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Abstract

A dialogue is essentially a multi-turn interac-
tion among interlocutors. Effective evaluation
metrics should reflect the dynamics of such
interaction. Existing automatic metrics are
focused very much on the turn-level quality,
while ignoring such dynamics. To this end, we
propose DynaEval', a unified automatic eval-
uation framework which is not only capable
of performing turn-level evaluation, but also
holistically considers the quality of the entire
dialogue. In DynaEval, the graph convolu-
tional network (GCN) is adopted to model a
dialogue in totality, where the graph nodes de-
note each individual utterance and the edges
represent the dependency between pairs of ut-
terances. A contrastive loss is then applied to
distinguish well-formed dialogues from care-
fully constructed negative samples. Experi-
ments show that DynaEval significantly out-
performs the state-of-the-art dialogue coher-
ence model, and correlates strongly with hu-
man judgements across multiple dialogue eval-
uation aspects at both turn and dialogue level.

1 Introduction

Modern dialogue systems (Smith et al., 2020;
Zhang et al., 2020; Adiwardana et al., 2020) lever-
aging large-scale language model pre-training (De-
vlin et al., 2019; Radford et al., 2019) are capable
of generating fluent and contextually relevant utter-
ances. Yet, they still face difficulties in mimicking
human conversations in the sense that they lack
certain conversation-level attributes, such as coher-
ence (Cervone et al., 2018), consistency (Welleck
et al., 2019; Nie et al., 2020), diversity (Li et al.,
2016; Wu et al., 2020) and engagement (Ghande-
harioun et al., 2019; Ghazarian et al., 2020). One of
the main reasons is the dearth of effective dialogue-
level evaluation mechanisms to guide the studies
and to monitor progress.
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Commonly wused static metrics, such
as BLEU (Papineni et al., 2002), ME-
TEOR (Denkowski and Lavie, 2014) and

ROUGE (Lin, 2004), correlate poorly with
human judgements (Liu et al., 2016) rendering
them unsuitable for dialogue evaluation. While
some recent automatic dialogue evaluation met-
rics (Ghazarian et al., 2019; Mehri and Eskenazi,
2020b; Huang et al., 2020; Zhang et al., 2021b)
demonstrate strong correlations with human
judgement at the turn-level, they only focus on
context-response pairs without explicitly modeling
the interaction over an entire dialogue. To perform
dialogue-level evaluation, we need to rely on the
aggregation of turn-level scores over the dialogue
as a proxy for a dialogue-level score.

Furthermore, a recent study by Mehri and Eske-
nazi (2020a) found out that even though state-of-
the-art chatbots outperform humans across multiple
turn-level evaluation criteria, such as interesting-
ness, engagement and specificity, their dialogue-
level ratings like coherence, Likability and diver-
sity are still far below human level. This further
reinforces the idea that turn-level quality evaluation
may be insufficient to assess the performance of
open-domain dialogue systems.

In this work, we address the problem of auto-
matic open-domain dialogue evaluation by focus-
ing on the quality of an entire dialogue. This is a
departure from the way we frame the problem as a
weakly supervised next sentence prediction (Mehri
and Eskenazi, 2020b; Sato et al., 2020) or language
modeling tasks (Nedelchev et al., 2020; Pang et al.,
2020) for context-response pairs. To this end, we
need to answer two important questions: (1) How
to effectively represent the entire dialogue? (2)
How to incorporate this dialogue-level knowledge
into our evaluation framework? We propose Dy-
naEval to provide meaningful dialogue-level repre-
sentation with explicit modeling of the interactive
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dynamics among interlocutors, for a unified turn
and dialogue level quality assessment.

The main contributions of this work include:
(1) The unified turn and dialogue level evaluation
represents a departure from turn-level evaluation
scheme; (2) DynaEval is one of the first few met-
rics where dialogue level dynamics is considered
with structured graph representation. (3) Empirical
results show that DynaEval outperforms the state-
of-the-art dialogue coherence model and strongly
correlates with human judgements at both turn and
dialogue level.

2 Related Work

2.1 Open-ended Dialogue Evaluation

Turn-Level Evaluation The current trend for au-
tomatic dialogue evaluation is shifting towards the
reference-free paradigm. Lately, the research com-
munity has witnessed a surge in the automatic met-
rics along these lines. Many of them focus on eval-
uating naturalness of generated responses. Typical
examples include perplexity (Adiwardana et al.,
2020), USR-MLM (Mehri and Eskenazi, 2020b)
and GPT-2 (Radford et al., 2019) based fluency
metrics (Nedelchev et al., 2020; Pang et al., 2020).

Another group of metrics evaluates contextual
relevance of the responses. For example, RU-
BER (Tao et al., 2018), BERT-RUBER(Ghazarian
et al., 2019) and USR-DR (Mehri and Eskenazi,
2020b) predict the relatedness between generated
responses w.r.t the corresponding context by train-
ing a discriminative network to distinguish the orig-
inal response from negative samples bootstrapped
from the training set. Sato et al. (2020) and Lan
et al. (2020) provide a better sampling strategy for
bootstrapping negative samples.

Besides these two major aspects, there are
many metrics for other qualities, such as ade-
quacy (D’Haro et al., 2019; Zhang et al., 2021a),
consistency (Welleck et al., 2019; Dziri et al.,
2019), engagement (Ghazarian et al., 2020).

Even though all these automatic metrics demon-
strate strong correlation with human judgements,
they are laser-focused on one aspect of the eval-
uation. In addition, they do not explicitly model
the speaker-level and utterance-level interactions,
which we believe is essential for the dialogue-level
representation, and eventually benefits the dialogue
evaluation task.

Interactive Evaluation A popular human eval-
uation method is the interactive evaluation whereby

human judges converse with dialogue systems and
make the assessment at the end of the conversa-
tions (See et al., 2019; Finch and Choi, 2020; Li
et al., 2019; Deriu et al., 2020). It has been shown
to be more reliable than turn-level static evalua-
tion (Mehri and Eskenazi, 2020a).

There are few studies on fully automating this
process. Ghandeharioun et al. (2019) propose a
self-play scenario where the dialog system chats
with itself and a combination of three metrics mea-
suring sentiment, semantic coherence and engage-
ment respectively along the conversation trajectory
is computed to approximate dialogue-level qual-
ity estimation. Mehri and Eskenazi (2020a) pro-
pose the FED metric, which evaluates the quality
of a system utterance in an interactive setting by
computing the likelihood of a particular follow-up
utterance responded by dialoGPT (Zhang et al.,
2020). Moreover, Sinha et al. (2020) come up with
MaUde, a reference-free metric tailored for online
dialogue evaluation, which leverages a pre-trained
DistilBERT (Sanh et al., 2019) model to extract
the semantic representation of dialogue turns and
uses bidirectional LSTM to explicitly model the
discourse structure.

While the interactive evaluation is more reliable
than the turn-level static evaluation, it still relies
on the aggregation of turn-level scores. An ideal
approximation of the human evaluation process
is a top-down approach whereby we examine the
quality of the entire dialogue at macro level before
zooming into the dialogue turns. Hence, a unified
framework, which holistically models the entire
dialogue, is highly sought after.

2.2 Dialogue Coherence

Examining a dialogue at macro level is related to
discourse coherence (Halliday and Hasan, 2014;
Grosz et al., 1995; Barzilay and Lapata, 2008),
which considers whether a piece of text is in a con-
sistent and logical manner, as opposed to a random
collection of sentences. Dialogue is a special kind
of discourse structure, of which coherence assess-
ment is an essential part of quality evaluation.
Many studies have followed the standard dis-
course coherence evaluation protocol (Cervone and
Riccardi, 2020; Zhou et al., 2019; Mesgar et al.,
2020). Very few have considered customizing their
dialogue coherence models for evaluating the per-
formance of dialogue systems. It is common to
leverage supervised approaches (Higashinaka et al.,
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2014; Gandhe and Traum, 2016; Cervone et al.,
2018; Yi et al., 2019), that is closely linked to mod-
eling with entities and dialogue acts (Cervone and
Riccardi, 2020; Zhou et al., 2019; Mesgar et al.,
2020).

Hence, we are motivated to study the application
of dialogue coherence modeling for automatic di-
alogue evaluation by designing a self-supervised
framework, without dependence on any human an-
notations for coherence features.

2.3 Graph Modeling of Dialogue

Recently, the graph neural network (GNN)
(Scarselli et al., 2008; Kipf and Welling, 2017;
Schlichtkrull et al., 2018) has been successfully
applied in various dialogue applications. For exam-
ple, Ghosal et al. (2019) adopts GCN for utterance-
level emotion recognition. Chen et al. (2018) mod-
eled structured dialogue policy with GNN and (Qin
et al., 2020) proposes a joint framework leveraging
graph attention network (Velickovi¢ et al., 2018)
for both dialogue act recognition and sentiment
classification.

GNN is useful for dialogue modeling, because
the relative position of target and context utterances
decides how past utterances influence future utter-
ances and vice versa (Ghosal et al., 2019). The in-
teraction of utterances can be effectively captured
with a graph structure as long as they are connected
by relation-aware edges. However, GNN has not
been well studied for dialogue evaluation. Huang
et al. (2020) recently proposes the GRADE met-
ric, leveraging graph modeling for turn-level coher-
ence evaluation. The way we use GNN is different
from Huang et al. (2020) because GRADE is fo-
cused on turn-level coherence evaluation while we
are interested in a turn-dialogue joint evaluation.
Furthermore, GRADE considers the keywords in
context-response pairs, and we explicitly use graph
structure to model the speaker and utterance level
interaction within a dialogue.

3 DynaEval Framework

DyanEval represents an integration of several ideas.
It takes advantage of the structured graph repre-
sentation of dialogues, useful information on the
utterance and speaker level interaction. It is moti-
vated by dialogue coherence modeling.

In this paper, we only consider dyadic dialogues,
but the formulation can be easily generalized to
multi-party conversations. Formally, let A and B

denote the two speakers participating in the dia-
logue. A dialogue, D, consists of a sequence of n
utterances, [uf', uZ, ..., ud_ |, uP]?. Let D repre-
sent the negative dialogue sample obtained via var-
ious sampling strategies described in Section 3.5.

Figure 1 illustrates the learning process of Dy-
naEval in four steps?: (1) Deriving contextualized
representation, e;, for utterances within D. (Sec-
tion 3.1). (2) Constructing the directed dialogue
graph. The nodes are initialized with e; and the
edges between node pairs represent the speaker
and temporal dependencies (Section 3.2). (3) Gen-
erating utterance-level graph representation, h;, via
feature transformation to aggregate useful contex-
tual information from all connected neighbours to
the current node (Section 3.3). (4) producing a
dialogue-level score, which indicates whether D is
preferred over D (Section 3.4).

3.1 Dialogue Utterance Representation

A sentence-encoder is needed to map the individual
utterances within D onto the vector space. Firstly,
we fine-tune a RoOBERTa-base pre-trained language
model (Liu et al., 2019) with training data of the
target dialogue domain, because task-adaptive fine-
tuning of the pre-trained language model on the tar-
get domain data benefits the final performance (Gu-
rurangan et al., 2020; Lee and Li, 2020). Next,
the mean pooling operation is performed on the
token embeddings within each utterance of D to
derive their respective utterance-level representa-
tions. Formally, let SROBERTa denotes the sen-
tence encoder and u; in D is mapped into vector
representations, u; € R4, whereby

u; = SROBERTa(u}) (1)

Note that * can be either speaker A or speaker
B. Then, to capture a more fine-grained temporal
dependency among the utterances, a bidirectional
LSTM is adopted to model the sequential flow of
information within D. The context-aware utterance
representation, e; is then obtained via:

e, = LSTM(EZ-(+ )l,lli) (2)

3.2 Dialogue Graph Construction

D is represented with a directed graph, G = (V, £).
V is the sets of graph nodes and £ is the set of

2n is assumed to be even to simplify the mathematical
expressions.

*Note that all the operations from Section 3.1 through
Section 3.4 are illustrated with D. They are applied in the
same way on D.
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Figure 1: The architecture of DynaEval. The input is a pair of contrasting dialogues, D and D. The output is a
unified score indicating whether D is preferred than D. Utterance-level representation derived from SRoBERTa
model is used for dialogue graph node initialization. Different types of arrows in relation edge connection represent
different types of relations: (1) Solid line denotes intra-speaker dependency. (2) Dotted line denotes inter-speaker
dependency. (3) Red color means self-connection. (4) Purple color means connection from future utterances to
previous utterances. (5) Yellow color means connection from previous utterances to future utterances. Since there
are two speakers, A and B. Hence, there will be a total of 2 x 2 x 2 + 1 =9 distinct relation types.

edges, which reflects the contextual dependencies
among utterance pairs.

Graph Nodes Each graph node corresponds to
an utterance within D. Hence, for a dialogue with
n utterances, V = {v1,v2,...,Up_1,0,}. All the
graph nodes are initialized with utterance-level con-
textualized embeddings: v; = e;.

Edges For short conversations, G will be a fully-
connected graph whereby all graph nodes are con-
nected to each other, including self-connection.
The intuition is that short conversations tend to
focus on a single topic and thus, each utterance
is contextually dependent on all the other utter-
ances in the dialogue. For long conversations, there
may be frequent topic shifts. Distant utterances
within the same dialogue may not be contextu-
ally relevant to the current utterance. Sometimes,
adding more context leads to diminishing perfor-
mance gain or even negative impact (Zhong et al.,
2019). Therefore, a context window length, M,
is set, which means that v; is only connected to
vj € {Ui—M, Vi M1y sViy Uity en -, Ui+M}4~
Let v;; € &€ denote the edge from v; to v;. Each
edge is associated with an edge weight, a;;, and a
relation type, 6;;. They are illustrated as follows:
Edge Weights The edge weight determines the
relative importance of the neighbour nodes w.r.t the
current node. A similarity based attention module

*For simplicity purpose, we do not explicitly include the
cases when 7 <= M or i+ M is greater than the total number
of utterances in a dialogue in the formula.

is applied to determine the edge weights. For a
graph node, v;, the set of weights, a;, w.r.t all its
incoming edges, should sum up to 1. The attention
weight is formulated in the following way:

a; = softmax(e] W.[e;_nr, . .., e n]),
i+ M 3)
where Z a;; =1, W, € RIxd
j=i—M

More importance is placed upon neighbouring ut-
terances on the same topic. Little attention is paid
to the irrelevant utterances.

Edge Relations Following (Ghosal et al., 2019),
there are two aspects to take into account when
defining the relation types. One aspect is to capture
speaker dependencies. This is because we want to
model the interaction between the interlocutors in
a dialogue. The other aspect is to consider the tem-
poral dependencies. This pertains to the relative
position of an utterance w.r.t another. The explicit
modeling of such dependency is important since
the ordering of utterances within a dialogue is an
essential feature for learning dialogue coherence.
With these considerations, the total number of dis-
tinct types of relations® will be 2 (u} occurs before
or after u;) X 2 (either uf‘ or uf ) x 2 (either u;‘
or uJB ) plus the self-connection (¢ = j). This is de-
picted with different arrows connecting the graph
nodes in Figure 1. We define this set of 9 relation
types as © and 0;; € ©.

3Since we are considering dyadic dialogues, there are only

two speakers involved. The formulation can be generalized to
multi-party dialogue.
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3.3 Feature Transformation

This section describes the process of transform-
ing the initial node representation, e;, into both a
speaker and context aware vector representation,
h;, which captures the dynamics of interaction w.r.t

*

u;. Basically, the whole process is a two-stage
graph convolution.

The first stage aggregates information from
neighbourhood nodes to the current node v; based
on the relation-aware transformation motivated
by (Schlichtkrull et al., 2018) whereby edges of
different relation types are associated with differ-

. . ’
ent transformation matrix, W:

’ ;4 ’ ’
hi=o(d > C.—’;Wer + a;iWye;)
0€0 jess " 4)

fort=1,2,...,n

In Equation 4, h; is the intermediate node repre-
sentation and o denotes the activation function,
such as ReL.U. Sf represents the set of indices of
nodes connected to v; with their edges v;; having
the relation type ¢ € ©. a;; and a;; are the edge
weights of v;; and v;; respectively. ng € Rled
and Wy, € R4 %4 are learnable parameters of the
feature transformation. c; ¢ is a problem specific
normalization constant, which can be set as a learn-
able parameter or fixed in advance.

The second stage applies another graph convolu-
tion operation on the intermediate node represen-
tation, h; and the final node representation, h; is
obtained via:

"_ 7 "_

Wh} + Wy hy)
jes? 5)

fori =1,2,...,n

hi:O'(

where W' e R4 and W(;/ € RY % are two
learnable parameters in the second stage of feature
transformation.

Through Equation 4 and Equation 5, relevant
contextual information from neighbouring nodes is
effectively accumulated to the current node while
irrelevant information is filtered out.

3.4 The Scoring Process

In the scoring step, h; is first concatenated with
e; to obtain the final utterance representation, g;.
Next, a mean pooling layer is applied on all the
utterance representations in a conversation to derive

the dialogue-level representation, o:

0 — D i1 & 6)

| Z?:l gj|

0, which corresponds to D, is obtained in the same
way. A unified score, Sgjq; OF Sy7,;, 1S derived by
passing o or o through a fully-connected layer.

3.5 Training Setup

Learning Objective Inspired by the preference
learning approaches, the label, y for the D and D
pair is defined as:

1
L

The margin ranking loss function is adopted to train
DynaEval.

if D is preferred over D 7
if D is preferred over D

L =max(0, —y * (Sgiat — Sgiy) +1) (8)

Sampling Strategy Two negative sampling
strategies are explored in this paper to construct D:
Utterance Replacement (UR) and Speaker Level
Utterance Shuffling (SS).

Utterance Replacement (UR) An utterance
randomly selected from a dialogue is replaced with
another utterance randomly chosen from a differ-
ent dialogue. This sampling strategy perturbs a dia-
logue at the semantic level. An utterance from a dif-
ferent dialogue is considered topically in-congruent
w.r.t the current dialogue context. It breaks down
the current dialogue by suddenly injecting irrele-
vant information.

Speaker Level Utterance Shuffling (SS) With
this strategy, the order of utterances from one
speaker in a dialogue is kept the same while that
from another speaker is shuffled. SS changes the
coherence structure of a dialogue w.r.t specific
speaker. This strategy is motivated by (Healey et al.,
2014), which adopts a ”Chance Other” method to
measure how much syntactic and lexical repetition
of a speaker happen by chance. The reason why we
do not randomly permute the order of all utterances
in the dialogue is because random permutation of
all utterances is a very simple discrimination task.

4 Experiments

In this work, we consider two experiment settings
to assess the effectiveness of DynaEval. The first
setting (Section 4.2) is similar to the studies on
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dialogue coherence (Cervone et al., 2018; Mes-
gar et al., 2020) where accuracy score is applied
to evaluate its discrimination capability in distin-
guishing original dialogues from negative samples.
The second setting (Section 4.3) is to evaluate its
dialogue-level and turn-level judgement capabil-
ity via correlation analysis on the human-chatbot
conversational datasets. The domain of the eval-
uation set is different from that of human-human
conversation datasets that DyanEval is trained on.

4.1 Dialogue Datasets

Three bench-marking open-domain dialogue
datasets are included in our experiments, Empa-
thetic Dialogue (Rashkin et al., 2019), ConvAI2
PERSONACHAT (Zhang et al., 2018b; Dinan et al.,
2020) and DialyDialog (Li et al., 2017). For train-
ing, we remove dialogues containing less than 4
utterances or more than 30 utterances. Statistics
of the three human-human dialogue corpora after
filtering is presented in Table 1.

Empathetic Dialogue is designed for mim-
icking the real-life human conversation scenario
whereby the interlocutors need to recognize and
acknowledge the others’ feelings in the conversa-
tion. This dataset pertains to the short conversation
scenario where interlocutors stick to a single topic.

ConvAI2 PERSONACHAT is a crowd-
sourced dataset where each pair of interlocutors
try to get to know each other by conditioning their
conversations on their respective persona profile
provided in prior. The dataset contains more num-
ber of turns per dialogue as compared to Empa-
thetic Dialogue. Hence, topic shift is more likely to
occur within a dialogue and this simulates the long
conversation scenario mentioned in Section 3.2.

DailyDialog is a high-quality human-human
conversation dataset, which reflects our day-to-day
communications and covers different topics about
our daily life, such as relationship and health. The
average dialogue length of DailyDialog lies in the
middle of that of Empathetic Dialogue and Con-
vAI2. Topic shift in the conversations of DailyDia-
log occurs less frequently as compared to those in
ConvAlI2.

4.2 The Dialogue-level Discrimination Task

Similar to the previous works (Cervone and Ric-
cardi, 2020; Mesgar et al., 2020), 20 perturbations
are created for each dialogue w.r.t both UR and
SS. For each perturbation, two pairs are formed,
{D, D} with label y = 1 and {D, D} with label

Empathetic Dialogue training  validation test
#dialog 19,531 2,768 2,547
#turn 84,160 12,075 10,973
#word 1,306,060 201,816 194,772
#avg turn per dialogue 431 4.36 431
#avg words per dialogue 66.87 7291 76.47
ConvAI2 training validation test
#dialog 17,878 1,000 -
#utterance 262,626 15,566 -
#word 3,068,672 189,374 -
#avg turn per dialogue 14.69 15.57 -
#avg words per dialogue 171.64 189.37 -
DailyDialog training  validation test
#dialog 10,245 933 918
#utterance 84,916 7,908 7,536
#word 1,189,527 109,172 106,627
#avg turn per dialogue 8.29 8.48 8.21
#avg words per dialogue 116.11 117.01 116.15

Table 1: Human-Human Dialogue Corpora Statistics

y = —1. Then, we train, fine-tune, and evaluate
DynaEval on the training, validation, and test sets
for each sampling strategy. Note that all these sets
are constructed with the same perturbation method.

Baselines we compare DynaEval against three
baselines: RANDOM, CoSim (Xu et al., 2018) and
S-DiCoh (Mesgar et al., 2020). RANDOM baseline
arbitrarily assigns a label to the input dialogue pairs.
It suggests the peformance lower bound. CoSim
is a common method for dialogue coherence as-
sessment (Xu et al., 2018; Zhang et al., 2018a). It
obtains a dialogue-level score by averaging the co-
sine similarities between sentence embeddings of
all adjacent utterance pairs within the dialogue. For
fair comparison, we apply the same procedure de-
scribed in Section 3.1 to derive the sentence embed-
ding of an utterance in CoSim. S-DiCoh (Mesgar
et al., 2020) is a recent state-of-the-art dialogue co-
herence model. It models a dialogue with a neural
network framework consisting of two bidrectional
LSTM layers with attention mechanism at both the
token and utterance level.

Results and Analysis It can be observed in Ta-
ble 2 that on all bench-marking dialogue datasets,
DynaEval outperforms the baselines in both UR
and SS category. Even though the dialogue datasets
possess different characteristics as indicated in Sec-
tion 4.1, DynaEval exhbits robust performance
across all the datasets. This confirms our hypoth-
esis that DynaEval provides useful dialogue-level
representation for distinguishing the original dia-
logues from the corresponding negative samples.
Especially when compared to S-Dicoh, which mod-
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Empathetic ConvAI2 DailyDialog
Model UR SS UR SS UR SS
RANDOM 50.07 50.07 50.25 50.25 50.17 49.62
CoSim 63.54 63.33 68.79 92.93 69.59 63.80
S-DiCoh 80.33 £2.83 86.04 £0.31 66.80 £1.93 90.35 £ 0.08 83.67+0.41 84.92+0.70

DynaEval  94.30 £ 0.07 90.37 + 0.37

85.23+0.96 98.65 +0.29

91.89 +0.58 91.65 + 0.62

Table 2: The accuracy (%) of DynaEval vs baselines on the test sets of Empathetic Dialogue and DailyDialog as
well as the validation set of ConvAI2. UR & SS are the sampling strategies defined in Section 3.5. Experiments
involving training are repeated five times with different random seeds for model weights initialization. The average

and standard deviation are reported in the table.

els a dialogue sequentially with bidrectional LSTM
and does not explicitly incoporate the speaker level
interaction, the structured graph modeling of a dia-
logue in DynaEval is more effective for capturing
both the interaction between the interlocutors and
the contextual information within a dialogue.

Based on the experimental results, it can be de-
duced that the discrimination task with UR strategy
is more challenging compared to that with SS strat-
egy. The accuracy scores achieved by S-DiCoh in
the SS category is much higher than that in the UR
category on both datasets. Similar observation can
be made w.r.t CoSim and DynaEval on the Con-
vAI2 dataset. DynaEval performs remarkably in
this task as it outperforms S-DiCoh by a significant
margin of 13.97, 18.43 and 8.22 on Empathetic
Dialogue, ConvAI2 and DailyDialog respectively.
Given these observations, we further hypothesize
that DynaEval model trained with UR strategy of-
fers more useful dialogue representation to the dia-
logue evaluation task.

4.3 Dialogue Evaluation Task

To validate the above hypothesis, we assess the
usefulness of DynaEval in both the dialogue-level
and turn-level evaluation tasks. In both settings,
Spearman correlations between the scores gener-
ated by DynaEval and the corresponding human
evaluation scores are computed. The performance
of DynaEval is compared against several recently
proposed dialogue evaluators.

Evaluation Dataset FED (Mehri and Eskenazi,
2020a) is a bench-marking dataset useful for both
dialogue-level and turn-level evaluation. It con-
tains both human-human conversations and human-
chatbot conversations, which are collected by the
authors of the Meena chatbot (Adiwardana et al.,
2020) in an interactive setup. In total, 124 conver-
sations are collected, out of which 40 come from

interacting with the Meena Chatbot, 44 come from
interacting with the Mitsuku Chatbot and 40 are
drawn from human-human conversations. The aver-
age number of utterances per conversation is 13.72
and the average number of words per utterance is
9.23. Human quality annotations of these conver-
sations are performed at both the dialogue and turn
level. There are 9 quality aspects for turn-level
annotations and 11 for dialog-level annotations out-
lined in the first column of Table 3. FED includes
3348 turn-level and 1364 dialog-level annotations,
for a total of 4712. The inter-annotator agreements
for all the quality aspects, which indicate the met-
ric performance upper bound, is shown in the last
column of Table 3.

Metrics to Compare The recently proposed
reference-free state-of-the-art dialogue metrics, in-
cluding USR (Mehri and Eskenazi, 2020b), BERT-
RUBER (Ghazarian et al., 2019) (BERT-R), GPT-2
based coherence metric (Pang et al., 2020) (GPT-
2) and FED (Mehri and Eskenazi, 2020a)°, serve
as the baseline dialogue evaluators. Since USR,
BERT-R and GPT-2 are turn-level metrics, aggre-
gation of all the turn-level scores in a dialogue is
required for dialogue-level evaluation. The best
correlation scores at dialogue level are reported in
Table 3 among all the aggregation strategies for
these three metrics. For completeness, we report
their correlation scores w.r.t difference aggregation
strategies in Appendix A.2. Similar to DynaEval,
S-Dicoh provides a unified score for each dialogue.
Based on insights from Section 4.2, the best per-
forming model in the UR category is chosen to
score the dialogues for both S-Dicoh and DynaE-
val.

Dialogue-level Evaluation DynaEval achieves

®The correlation scores of FED is obtained from the origi-

nal paper. For each evaluation category, the highest score is
reported among the scores provided by all its variants.
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Dialogue-level Spearman Correlation

Dialogue Aspects BERT-R GPT-2 USR S-DiCoh FED DynaEval \ Human
Coherence 0.229 0.123  0.194 0.038 0.251 0.423 0.809
Error Recovery 0.242 0.096  0.170 -0.054 0.165 0.311 0.840
Consistency 0.163 0.091 0.169 0.017 0.116 0.352 0.562
Diversity 0.196 0.147  0.242 0.059 0.449 0.332 0.789
Topic Depth 0.192 0.097  0.341 0.046 0.522 0.439 0.833
Likability 0.281 0.179  0.221 -0.070 0.262 0.398 0.838
Understanding 0.198 0.070  0.172 -0.100 0.306 0.361 0.809
Flexibility 0.253 0.134  0.209 0.044 0.408 0.389 0.816
Informativeness 0.211 0.116  0.288 0.028 0.337 0.396 0.806
Inquisitiveness 0.337 0.071  0.188 -0.054 0.298 0.388 0.769
Overall 0.248 0.123  0.288 -0.073 0.443 0482 | 0.830
Turn-level Spearman Correlation
Interestingness 0.235 -0.107  0.085 0.031 0.431 0.289 0.819
Engagement 0.206 -0.086  0.107 0.040 0.318 0.255 0.798
Specificity 0.327 -0.112  0.095 0.062 0.326 0.272 0.790
Relevance 0.151 -0.105 0.183 -0.051 0.152 0.265 0.753
Correctness 0.081 0.041  0.098 -0.040 0.133 0.216 0.780
Semantically Appropriateness 0.044 -0.084  0.201 -0.069 0.177 0.233 0.682
Understandable 0.051 -0.071  0.110 -0.075 0.111 0.185 0.522
Fluency 0.079 -0.151  0.220 -0.007 0.224 0.096 0.714
Overall 0.195 -0.095  0.137 -0.022 0.209 0264 | 0.820

Table 3: Comparison of both dialogue and turn level Spearman correlations among state-of-the-art automatic
metrics on the FED evaluation dataset. The results are reported for the 11 and 9 unique quality categories at
turn and dialogue level respectively. Scores with p-values larger than 0.05 are italicized (indicating statistical
insignificance). The best score for each category is highlighted in bold.

the highest correlation scores in 8 out of 11 dia-
logue aspects, including the overall category. For
the other three categories, DynaEval attains second
highest correlation scores. We can see that Dy-
naEval significantly outperforms S-DiCoh. These
results showcase that structured graph modeling of
a dialogue with explicit incorporation of speaker
and utterance level dependencies provides mean-
ingful dialogue-level representations. Such repre-
sentations capture information of various dialogue
attributes that are beneficial for the dialogue-level
evaluation task.

Moreover, BERT-R, GPT-2 and USR are state-
of-the-art turn-level evaluation metrics. They eval-
uate a dialogue based on aggregation of scores
of all the context-response pairs within the dia-
logue. It can be observed that their correlation
scores across individual dialogue aspects are not
as high as those of DynaEval. This supports our
hypothesis in Section 1 that turn-level quality evalu-
ation may be insufficient to assess the performance
of open-domain dialogue systems.

In addition, dialogue aspects, including coher-
ence, likability, informativeness and Inquisitive-
ness, are highly dependent on the interaction of the
interlocutors. Amongst all the dialogue aspects,

DynaEval achieves significantly higher scores in
these four categories. This attributes to its incorpo-
ration of the speaker level dependency.

Turn-level Evaluation Furthermore, it can be
observed that DynaEval achieves the highest corre-
lation in 5 out of 9 categories including the overall
category. This demonstrates that DynaEval is not
only useful for holistic evaluation of a dialogue, but
also useful for turn level evaluation. In this sense,
DynaEval serves as a better proxy to the human
evaluation process (Li et al., 2019) whereby hu-
mans mainly evaluate the conversations in a holistic
manner and laser-focus on the problematic turns.

Specifically, DynaEval performs well in turn-
level aspects, such as relevance, semantic appro-
priateness and correctness. These aspects highly
correlate to the dialogue-level attributes, such as
coherence and understanding, suggesting that the
evaluation of these turn-level attributes also bene-
fit from the explicit modeling of the speaker and
utterance level interaction in a unified framework.

Error Analysis An interesting finding is that
DynaEval and FED actually complement each
other at both dialogue and turn level. For exam-
ple, at the dialogue level, FED performs well in
diversity and topic depth, but struggles with coher-
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ence and consistency. DynaEval performs well in
coherence and consistency, but its performance in
diversity is much lower in comparison to FED. This
may be because dialoGPT, the backbone of FED,
was trained on a large amount of Reddit data, which
contain diverse amount of topics and variation of
expressions while DynaEval is trained on a single
dialogue domian. Moreover, dialoGPT does not
explicitly model such speaker-level interaction, but
DynaEval does. Hence, DynaEval is more useful
for evaluating coherence and consistency aspects
of a dialogue. One way to improve DynaEval for
evaluating topic depth and diversity is to pre-train
on a large amount of dialogue data with a variety
of topics and then fine-tune it on the target domain.

Another observation is that DynaEval performs
significantly poorer for the fluency aspect at turn-
level than for other turn-level aspects. Additionally,
GPT-2, USR and FED, which leverage pretrained
language model, perform significantly better than
DynaEval in this category. This may be because
DynaEval directly models a dialogue at the utter-
ance level instead of at the token level, while the
other metrics consider the language modeling ob-
jective, which focuses more on the token-level de-
pendencies rendering them effective for evaluating
the naturalness of a response. A remedy to this
problematic aspect of DynaEval is to introduce
perturbation strategies targeting the token level,
such as word drop, word shuffling and word re-
placement (Sinha et al., 2020; Park et al., 2021).
Such strategies provide negative samples mimick-
ing the non-sensical or non-grammatical responses
produced by certain seq2seq generative models.
Another simple solution is to combine DynaEval
with turn-level metrics specifically designed for
evaluating naturalness of dialogue responses.

Besides the fluency aspect, DynaEval’s perfor-
mance in interestingness, engagement and speci-
ficity at the turn level is not as pronounced as that
of FED. This may be because purely modeling the
dialogue itself is not enough for all the aspects. The
model may need to incorporate external knowledge
concerning a diverse range of topics to be able to re-
flect these attributes. The same conclusion can also
be drawn from DynaEval’s relatively weaker per-
formance in the diversity category at the dialogue
level.

Lastly, DynaEval primarily targets open-domain
dialogues where there is no clear or predefined
task to perform. When evaluating task-oriented

dialogues, task completion will take a more central
role. Meta-information such as intents and request
types are important to determine task completion
and therefore, the evaluation framework will re-
quire further adaptation accounting for these infor-
mation when evaluating task-oriented dialogues.

5 Conclusion & Future Work

DynaEval serves as a unified framework for both
turn and dialogue level evaluation in open-domain
dialogue. It provides meaningful representations
that incorporate information reflecting various im-
portant dialogue attributes. Its explicit modeling of
speaker and utterance level interaction leveraging
GCN has been proven beneficial for the evalua-
tion task. Lastly, the error analysis in Section 4.3
sheds light on how DynaEval can be further im-
proved. DynaEval can also be combined with the
specialized turn-level metrics, such as those target-
ing fluency and engagement, to fully approximate
the interactive human evaluation process.
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A Additional Experimental Results

A.1 Utterance-level Pooling Techniques

To derive the dialogue-level representation, we
have adopted the mean pooling method in Dy-
naEval. In this section, we examine the effects
of different pooling methods in the dialogue-level
discrimination task. Specifically, we compare the
performance of mean pooling against max pooling
and the concatenation of sentence vectors derived
with both mean and max pooling. The performance
comparison is presented in Table 4. It can be ob-
served that the performance difference across vari-
ous pooling strategies is not statistically significant.

Strategy UR SS
Mean 94.30 +£0.07 90.37 £0.37
Max 94.17+£0.16 90.75+0.24

Mean+Max 94.19 £0.04 90.64 + 0.06

Table 4: The accuracy scores (%) of DynaEval on
the test set of Empathetic Dialogue with different
utterance-level pooling techniques. The average and
standard deviation are reported in the table.

A.2 Dialogue-level Correlation Analysis of
Turn-level Metrics

For each turn-level metric, we have applied four
simple aggregation strategies to derive dialogue
level scores from their respective constituent turn
level scores: (1) Mean, (2) Sum, (3) Max and (4)
Multiplication. The dialogue level correlation coef-
ficients of USR, BERT-RUBER and GPT-2 based
coherence metric are reported in Table 5, Table 6
and Table 7 correspondingly. Note that for turn-
level metrics leveraging the language model objec-
tive, we don’t consider token-level aggregation vari-
ants. Instead, we follow the same formulations in
the original papers. For example, the GPT-2 based
coherence metric (Pang et al., 2020) computes a
turn-level score based on averaging the token-wise
conditional log probabilities in the corresponding
response.

It can be observed that all three metrics don’t per-
form well at dialogue level evaluation. This further
validates our statement in Section 1 that turn-level
quality evaluation may be insufficient to assess the
performance of open-domain dialogue systems as
they don’t specifically model the interaction over
an entire dialogue.
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Quality | Mean | Sum | Max | Prod Quality | Mean | Sum | Max | Prod
USR GPT-2
Coherence 0.194 | 0.111 | 0.021 | 0.158 Coherence -0.002 | 0.123 | -0.086 | -0.120
Error Recovery | 0.170 | 0.083 | 0.075 | 0.130 Error Recovery | 0.034 | 0.096 | -0.057 | -0.091
Consistency | 0.150 | 0.169 | 0.038 | 0.099 Consistency | -0.025 | 0.091 | -0.048 | -0.088
Diversity 0.242 | 0.167 | 0.235 | 0.193 Diversity 0.092 | 0.147 | -0.033 | -0.145
Understanding | 0.172 | 0.112 | 0.004 | 0.124 Understanding | -0.027 | 0.070 | -0.062 | -0.066
Flexibility | 0.209 | 0.151 | 0.164 | 0.129 Flexibility | 0.056 | 0.134 | -0.032 | -0.131
. Informativeness | 0.025 | 0.116 | -0.100 | -0.112
Informativeness | 0.288 | 0.157 | 0.171 | 0.237

Inquisitiveness | 0.148 | 0.099 | 0.188 | 0.128 Inquisitiveness | -0.008 | 0.071 | -0.071 | -0.070
Overall -0.002 | 0.123 | -0.086 | -0.120

Overall | 0.288 | 0.166 | 0.094 | 0.212 verall | | |

Table 5: Dialogue level Spearman correlation coef-
ficients of USR w.r.t different turn-level aggregation
strategies on the FED dataset. Scores with p-values
larger than 0.05 are italicized (indicating statistical in-
significance). The best score for each category is high-
lighted in bold.

Quality | Mean | Sum | Max | Prod
BERT-R

Coherence 0.222 | 0.221 | 0.229 | 0.041
Error Recovery | 0.231 | 0.242 | 0.228 | 0.005
Consistency 0.141 | 0.163 | 0.148 | -0.030
Diversity 0.180 | 0.196 | 0.164 | -0.051
Topic Depth 0.181 | 0.192 | 0.163 | 0.008
Likability 0.256 | 0.281 | 0.249 | -0.037
Understanding | 0.189 | 0.198 | 0.189 | -0.023
Flexibility 0.228 | 0.253 | 0.232 | -0.036
Informativeness | 0.194 | 0.211 | 0.186 | -0.023
Inquisitiveness | 0.326 | 0.337 | 0.331 | 0.056
Overall | 0.231 | 0.248 | 0.224 | -0.021

Table 6: Dialogue level Spearman correlation coeffi-
cients of BERT-RUBER w.r.t different turn-level aggre-
gation strategies on the FED dataset.

B Reproducibility
B.1 Training Setup & Hyperparameters

For all the experiments involving training, we run
the experiments five times with different random
seeds for model weights initialization to reduce
the risk of randomness. The experiments are per-
formed on a single Tesla V100 32GB GPU with
a batch size of 512. The model is trained for 20
epochs and its parameters are optimized using the
Adam optimizer. The average run time for each
epoch is around 8 hours and 15 minutes. The initial
learning rate is set to 0.002 and decays by a factor

Table 7: Dialogue level Spearman correlation coeffi-
cients of GPT-2 based coherence metric w.r.t different
turn-level aggregation strategies on the FED dataset.

of 0.5 per epoch. A dropout of 0.5 is also applied.

For Empathetic Dialogue and DailyDialog, the
context window length, M is set to 4, because these
two datasets contain relatively short conversations
(4.31 and 7.90 average number of utterances per
dialogue respectively). A context window size of
4 ensures each utterance is connected to all the re-
maining utterances in most of the dialogues. The
utterances may provide important contextual in-
formation to each other within a dialogue. For
ConvAl2, M is set to 2 to avoid introducing too
much irrelavant context information. This is be-
cause most of the conversations in ConvAl2 are
about two people getting to know each other and
there are frequent topic changes in the conversa-
tions. M serves as an important hyperparameter to
control the influence of an utterance on the rest in
a dialogue.

For training DynaEval, we have filtered out di-
alogues of which the number of utterances is less
than 4 or more than 30. We hypothesize that dia-
logues with less than 4 utterances containing little
information for modeling speaker and utterance
level interaction. Moreover, there are very few
dialogues with more than 30 utterances in both
datasets. Including them leads to large graphs and
unnecessary paddings, which slow down the train-
ing process.
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