply choose RoBERTa-base
(Liu et al., 2019b) and CodeBERT (Feng et al.,
2020) as the baseline methods. The baseline meth-
ods are trained on CodeSearchNet Python corpus
with balanced positive examples. Negative sam-
ples consist of a balanced number of instances with
randomly replaced code.

Evaluation Metric We use accuracy as the evalu-
ation metric on code question answering and Mean
Reciprocal Rank (MRR) on code search.

Implementation Details We initialize CoCLR
with microsoft/codebert-base4 repretrained on
CodeSearchNet Python Corpus (Husain et al.,
2019). We use the AdamW optimizer (Loshchilov
and Hutter, 2019) and set the batch size to 32 on
the two tasks. On code question answering, we
set the learning rate to 1e-5, warm-up rate to 0.1.
On code search, we set the learning rate to 1e-6.
All hyper-parameters are tuned to the best on the
validation set. All experiments are performed on
an NVIDIA Tesla V100 GPU with 16GB memory.

6.2 Model Comparisons

Table 5 shows the experimental results on the tasks
of code question answering and code search. We
can observe that:

(1) By leveraging the CoSQA dataset, siamese
network with CodeBERT achieves overall perfor-
mance enhancement on two tasks, especially for
CodeXGLUE WebQueryTest, which is an open
challenge but without direct training data. The re-
sult demonstrates the high-quality of CoSQA and
its potential to be the training set of WebQueryTest.

(2) By integrating the code contrastive learning
method, siamese network with CodeBERT further
achieves significant performance gain on both tasks.
Especially on the task of WebQueryTest, CoCLR
achieves the new state-of-the-art result by increas-
ing 15.6%, which shows the effectiveness of our
proposed approach.

6.3 Analysis: Effects of CoCLR

To investigate the effects of CoCLR in query-code
matching, we perform ablation study to analyze
the major components in our contrastive loss that
are of importance to help achieve good perfor-
mance. We conduct experiments on the CoSQA
code search task, using the following settings: (i)
fine-tuning with vanilla binary cross-entropy loss
only, (ii) fine-tuning with additional in-batch aug-
mentation (IBA) loss, (iii) fine-tuning with addi-
tional query-rewritten augmentation (QRA) loss,
(vi) fine-tuning with both additional IBA and QRA
loss. And for QRA loss, we also test the three
rewriting methods when applied individually. The
results are listed in Table 6. We can find that:

4https://github.com/microsoft/CodeBERT

https://github.com/microsoft/CodeBERT
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Model Data Code Question Answering Code Search

RoBERTa2 CSN 40.34 0.18
CodeBERT2 CSN 47.80 51.29
CodeBERT CSN + CoSQA 52.87 54.41
CodeBERT + CoCLR CSN + CoSQA 63.38 64.66

Table 5: Evaluation on code question answering and code search. CSN denotes CodeSearchNet Python corpus. By
incorporating CoCLR method, siamese network with CodeBERT outperforms the existing baseline approaches.

Augmentations MRR

no augmentations 54.41
+ query-rewritten (delete) 55.24
+ query-rewritten (copy) 54.82
+ query-rewritten (switch) 55.66
+ in-batch 63.51
+ in-batch + query-rewritten (delete) 63.41
+ in-batch + query-rewritten (copy) 63.97
+ in-batch + query-rewritten (switch) 64.66

Table 6: Performance of CodeBERT with different aug-
mentations in CoCLR on code search.

(1) Both incorporating IBA and QRA individ-
ually or together improve models’ performance.
This indicates the advantage of applying code con-
trastive learning for code search.

(2) No matter integrating IBA or not, the model
with QRA by switching method performs better
than models with the other two methods. We at-
tribute the phenomenon to the fact that web queries
do not necessarily have accurate grammar. So
switching the positions of two words in the query
better maximizes the agreement between the posi-
tive example and the pseudo positive example than
the other two augmentations, which augments bet-
ter examples to learn representations.

(3) Comparing the two augmentations, adding
IBA achieves more performance gain than QRA
(1.25% versus 9.10%). As the numbers of exam-
ples with QRA and examples with IBA are not
equal under two settings, we further evaluate the
model with only one more example with IBA. The
MRR is 55.52%, which is comparable to the per-
formance of adding one more example with QRA.
This suggests that there may be no difference be-
tween adding examples with IBA or examples with
QRA. Instead, the number of high-quality exam-
ples is important for training. Similar findings are
also reported in Sun et al. (2020), and a theoretical
analysis is provided in Arora et al. (2019).

Code Component MRR

complete code 64.66
w/o header 62.01
w/o body 59.11
w/o documentation 58.54
w/o header & body 52.89
w/o header & documentation 43.35
w/o body & documentation 42.71

Table 7: Performance of CoCLR-incorporated Code-
BERT trained and tested with different code compo-
nents on code search.

6.4 Analysis: Effects of Code Components
To explore the effects of different components of
code in query-code matching, we evaluate CoCLR
on code search and process the codebase by the
following operations: (i) removing the function
header, (ii) removing the natural language docu-
mentation, (iii) removing the code statements in the
function body. We also combine two of the above
operations to see the performance. From the results
exhibited in Table 7, we can find that: by removing
code component, the result of removing documen-
tation drops more than those of removing header
and removing function body. This demonstrates the
importance of natural language documentation in
code search. Since documentation shares the same
modality with the query and briefly describes the
functionality of the code, it may be more semanti-
cally related to the query. Besides, it also reveals
the importance of using web queries rather than
treating documentation as queries in code search
datasets, which liberates models from the matching
between documentation with code to the matching
between query with documentation and code.

7 Conclusion

In this paper, we focus on the matching prob-
lem of the web query and code. We develop a
large-scale human-annotated query-code matching
dataset CoSQA, which contains 20,604 pairs of
real-world web queries and Python functions with
documentation. We demonstrate that CoSQA is an
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ideal dataset for code question answering and code
search. We also propose a novel code contrastive
learning method, named CoCLR, to incorporate ar-
tificially generated instances into training. We find
that model with CoCLR outperforms the baseline
models on code search and code question answer-
ing tasks. We perform detailed analysis to investi-
gate the effects of CoCLR components and code
components in query-code matching. We believe
our annotated CoSQA dataset will be useful for
other tasks that involve aligned text and code, such
as code summarization and code synthesis.
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A Heuristics for Query Filtering

In this section, we introduce our heuristic rules to
filter potential queries without code search intent.
Basically, the rules are created from keyword tem-
plates and we follow the six categories of queries
without code search intent to derive the keywords.
Note that vague queries are morphologically vari-
able so we ignore this categories. The keywords
are shown in Table 8.



5700

Categories Keywords

Debugging
exception, index out of, ignore, omit, stderr,
try . . . except, debug, no such file or direc-
tory, warning,

Conceptual

vs, versus, difference, advantage, benefit,
drawback, interpret, understand, cannot,
can’t, couldn’t, could not, how many, how
much, too much, too many, more, less,
what if, what happens, what is, what are,
when, where, which, why, reason, how do
. . . work, how . . . works, how does . . . work,
need, require, wait, turn . . . on/off, turning
. . . on/off,

Programming
Knowledge

tutorial, advice, course, proposal, discuss,
suggestion, parameter, argument, statement,
class, import, inherit, operator, override,
decorator, descriptor, declare, declaration

Tools
Usage

console, terminal, open python, studio, ide,
ipython, jupyter, notepad, notebook, vim,
pycharm, vscode, eclipse, sublime, emacs,
utm, komodo, pyscripter, eric, c#, access
control, pip, install, library, module, launch,
version, ip address, ipv, get . . . ip, check
. . . ip, valid . . . ip,

Others unicode, python command, “()”, “.”, “ ”,
“:”, “@”, “=”, “>”, “<”, “-”

Table 8: Keywords of queries without code search in-
tent in five categories.


