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Abstract

Emotion recognition in conversation (ERC)
is a crucial component in affective dialogue
systems, which helps the system understand
users’ emotions and generate empathetic re-
sponses. However, most works focus on mod-
eling speaker and contextual information pri-
marily on the textual modality or simply lever-
aging multimodal information through fea-
ture concatenation. In order to explore a
more effective way of utilizing both multi-
modal and long-distance contextual informa-
tion, we propose a new model based on mul-
timodal fused graph convolutional network,
MMGCN, in this work. MMGCN can not only
make use of multimodal dependencies effec-
tively, but also leverage speaker information
to model inter-speaker and intra-speaker de-
pendency. We evaluate our proposed model
on two public benchmark datasets, IEMOCAP
and MELD, and the results prove the effec-
tiveness of MMGCN, which outperforms other
SOTA methods by a significant margin under
the multimodal conversation setting.

1 Introduction

Emotion is an important part of human daily com-
munication. Emotion Recognition in Conversation
(ERC) aims to automatically identify and track the
emotional status of speakers during a dialogue. It
has attracted increasing attention from researchers
in the field of natural language processing and mul-
timodal processing. ERC has a wide range of po-
tential applications such as assisting conversation
analysis for legal trials and e-health services etc. It
is also a key component for building natural human-
computer interactions that can produce emotional
responses in a dialogue.

The fast growing availability of conversational
data on social media is one of the factors that boost
∗Corresponding Author

Oh, yeah? Have you gotten letters yet? 
Um, where? hang out?

U.S.C..

Oh my Gosh, that's so cool.

But big packet, big packet is nice....

So you're going to be right here in 
Los Angeles; that is so cool.

I'm looking forward to it.

So can we hang out?
Hey, yes, you know that's -
that's what I'm coming for.

Oh, yay. Thank you. No but 
that's an awesome school. ...

Well, you know I'm leaning
towards like communicationaI.Okay. 

They have a lot of good schools, right?
Yeah, 

I mean it's just a really good school.

I'm looking forward to getting there. 
I mean, God, the campus is cool.

Figure 1: Illustration of an example conversation in the
IEMOCAP dataset

the research focus on emotion recognition in con-
versation. Different from traditional emotion recog-
nition on isolated utterances, emotion recognition
in conversation requires context modeling of indi-
vidual utterances. The context can be attributed
to the preceding utterances, temporality in con-
versation turns, or speaker related information etc.
Different models have been proposed to capture
the contextual information in previous works, in-
cluding the LSTM-based model (Poria et al., 2017),
the conversational memory network (CMN) model
(Hazarika et al., 2018b), interactive conversational
memory network (ICON) model (Hazarika et al.,
2018a), and DialogueRNN model (Majumder et al.,
2019) etc. In the example conversation as shown
in Figure 1, the two speakers are chatting in the
context of the male speaker being admitted to USC.
In this chatting scene, they change topics a few
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times, such as the female speaker inviting the male
speaker out to play and so on. But they keep com-
ing back to the topic of USC, and then both of
them express an excitement emotional status. It
shows that long-distance contextual information is
of great help to the prediction of speakers’ emo-
tions. However, previous models can not effec-
tively capture both speaker and long-distance di-
alogue contextual information simultaneously in
multi-speaker conversation scenarios. Ghosal et
al.(Ghosal et al., 2019), therefore, first propose the
DialogueGCN model which applies graph convo-
lutional network (GCN) to capture long-distance
contextual information in a conversation. Dia-
logueGCN takes each utterance as a node and con-
nects any nodes that are in the same window within
a conversation. It can well model both the dialogue
context and speaker information which leads to
the state-of-the-art ERC performance. However,
like most previous models, DialogGCN only fo-
cuses on the textual modality of the conversation,
ignoring effective combination of other modalities
such as visual and acoustic modalities. Works that
consider multimodal contextual information often
conduct the simple feature concatenation type of
multimodal fusion.

In order to effectively explore the multimodal
information and at the same time capture long-
distance contextual information, we propose a new
multimodal fused graph convolutional network
(MMGCN) model in this work. MMGCN con-
structs the fully connected graph in each modal-
ity, and builds edge connections between nodes
corresponding to the same utterance across dif-
ferent modalities, so that contextual information
across different modalities can interact. In addition,
the speaker information is injected into MMGCN
via speaker embedding. Furthermore, different
from DialogueGCN, which is a non-spectral do-
main GCN and its many optimized matrices oc-
cupy too much computing resource, we encode
the multimodal graph using spectral domain GCN
and extend the GCN from a single layer to deep
layers. To verify the effectiveness of the proposed
model, we carry out experiments on two benchmark
multimodal conversation datasets, IEMOCAP and
MELD. MMGCN significantly outperforms other
models on both datasets.

The rest of the paper is organized as follows:
Section 2 discusses some related works; Section 3
introduces the proposed MMGCN model in details;

Section 4 and 5 present the experiment setups on
two public benchmark datasets and the analysis
of experiment results and ablation study; Finally,
Section 6 draws some conclusions.

2 Related Work

2.1 Emotion Recognition in Conversation

With the fast development of social media, much
more interaction data become available, including
several open-sourced conversation datasets such
as IEMOCAP(Busso et al., 2008), AVEC(Schuller
et al., 2012), MELD(Poria et al., 2018), etc. ERC
has attracted much research attention recently.

Many previous works focus on modeling con-
textual information due to its importance in ERC.
Poria et al. (Poria et al., 2017) leverage a LSTM-
based model to capture interaction history context.
Hazarika et al. (Hazarika et al., 2018b,a) first pay
attention to the importance of speaker information
and exploit different memory networks to model
different speakers. DialogueRNN (Majumder et al.,
2019) leverage distinct GRUs to capture speakers’
contextual information. DialogueGCN (Ghosal
et al., 2019) construct the graph considering both
speaker and conversation sequential information
and achieve the state-of-the-art performance.

2.2 Multimodal Fusion

Most recent studies on ERC focus primarily on the
textual modality. (Poria et al., 2017; Hazarika et al.,
2018b,a) leverage multimodal information through
concatenating features from three modalities with-
out modeling the interaction between modalities.
(Chen et al., 2017) conduct multimodal fusion at
the word-level for emotion recognition of isolated
utterances. (Sahay et al., 2018) consider contextual
information and use relations in the emotion labels
across utterances to predict the emotion (Zadeh
et al., 2018) propose MFN to fuse information of
multi-views, which aligns features from different
modalities well. However, MFN neglects to model
speaker information, which is significant to ERC as
well. The state-of-the-art dialogueGCN model only
considers the textual modality. In order to explore
a more effective way of fusing multiple modalities
and at the same time capturing contextual conver-
sation information, we propose MMGCN which
constructs a graph based on all three muoldalities.
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Figure 2: Framework illustration of the MMGCN based emotion recognition in conversation, which consists of
three key components: Modality Encoder, Multimodal Graph Convolutional Network, Emotion Classifier.

2.3 Graph Convolutional Network

Graph convolutional networks have been widely
used in the past few years for their ability to cope
with non-Euclidean data. Mainstream GCN meth-
ods can be divided into spectral domain methods
and non-spectral domain methods (Veličković et al.,
2017). Spectral domain GCN methods (Zhang
et al., 2019) are based on Laplace Spectral decom-
position theory. They can only deal with undi-
rected graphs. Non-spectral domain GCN meth-
ods (Veličković et al., 2017; Schlichtkrull et al.,
2018; Li et al., 2015) can be applied to both di-
rected and undirected graphs, but consuming larger
computing resource. Recently, researchers have
proposed methods to make spectral domain GCN
deeper without over-smoothing (Li et al., 2019;
Chen et al., 2020). In order to further improve
MMGCN on ERC, we encode the multimodal
graph using spectral domain GCN with deep layers.

3 Method

A dialogue can be defined as a sequence of utter-
ances {u1, u2, ..., uN}, where N is the number of
utterances. Each utterance involves three sources
of utterance-aligned data corresponding to three
modalities, including acoustic (a), visual (v) and
textual (t) modalities, which can be represented as
follows:

ui = {ua
i , u

v
i , u

t
i} (1)

where uai , uvi , uti denote the raw feature represen-
tation of ui from the acoustic, visual and textual

modality, respectively. The emotion recognition in
conversation task aims to predict the emotional sta-
tus label for each utterance ui in the conversation
based on the available information from all three
modalities. Figure 2 illustrates the overall frame-
work of our proposed emotion recognition in con-
versation system, which consists of three key mod-
ules: Modality Encoder, Multimodal Fused Graph
Convolutional Network (MMGCN), and Emotion
Classifier.

3.1 Modality Encoder

As we mentioned above, the dialog context infor-
mation is important for predicting the emotion label
of each utterance. Therefore, it is beneficial to en-
code the contextual information into the utterance
feature representation. We generate the context-
aware utterance feature encoding for each modality
through the corresponding modality encoder. To be
specific, we apply a bidirectional Long Short Term
Memory (LSTM) network to encode the sequential
textual context information for the textual modality.
For the acoustic and visual modalities, we apply a
fully connected network. The context-aware fea-
ture encoding for each utterance can be formulated
as follows:

ht
i = [
−−−−→
LSTM(ut

i, h
t
i−1),

←−−−−
LSTM(ut

i, h
t
i+1)]

ha
i =W a

e u
a
i + bai

hv
i =W v

e u
v
i + bvi

(2)

where uai , uvi , uti are the context-independent raw
feature representation of utterance i from the acous-
tic, visual and textual modalities, respectively. The
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modality encoder outputs the context-aware raw
feature encoding hai , hvi , and hti accordingly.

3.2 Multimodal fused GCN (MMGCN)

In order to capture the utterance-level contextual
dependencies across multiple modalities, we pro-
pose a Multimodal fused Graph Convolutional Net-
work (MMGCN). We construct a spectral domain
graph convolutional network to encode the multi-
modal contextual information inspired by (Li et al.,
2019; Chen et al., 2020). We also stack more lay-
ers to construct a deep GCN. Furthermore, we add
learned speaker-embeddings to encode the speaker-
level contextual information.

3.2.1 Speaker Embedding
As mentioned above, speaker information is im-
portant for ERC. In order to encode the speaker
identity information, we add speaker embeddings
to the features before constructing the graph. As-
suming there are M parties in a dialogue, then the
size of the speaker embedding is M . We show a
two-speaker conversation case in Figure 2. The
original speaker identity can be denoted with a
one-hot vector si and the speaker embedding Si is
calculated as follows:

Si =Wssi + bsi (3)

The speaker embedding can then be leveraged to
attach speaker information in the graph construc-
tion.

3.2.2 Graph Construction
A dialogue withN utterances can be represented as
an undirected graph G = (V, E), where V (|V| =
3N ) denotes utterance nodes in three modalities
and E ⊂ V × V is a set of relationships containing
context, speaker and modality dependency. We
construct the graph as follows:
Nodes: Each utterance is represented by three
nodes vai , vvi , vti in a graph, initialized with
h
′a
i ,h

′v
i ,h

′l
i , which represent [hai , Si], [hvi , Si],

[hti, Si] respectively, corresponding to the three
modalities. Thus, given a dialogue with N utter-
ances, we construct a graph with 3N nodes.
Edges: We assume that each utterance has certain
connection to other utterances in the same dialogue.
Therefore, any two nodes in the same modality in
the same dialogue are connected in the graph. Fur-
thermore, each node is connected with the nodes
which correspond to the same utterance but from

different modalities. For example, vai will be con-
nected with vvi and vti in the graph.
Edge Weighting: We assume that if two nodes
have higher similarity, the information interaction
between them is also more important, and the edge
weight between them should be higher. In order
to capture the similarities between node represen-
tations, following (Skianis et al., 2018), we use
the angular similarity to represent the edge weight
between two nodes.

There are two types of edges in the graph: 1)
edges connecting nodes from the same modal-
ity, and 2) edges connecting nodes from different
modalities. To differentiate them, we use differ-
ent edge weighting strategies. For the first type of
edges, the edge weight is computed as:

Aij = 1− arccos(sim(ni, nj))

π
(4)

where ni and nj denote the feature representations
of the i-th and j-th node in the graph. For the
second type of edges, the edge weight is computed
as:

Aij = γ(1− arccos(sim(ni, nj))

π
) (5)

where γ is a hyper parameter.
Graph Learning: Inspired by (Chen et al., 2020),
we build a deep graph convolutional network based
on the undirected graph formed following the above
construction steps to further encode the contextual
dependencies. To be specific, given the undirected
graph G = (V, E), let P̃ be the renormalized graph
Laplacian matrix (Kipf and Welling, 2016) of G:

P̃ = D̃−1/2ÃD̃−1/2

= (D + I)−1/2(A+ I)(D + I)−1/2
(6)

where A denotes the adjacency matrix, D denotes
the diagonal degree matrix of graph G, and I de-
notes identity matrix. The iteration of GCN from
different layers can be formulated as:

H(l+1)
= σ(((1−α)P̃H(l)

+αH(0)
)((1−β(l)

)I+β(l)W(l)
)) (7)

where α and β(l) are two hyper parameters, σ de-
notes the activation function andW(l) is a learnable
weight matrix. To ensure the decay of the weight
matrix adaptively increases when stacking more
layers, we set β(l) = log(ηl + 1), where η is also a
hyper parameter. A residual connection to the first
layerH(0) is added to the representation P̃H(l) and
an identity mapping I is added to the weight matrix
W(l). With such residual connection, we can make
MMGCN deeper to further improve performance.
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3.3 Emotion Classifier
As described in sec. 3.2.2, we initialize nodes with
the combination of utterance feature and speaker
embedding, h

′
i.

h
′
i = [h

′a
i , h

′v
i , h

′t
i ]. (8)

Let gai , gvi and gti be the features of different modal-
ities encoded by the GCN. The features correspond-
ing to the same utterance are concatenated:

gi = [gai , g
v
i , g

t
i ]. (9)

We then can concatenate gi and hi to generate the
final feature representation for each utterance:

ei = [h
′
i, gi], (10)

ei is then fed into a MLP with fully connected lay-
ers to predict the emotion label ŷi for the utterance:

li = RELU(Wlei + bl)

Pi = Softmax(Wsmaxli + bsmax)

ŷi = argmin
k

(Pi[k])
(11)

3.4 Training Objectives
We use categorical cross-entropy along with L2-
regularization as the loss function during training:

L = − 1∑N
s=1 c(s)

N∑
i=1

c(i)∑
j=1

logPi,j [yi,j ] + λ ‖θ‖2 (12)

where N is the number of dialogues, c(i) is the
number of utterances in dialogue i, Pi,j is the
probability distribution of predicted emotion labels
of utterance j in dialogue i, yi,j is the expected
class label of utterance j in dialogue i, λ is the
L2-regularization weight, and θ is the set of all
trainable parameters. We use stochastic gradient
descent based Adam (Kingma and Ba, 2014) opti-
mizer to train our network. Hyper parameters are
optimized using grid search.

4 Experiment Setups

4.1 Dataset
We evaluate our proposed MMGCN model on two
benchmark datasets, IEMOCAP(Busso et al., 2008)
and MELD(Poria et al., 2018). Both are multi-
modal datasets with aligned acoustical, visual and
textual information of each utterance in a conversa-
tion. Followed (Ghosal et al., 2019), we partition
both datasets into train and test sets with roughly

Dataset
dialogues utterances

train+val test train+val test
IEMOCAP 120 31 5810 1623

MELD 1153 280 11098 2610

Table 1: Data distribution of IEMOCAP and MELD

8:2 ratio. Table 1 shows the distribution of train
and test samples for both datasets.

IEMOCAP: The dataset contains 12 hours of
videos of two-way conversations from ten unique
speakers, where only the first eight speakers from
session one to four are used in the training set. Each
video contains a single dyadic dialogue, segmented
into utterances. There are in total 7433 utterances
and 151 dialogues. Each utterance in the dialogue
is annotated with an emotion label from six classes,
including happy, sad, neutral, angry, excited and
frustrated.

MELD: Multi-modal Emotion Lines Dataset
(MELD) is a multi-modal and multi-speaker con-
versation dataset. Compared to the Emotion Lines
dataset (Chen et al., 2018), MELD has three
modality-aligned conversation data with higher
quality. There are in total 13708 utterances, 1433
conversations and 304 different speakers. Specifi-
cally, different from dyadic conversation datasets
such as IEMOCAP, MELD has three or more speak-
ers in a conversation. Each utterance in the di-
alogue is annotated with an emotion label from
seven classes, including anger, disgust, fear, joy,
neutral, sadness and surprise.

4.2 Utterance-level Raw Feature Extraction

The textual raw features are extracted using
TextCNN following (Hazarika et al., 2018a). The
acoustic raw features are extracted using the OpenS-
mile toolkit with IS10 configuration (Schuller et al.,
2011). The visual facial expression features are
extracted using a DenseNet (Huang et al., 2015)
pre-traind on the Facial Expression Recognition
Plus (FER+) corpus (Barsoum et al., 2016).

4.3 Implementation Details

The hyperparameters are set as follows: the num-
ber of GCN layers are both 4 for IEMOCAP and
MELD. The dropout is 0.4. The learning rate
is 0.0003. The L2 regularization parameter is
0.00003. α, η and γ are set as 0.1, 0.5 and 0.7
respectively. Considering the class-imbalance in
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IEMOCAP MELD
Happy Sad Neutral Angry Excited Frustrated Average(w) Average(w)

BC-LSTM 34.43 60.87 51.81 56.73 57.95 58.92 54.95 56.80
CMN 30.38 62.41 52.39 59.83 60.25 60.69 56.13 -
ICON 29.91 64.57 57.38 63.04 63.42 60.81 58.54 -

DialogueRNN 39.16 81.69 59.77 67.36 72.91 60.27 64.58 57.11
DialogueGCN 47.1 80.88 58.71 66.08 70.97 61.21 65.04 58.23

MMGCN 42.34 78.67 61.73 69.00 74.33 62.32 66.22 58.65

Table 2: ERC performance (F1-score) of different approaches on both IEMOCAP and MELD datasets under the
multimodal setting, which means the input includes all the acoustic, visual, and textual modalities; bold font
denotes the best performance. Average(w) means weighted average. (The result of CMN and ICON are deficient
for suiting two-way conversations only)

MELD, we use focal loss when training MMGCN
on MELD. In addition, we add layer normalization
after the speaker embedding.

4.4 Evaluation Metrics and Significance Test

Following previous works (Hazarika et al., 2018a;
Majumder et al., 2019; Ghosal et al., 2019), we
use weighted average f1-score as the evaluation
metric. Paired t-test is performed to test the signifi-
cance of performance improvement with a default
significance level of 0.05.

4.5 Compared Baselines

In order to verify the effectiveness of our model,
We implement and compare the following models
on emotion recognition in conversation.
BC-LSTM (Poria et al., 2017): it encodes con-
textual information through Bi-directional LSTM
(Hochreiter and Schmidhuber, 1997) network. The
context-aware features are then used for emotion
classification. BC-LSTM ignores speaker informa-
tion as it doesn’t attach any speaker-related infor-
mation to their model.
CMN (Hazarika et al., 2018b): it leverages
speaker-dependent GRUs to model utterance con-
text combining dialogue history information. The
utterance features with contextual information are
subject to two distinct memory networks for both
speakers. Due to the fixed number of Memory
network blocks, CMN can only serve in dyadic
conversation scenarios.
ICON (Hazarika et al., 2018a): it extends CMN
to model distinct speakers respectively. Same
with CMN, two speaker-dependent GRUs are lever-
aged. Besides, A global GRU is used to track the
change of emotion status in the entire conversation
and multi-layer memory networks are leveraged to
model the global emotion status. Though ICON

improves the result of ERC, it still cannot adapt to
a multi-speaker scenario.
DialogueRNN (Majumder et al., 2019): it mod-
els speakers and sequential information in dia-
logues through three different GRUs, which in-
clude Global GRU, Speaker GRU and Emotion
GRU. Specifically, Global GRU models context in-
formation, while Speaker dependent GRU models
the status of the certain speaker. The two modules
update interactively. Emotion GRU detects emo-
tion of utterances in conversation. Furthermore, in
the multimodal setting, the concatenation of acous-
tical, visual, and textual features is used when the
speaker talks, but only use visual features other-
wise. However, DialogueRNN doesn’t improve
much in multimodal settings.
DialogueGCN (Ghosal et al., 2019): it applies
GCN to ERC, in which the generated features can
integrate rich information. Specifically, utterance-
level features encoded by bi-lstm are used to initial-
ize the nodes of the graph, edges are constructed
within a certain window. Utterances in the same
dialogue but with long distance can be connected
directly. Relation GCN(Schlichtkrull et al., 2018)
and GNN(Morris et al., 2019), which are both non-
spectral domain GCN models, are leveraged to en-
code the graph. However, DialogueGCN only fo-
cuses on the textual modality. In order to compare
with our MMGCN under the multimodal setting,
we extend DialogueGCN by simply concatenating
features of three modalities.

5 Results and Discussions

We compare our proposed MMGCN with all the
baseline models presented in section 4.5 on IEMO-
CAP and MELD datasets under the multimodal set-
ting. In order to compare the results under the same
experiment settings, we reimplement the models in
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Figure 3: Illustration of the three types of multi-modal fusion methods

the following experiments.

5.1 Comparison with other models

Table 2 shows the performance comparison of
MMGCN with other models on the two bench-
mark datasets under the multimodal setting. Di-
alougeGCN was the best performing model when
using only the textual modality. Under the multi-
modal setting, DialogueGCN which is fed with
the concatenation of acoustic, visual and tex-
tual features achieves some slight improvement
over the single textual modality. Our proposed
MMGCN improves the F1-score performance over
DialogueGCN under the multimodal setting by ab-
solute 1.18% on IEMOCAP and 0.42% on MELD
on average, and the improvement is significant with
p-value < 0.05.

5.2 MMGCN under various modality setting

Table 3 shows the performance comparison of
MMGCN under different multimodal settings on
both benchmark datasets. From Table 3 we can
see that the best single modality performance is
achieved on the textual modality and the worst is
on the visual modality, which is consistent with
previously reported findings. Adding acoustic and
visual modalities can bring additional performance
improvement over the textual modality.

5.3 Comparison with other fusion methods

To verify the effectiveness of MMGCN in multi-
modal fusion, we compare it with other multimodal
fusion methods, including early fusion, late fusion,
fusion through gated attention and other represen-
tative fusion methods such as MFN(Zadeh et al.,
2018) and MulT(Tsai et al., 2019). The first three
fusion methods are illustrated in Figure 3. As for

modality IEMOCAP MELD
a 54.66 42.63
v 33.86 33.27
t 62.35 57.72
at 65.70 58.02
vt 62.89 57.92
avt 66.22 58.65

Table 3: ERC performance of MMGCN under different
multimodal settings, which means the input contains
different combination of the three modalities

early fusion, multimodal features are concatenated
and fed into GCN directly. As for late fusion, fea-
tures of different modalities are fed into different
GCNs respectively and concatenated afterwards.
As for fusion through gated attention, features are
fed into different GCNs the same way as in late fu-
sion, and then to a gated attention module. Specifi-
cally, the gated attention module can be formulated
as follows:

r
mj

i = tanh(Wmj · h
mj

i ) (13)

r
mk
i = tanh(Wmk · h

mk
i ) (14)

z = σ(Wz · h
mj

i ) (15)

r
(mj ,mk)

i = z ∗ rmj

i + (1− z) ∗ rmk
i (16)

ei = [r
(a,v)
i , r

(a,t)
i , r

(v,t)
i ] (17)

where mj and mk could be any modality among
{a, v, t}, hmj

i and hmk
i represent the feature en-

coded by the corresponding modality encoder, ei
represents the final feature representation for the ith

utterance. Considering MFN and MulT are lever-
aged to fuse multimodal information sequentially,
they are used to replace the Modality Encoder. The
fused multimodal features are fed to the GCN mod-
ule subsequently.

Table 4 shows that MMGCN with the graph-
based multimodal fusion outperforms all other com-
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What’s that suppose to mean? 
Look at you, you’re shaking.
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20th utterance

Uh, Don’t look at me like 
that.

What the hell is the matter 
with you?

angfru ang

M M F F F F F F F FM M M M M M M M M M M M M

Figure 4: Visualization of the heatmap of the adjacent matrix for the 20th utterance in a conversation with three
modalities. ’M’ and ’F’ refer to the male and female speakers respectively

IEMOCAP MELD
DeepGCNearly fusion 64.46 57.94
DeepGCNlate fusion 64.62 58.26

DeepGCNgated attention 64.45 58.18
DeepGCNMFN 62.77 58.21
DeepGCNMulT 62.37 57.93
MMGCN 66.22 58.65

Table 4: ERC performance comparison of MMGCN
and other multimodal fusion methods

layers IEMOCAP MELD
1 66.12 58.40
2 66.17 58.38
4 66.22 58.65
8 66.10 58.54
16 66.06 58.38
32 66.10 58.42

Table 5: ERC performance comparison of MMGCN
with different number of layers

pared multimodal fusion methods.

5.4 MMGCN with different layers
We investigate the impact of the number of layers in
MMGCN on the ERC performance in Table 5. The
experiment results show that a different number
of layers does affect the ERC recognition perfor-
mance. Specifically, MMGCN achieves the best
performance with 4 layers on both IEMOCAP and
MELD.

MMGCN IEMOCAP MELD
w/ spkr embedding 66.22 58.65

w/o spkr embedding 65.76 58.38

Table 6: Ablation study of the speaker embedding im-
pact on ERC performance

5.5 Impact of Speaker Embedding

Speaker Embedding can differentiate input features
from different speakers. Previous works have re-
ported that speaker information can help improve
emotion recognition performance. We conduct the
ablation study to verify the contribution of speaker
embedding in MMGCN as shown in Table 6. As ex-
pected, dropping speaker embedding in MMGCN
leads to performance degradation, which is signifi-
cant by t-test with p<0.05.

5.6 Case Study

Fig 4 depicts a scene in which a man and a woman
quarrel with each other over a female friend of
the man who came to meet with him across 700
miles. They are frustrated or angry in most cases.
At the beginning of the conversation, their emotion
states are both neutral. Over time, they become
emotional. They are both angry at the end of the
conversation. The heatmaps of the adjacent matrix
for the 20th utterance in the conversation from the
three modalities demonstrate that different from
simple sequential models, MMGCN pays attention
not only to the close context, but also relate to the
context in long-distance. For example, as shown
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in the textual heatmap, MMGCN can successfully
aggregate information from the most relevant ut-
terances, even from long-distance utterances, for
example the 3rd utterance.

6 Conclusion

In this paper, we propose an multimodal fused
graph convolutional network (MMGCN) for multi-
modal emotion recognition in conversation (ERC).
MMGCN provides a more effective way of utiliz-
ing both multimodal and long-distance contextual
information. It constructs a graph that captures
not only intra-speaker context dependency but also
inter-modality dependency. With the residual con-
nection, MMGCN can have deep layers to further
improve recognition performance. We carry out
experiments on two public benchmark datasets,
IEMOCAP and MELD, and the experiment results
prove the effectiveness of MMGCN, which outper-
forms other state-of-the-art methods by a signif-
icant margin under the multimodal conversation
setting.
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