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Abstract

Recent studies strive to incorporate various
human rationales into neural networks to im-
prove model performance, but few pay atten-
tion to the quality of the rationales. Most
existing methods distribute their models’ fo-
cus to distantly-labeled rationale words en-
tirely and equally, while ignoring the potential
important non-rationale words and not distin-
guishing the importance of different rationale
words. In this paper, we propose two novel
auxiliary loss functions to make better use of
distantly-labeled rationales, which encourage
models to maintain their focus on important
words beyond labeled rationales (PINs) and al-
leviate redundant training on non-helpful ra-
tionales (NoIRs). Experiments on two repre-
sentative classification tasks show that our pro-
posed methods can push a classification model
to effectively learn crucial clues from non-
perfect rationales while maintaining the ability
to spread its focus to other unlabeled important
words, thus significantly outperform existing
methods.

1 Introduction

Recent studies have shown an increasing interest in
incorporating human knowledge into neural net-
work models (Xu et al., 2018; Vashishth et al.,
2018; Luo et al., 2018; Li and Srikumar, 2019;
Jiang et al., 2020). For many natural language
processing (NLP) tasks, such domain knowledge
often refers to salient words annotated by human
experts, which are also called rationales. Table 1
(top) shows an example of expert-annotated ratio-
nales for sentiment analysis, which highlight note-
worthy tokens and score the contributions of these
tokens. The detailed annotations reflect the impor-
tance of these words from the expert annotator’s
viewpoint and are expected to help training better
sentiment classification models.

∗Corresponding author.

Expert
Labeled

Painful[0.1] to watch, but[0.7] viewers willing to
take a chance will be rewarded[0.6] with two of the
year’s most accomplished[0.6] and riveting[0.9]

film performance.

Distantly
Labeled

:::::
Painful to watch, but viewers willing to take
a chance will be rewarded with two of the
year’s most accomplished and

:::::
riveting film per-

formance.

Table 1: An example of rationale annotation for senti-
ment analysis. Words in underline are rationales anno-
tated by human experts, and

:::::
words in wavy underline

are annotated via sentiment lexicon matching. Num-
bers in [] are salience scores labeled by experts.

Nonetheless, careful, case-by-case rationale an-
notations inevitably involve large amounts of man-
ual efforts, and are often extravagant or not even
available. In practice, distantly-labeled rationales
serve as a plausible alternative. Instead of labelling
case by case, annotators could design heuristic
rules to generate rationales for the whole dataset.
For instance, in sentiment analysis, annotators can
collect words with strong sentiment polarity (posi-
tive or negative) to construct a sentiment lexicon,
with which they can automatically annotate ratio-
nales in a short time through word matching, such
as Painful and riveting in the bottom case of Ta-
ble 1. When comparing the bottom annotation with
the top one, we should admit that the automatic
annotations are not perfect, where they indeed in-
clude useful clue words towards sentiment predic-
tion. But there should be differences of importance
among those automatically annotated words, e.g.,
compared to Painful, riveting is more important to
decide the sentiment of the sentence, and several
important clues are still missing, e.g., but, accom-
plished, rewarded, etc. Distantly-labeled rationales
drastically reduce the cost of generating precise
case-specific annotations while preserving a cer-
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tain degree of reliability, thus are widely used.

However, just as researchers apply auxiliary mea-
sures to enforce higher concentration on distantly-
labeled rationales and expect substantial model
gains, potential flaws in the quality of those ratio-
nales quietly arise to hinder the model from bene-
fiting from human priors. Specifically, as discussed
in the sample annotations, we find there are, among
others, mainly two types of quality issues lying in
distantly-labeled rationales:

Insufficiency. Since distantly-labeled rationales
do not include case-specific checking and only con-
tain universally helpful words according to prede-
fined rules/lexicons, such rationales may not pro-
vide sufficient supporting evidence in individual
cases, and more information from non-rationale
words may be necessary towards the final classi-
fication. Given an instance with distantly-labeled
rationales, we call the unlabeled words that are
contributing to the final prediction as Potential Im-
portant Non-rationales, or PINs for short, e.g., but
and rewarded in the bottom of Table 1.

Indiscrimination. Although distantly-labeled
rationale words are often universally helpful, given
a specific context, different rationale words may ex-
hibit varied importance. If those distantly-labeled
rationales are applied in a 0-1 form to all instances
and treated equally important, the tremendous di-
versity of actual importance in individual cases is
just ignored. We refer to the distantly-labeled ratio-
nale words that are not helpful in a specific instance
as Non-Important Rationales, or NoIRs for short.

Although many existing works have attempted
to incorporate automatically-obtained rationales
in different ways and achieved promising results
in various applications (Liu et al., 2017; Nguyen
and Nguyen, 2018; Ghaeini et al., 2019; Liu and
Avci, 2019), they do not explicitly examine the
quality issues of distantly-labeled rationales, nor
formally consider them during modeling, except
(Poulis and Dasgupta, 2017), which incorporate
vague feature feedback into a linear classifier. On
the one hand, most existing methods try to apply
strict constraints to require model focus to con-
form to rationales, often encouraging those words
to share all the model focus (Nguyen and Nguyen,
2018; Liu and Avci, 2019). However, as distantly-
labeled rationales are often insufficient to draw cor-
rect conclusions, the rigid requirements may turn
out to incorrectly ignore the PINs. On the other
hand, rationale words are often expected to share

equal importance, which is not the case in practice
and can falsely lift the focus on NoIRs.

In this paper, we seek better ways to exploit
distantly-labeled rationales, and analyze to what
extent the aforementioned quality issues can be al-
leviated with our methods. We propose two novel
gradient-based schemes, namely Order Loss and
Gate Loss, to handle the insufficiency and indis-
crimination problems, respectively. Order Loss
presents a relaxed constraint on rationales by re-
quiring them to have higher gradients than non-
rationales, instead of occupying the entire model
focus. Gate Loss introduces an early stop mecha-
nism, which prevents over training that enhances
the significance of non-helpful rationales. We eval-
uated our methods on two NLP tasks, sentiment
analysis and event detection, and the experimental
results show that our methods can better exploit
non-perfect distantly-labeled rationales, paying at-
tention to PINs while avoiding over-training on
NoIRs, thus outperforms competitive counterparts.

Our main contributions are as follows: (1) We
formally address the quality issues of distantly-
labeled rationales, namely insufficiency and indis-
crimination, and propose two novel loss functions
to push the model training process while taking the
potential important non-rationales (PINs) and non-
important rationales (NoIRs) into account. The
two new losses can also be jointly used and lead
to further improvement. (2) We conduct compre-
hensive evaluations on two classification tasks and
our analysis shows that our proposed methods can
better deal with automatically-annotated rationales,
even in a lower quality.

2 Word Salience

Before elaborating on our proposed methods, we
first introduce the definition of word salience, a
measure of the importance of words, which is
widely applied in previous works (Luo et al., 2018;
Nguyen and Nguyen, 2018; Jin et al., 2020)

Given a model f and an input word sequence
x = (x1, x2, ..., xn), the word salience is a vector
s = (s1, s2, ..., sn) that denotes the importance of
every word in x, where si indicates how much xi
contributes to the model f .

Prior works have explored different methods to
determine word salience (Ribeiro et al., 2016; Jin
et al., 2020). Among them, we choose gradient-
based methods since they are model-agnostic and
easy to obtain. Moreover, since gradient-based
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word salience is differentiable with respect to
model parameters, taking it as part of the objec-
tive makes it more convenient to optimize the loss.

For a function f , the magnitude (absolute value)
of its gradients with respect to input x indicates
how sensitive the final decision is to the change
of x (Li et al., 2016). In most NLP settings, the
gradient of a word is the sum of gradients for each
dimension of word embeddings. Formally, the gra-
dient of an input word xi to a function f can be
calculated as:

gi =

∥∥∥∥ ∂f∂xi
∥∥∥∥
1

(1)

where ‖·‖1 is theL1 norm that sums up the absolute
value of gradients over the embedding dimensions.

For gradient-based methods, we use the normal-
ized gradients to calculate word salience, which
represents the proportion of a word’s contribution
in a sentence:

si =
gi∑n
j=1 gj

(2)

There exist more complicated gradient-based
methods for calculating word salience (Sundarara-
jan et al., 2017). Here, we base the salience on the
vanilla gradient method, for the following reasons:
1) It is simple yet sufficiently effective to represent
word salience (Ross et al., 2017); 2) The calcula-
tion cost of the vanilla version is minimal among
all gradient-based methods.

3 Our Methods

To incorporate human rationales into neural mod-
els, most existing works introduce an auxiliary loss
to impel the neural network model to put more em-
phasis on rationale annotations. Formally, for a
multi-class classification problem, the joint objec-
tive can be formalized as:

Ljoint = Lc(x, y) + λLa(s, z) (3)

where Lc is the classification loss based on in-
put sentence x and ground truth label y, and La

is a constraint function which conforms word
salience s with a binary vector of rationale labels
z = (z1, z2, ..., zn) where zi is 1 if xi is important,
otherwise, zi is set to 0. λ is the hyper-parameter
controlling the weight of the auxiliary loss.

We start with a discussion on a Base Loss cur-
rently in use, which suffers from the insufficiency
and indiscrimination of non-perfect rationales. Al-
ternatively, we introduce two methods, namely Or-
der Loss and Gate Loss, which help models to

minimize the influence of NoIRs and leave enough
space for PINs as well.

3.1 Base Loss

Most previous works consider all rationale words
as carefully annotated and flawless, without taking
the quality issues into account (Liu et al., 2017; Liu
and Avci, 2019). Generally, their main assumption
could be written as: A1: All rationales contribute
equally to the model, while other words should
not contribute. According to this assumption, the
salience of every rationale word should be equal
to each other, which is 1

k for a sentence with k
annotated rationale words. Meanwhile, the salience
of non-rationale words is set as 0. When using L2

norm to measure the difference between the current
word salience and the expected values (0 or 1) for
each word, we can write the constraint loss as:

La base =
∑
zi=1

(
si −

zi∑n
j=1 zj

)2

=
∑
zi=1

(
si −

1

k

)2
(4)

where si is the salience of rationale word xi and
zi∑n

j=1 zj
is the expected value for xi, which equals

1/k for a sentence with k annotated rationale
words, since z is a binary vector.

Although this loss exhibits a feasible way to al-
low rationales to receive higher concentration, it
also has two distinct shortcomings. Firstly, ratio-
nales often possess varied importance in real-world
cases, which makes it improper to strictly require
equal concentration. Second, for the important
words not covered in rationales, they are totally
ignored and cannot contribute to the prediction.

3.2 Order Loss: Exploiting PINs

For distantly-labeled rationales, A1 pushes the clas-
sification model not to make use of potential im-
portant words outside rationale annotations, and
squeezes them to receive little focus. To make bet-
ter use of these PINs, we seek to relax the restric-
tions between rationales and non-rationales, and
propose the following assumption as an alternative:
A2: Rationale words should get more focus than
non-rationales. Based on this assumption, we can
directly build up a formal restriction between any
pair of rationale word and non-rationale word:

si > sj ∀xi ∈ SR,∀xj ∈ SN (5)
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where SR is the set of annotated rationale words,
SN is the non-rationale set, and si and sj are the
salience of words xi and xj , respectively. This
restriction enumerates all the possible pairs of an-
notated rationale and non-rationale words, and in-
volves massive computation. For a sentence of
length n with k labeled rationale words, constrain-
ing the above order relationship (Eq. 5) leads to
considering k(n − k) terms in the auxiliary loss.
This is expensive for longer sentences with sparse
rationale annotations. It is worth looking for a more
efficient constraint method that is irrelevant to sen-
tence length and only involves rationale numbers.

However, if we know the maximum value
max sj in SN in advance, most of the comparisons
in (Eq. 5) can be omitted, because requiring an si
to be greater than every sj is equivalent to requir-
ing si > max sj . Therefore, we can simplify the
restriction in Eq. 5 to:

si > max sj ∀xi ∈ SR,∀xj ∈ SN (6)

Since salience can vary enormously in orders
of magnitude, it is hard to determine λ in Eq. 3
and converge to a stable state if we just calculate
the loss regarding the difference between si and
max sj . In order to obtain a loss that is insensi-
tive to the magnitude of salience, we adjust the
restriction to an equivalent form:

si
max sj

> 1 ∀xi ∈ SR, ∀xj ∈ SN (7)

And its corresponding auxiliary loss can be written
as:

La order =
∑
zi=1

min
 si
max
zj=0

sj
− 1, 0

2

(8)
where max

zj=0
sj is the maximum salience among all

non-rationale words. The min function guaran-
tees that no restrictions will be applied as long as
the maximum salience of non-rationale words is
smaller than any rationale word.

3.3 Gate Loss: Handling NoIRs

Distantly-labeled rationale words may vary dramat-
ically in quality. Non-helpful rationale words may
incorrectly attract the model focus, which may con-
fuse the model and affect its performance. To ad-
dress this problem, we thus make a new assumption,
which prevents the model from overly focusing on
the rationales that are not helpful: A3: Only part

of the rationales, or crucial rationales, should at-
tain higher focus. This could encourage a model to
give little focus to certain annotated rationale words
that are identified as non-helpful during training.

Since Base Loss explicitly requires an equal fo-
cus on all rationale words, the model will drag the
salience of rationales to be equal after long peri-
ods of training. This is not expected for distantly-
labeled rationales, as some of them may not be help-
ful. We expect an adaptive early-stop mechanism
for such losses in order to prevent over-training on
those non-helpful rationales.

Specifically, we consider halting the auxiliary
constraining process when rationale words in an in-
stance have gained adequate focus in total. This in-
dicates that some rationale words are already iden-
tified as important during training. As those ratio-
nal words are sufficient towards final classification,
there is no need to enhance the others. In contrast,
for instances where the total focus for all rationale
words remains at a lower level, they should possess
a higher priority in the remaining training process.

To this end, we add a Gate term to Base Loss
to form Gate Loss, in order to adaptively deter-
mine whether to skip the gradient constraints for
the current instance:

La gate = Bern(1−
∑

xi∈SR

si)
∑

xi∈SR

(si−1)2 (9)

where Bern(p) is the Bernoulli distribution with pa-
rameter p.1 The Gate term can be similarly attached
to Order Loss to jointly apply the two methods:

La gate+order = Bern(1−
∑

xi∈SR

si)La order

(10)
With this term Eq. 9, constraints are given

less and less opportunity as the sum of rationale
salience rises. The more focus the current ratio-
nales receive in total, the less likely the instance
will be further trained on. Thus, the Gate term
acts as a gate for sentences with both helpful and
non-helpful rationales: as the most helpful ratio-
nale words quickly stand out and take up a higher
proportion in salience, rationales in these sentences
will have lower chances to receive training in the fu-
ture iterations. In other words, the Gate term allows
the model to focus on instances whose rationale
words are not well modeled.

1We have also tried other common methods besides
Bernoulli distribution, and the results are shown in the Ap-
pendix.
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4 Experiments

We evaluate our methods on two sentence classifi-
cation tasks, sentiment analysis and event trigger
detection, on Stanford Sentiment Treebank (SST)
and ACE-2005, respectively, which have been con-
sidered as a suitable testbed to investigate how addi-
tional rationales can help to improve a base model.

Stanford Sentiment Treebank (SST) (Socher
et al., 2013) includes 10,662 sentences tagged with
sentiment on a scale of 1 (most negative) to 5 (most
positive). We filter out neutral instances and divide
the remaining sentences into positive (4, 5) and
negative (1, 2), making it a binary classification
task. There are 6920 sentences in training set, 872
sentences in validation set and 1821 sentences in
test set. In SST, words are labeled with 5 levels of
sentiment polarity. We take the words with extreme
positive polarity (label 1) or negative polarity (la-
bel 5) as our sentiment lexicon, which is used to
automatically annotate rationale words in each sen-
tence. 56.7% training instances have at least one
rationale word. There are 0.85 annotated rationale
words per sentence on average, and the average
sentence length for training is 19.3 words.

ACE-2005 (Christopher et al., 2006) is an Event
Detection (ED) Dataset. Following previous works
in event detection (Nguyen and Grishman, 2015),
we consider event trigger detection as a classifi-
cation task. That is, for every token in a given
sentence, we aim to predict whether the current
token is an event trigger or not. Here, we do not
consider identifying event types and formulate it as
a binary classification task for ease of exposure.

Previous studies show that trigger words are
strong, universal features that can indicate events
of specific types. Therefore, in each sentence, we
automatically label a word as rationale if and only
if it has been labelled at least once as a trigger in
the training set. We use the same split as (Ji and
Grishman, 2008), with 14,849 sentences for train-
ing, 836 for validation, and 672 for testing. 88.7%
of training sentences have been annotated with at
least one rationale word. On average, there are 4.66
rationale words per sentence.

Evaluation Metrics Following previous works,
we use accuracy (Acc) and F1-scores (F1) as the
evaluation metrics on SST. We use F1-score as the
only metrics on ACE-2005 and do not examine ac-
curacy, since this dataset is extremely unbalanced,
where a model predicting all instances into negative

can achieve over 97.5% Acc. We run each setting
5 times and report mean and standard deviations.

Implementation Details Our basic classifica-
tion model is a convolutional neural network
(CNN)(Ghaeini et al., 2019). The input tokens are
first transformed to word embeddings, which are
300-dimension Glove vectors (Pennington et al.,
2014) in SST, and the combination of a 300-
dimension Glove embedding and a 50-dimension
entity (originally labeled) embedding in ACE-2005.
Then, a convolution layer with 200 kernels, viz. 50
kernels with width 2, 3, 4 and 5 respectively, is used
to extract local features, followed by a feed forward
neural network to gain hidden representations of
words. We then calculate the sentence representa-
tion using the attention mechanism, and feed it into
a softmax regression to obtain estimated probabil-
ity distribution. All activation functions are tanh,
the dropout rate is 0.5, and the batch size is 512
for SST and 256 for ACE. We optimize the model
with Adam (Kingma and Ba, 2015) with learning
rate = 10−3, β1 = 0.9, β2 = 0.999 and ε = 10−8.
The L2-normalization rate is set to 10−4.

For instances without any annotated rationale
words, we do not apply auxiliary losses to them.

Comparison Methods Besides the base CNN
model, we compare our methods with 2 recent
works that combine the same CNN architecture
with additional rationales: CNN: the vanilla
CNN classifier trained with the cross-entropy loss.
Saliency Learning (SL): Ghaeini et al. (2019) pro-
poses a broad constraint that requires all rationale
words to have positive gradients. Integrated Gradi-
ent Attribution (IGA): Liu and Avci (2019) use the
Integrated Gradient (Sundararajan et al., 2017) to
calculate the attributions of a classification model,
and force the model to focus on rationales by re-
stricting their attributions to be 1 , where the word
attribution is similar to word salience in our work.

4.1 Main Results

Table 2 shows the performance of different methods
on SST and ACE-2005.

We first notice that previous approaches, both
Saliency Learning and IG Attribution, perform
slightly better than the baseline CNN classifier,
without significant improvement. This is not sur-
prising, since in our setup, the rationale annotations
are automatically collected, far from perfect com-
pared to expert-annotated ones. Although both
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Accuracy (SST) F1-score (SST) F1-score (ACE-2005)

Model Mean + Std. Sig. p Mean + Std. Sig. p Mean + Std. Sig. p

Baseline 0.847 ± 0.002 - 0.851 ± 0.003 - 0.698 ± 0.004 -

SL 0.849 ± 0.003 - 0.851 ± 0.004 - 0.704 ± 0.004 -
IGA 0.848 ± 0.002 - 0.852 ± 0.002 - 0.703 ± 0.003 -

+ Base Loss 0.851 ± 0.004 - 0.854 ± 0.004 - 0.705 ± 0.005 -
+ Gate Loss 0.852 ± 0.003 - 0.854 ± 0.005 - 0.714 ± 0.006 0.044
+ Order Loss 0.862 ± 0.003 0.008 0.862 ± 0.003 0.041 0.715 ± 0.005 0.032
+ Gate + Order 0.861 ± 0.004 0.013 0.862 ± 0.003 0.047 0.726 ± 0.008 0.002

Table 2: Performance of our approaches on two dataset with CNN as base model. Saliency Learning and IG
Attribution are our implementations of two previous gradient constraint methods. +Base, +Order, +Gate stand for
models with corresponding auxiliary losses, and +Gate+Order is Order Loss combined with the Gate term. Sig. p
columns report the p-value of t-test with +Base Loss.

SL and IGA push the classification model to fo-
cus on those rationales, neither of them takes into
account the quality issues of distantly-labeled ratio-
nales, i.e., insufficiency and indiscrimination, thus
it is difficult for them to bring more significant im-
provement regarding vanilla CNN. The Base Loss
method also poses strong emphases on the rationale
words without considering PINs. It can bring a bit
more improvement than SL and IGA, though not
significant enough. When we push the classifica-
tion model to consider the different importance of
these non-perfect rationale words, our Gate Loss
method obtains more significant improvement on
ACE-2005. When formally considering to spread
the model focus to PINs, our Order Loss method
obtains significant improvement, 1.1% and 1.7%
improvement in F1 than vanilla CNN on SST and
ACE-2005, respectively.

Now we look closer at the performance of our
proposed methods. On ACE-2005, applying Order
Loss and Gate Loss can both significantly outper-
form vanilla CNN in F1-scores, by 1.7% and 1.6%,
respectively. This is more than twice the improve-
ment gained by the Base Loss (0.7%), which indi-
cates that properly modeling the insufficiency and
indiscrimination issues are indeed necessary when
working with distantly-labeled rationales. It is note-
worthy that combining Order Loss and Gate Loss
further improves the F1-score by as much as 2.8%,
which is larger than any of their separate applica-
tions. This illustrates that the two new methods,
aiming at different quality issues, can be applied
together in a natural/integral form to jointly exploit
distantly-labeled rationales.

Although our Order Loss method can bring
noticeable improvement, 0.8% in F1 than Base
Loss, on SST, our Gate Loss and the Base Loss

only achieves comparable performance with vanilla
CNN. We believe the reason is that SST actually
suffers from severe insufficiency issues. There are
only 0.85 rationale words per sentence in SST, but
4.66 rationales per sentence in ACE-2005. Given
that 76.7% sentences hold only 1 annotated ratio-
nale word, there is not much for the early-stop
mechanism in our Gate Loss to do on SST. In this
case, the Gate Loss boils down to the Base version.
That is also why the Order Loss obtains significant
improvement (1.1% more in F1 than Base Loss) on
SST, which is designed to encourage those PINs to
contribute to model training as well.

5 Analysis

5.1 Efficacy Analysis

In order to understand the running mechanisms of
our methods, we should look at what our methods
have done with the non-perfect rationales. To this
end, we examine the influence of our proposed
losses by analyzing the average salience scores of
two specific types of words in ACE-2005, event
arguments and gold triggers, corresponding to the
target of Order Loss and Gate Loss, respectively.

Arguments refer to entities (mentions) involved
in an event. They are not annotated as rationales
by us, but previous studies show the importance
of these words for event extraction (Nguyen and
Grishman, 2018). We expect the Order Loss could
maintain enough focus on them.

Gold triggers in a sentence refer to the gold-
standard event trigger annotations in ACE 2005,
which are considered to indeed cause that sentence
to be labeled as an event mention by the ACE an-
notators. As the decisive factor for event detection,
the gold triggers definitely serve as essential indi-
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Figure 1: Average salience scores of argument words
with Base Loss and Order Loss on ACE-2005. As train-
ing proceeds, Base Loss forces the argument to little
focus, while salience scores in Order Loss maintain a
high level.
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Figure 2: Average salience scores of crucial rationales
(gold triggers) and the average salience of all ratio-
nales with Base Loss and Gate Loss on ACE-2005. Af-
ter around 1500 training steps, Base Loss drives the
salience of gold triggers towards average, while Gate
Loss remains high discernment compared with Base
Loss, with a higher focus on gold triggers and a lower
average for all rationales.

cators, and consistently deserve high focus from
the detection model. We will explore whether Gate
Loss can successfully perceive them and render
them lasting, sufficient focus.

Give Weight to Helpful Non-rationales We cal-
culate the average salience scores of argument
words on ACE-2005 with the Base Loss and Order
Loss methods, respectively. As shown in Fig 1, the
average salience score of arguments when applying
the Base Loss is much lower compared with the
Order Loss during the whole training procedure.
Equipped with the Order loss, the salience tends to
stabilize at a high level. This illustrates that, unlike
Base Loss, Order Loss allows arguments to obtain
model emphasis. Thus, potential important words
beyond rationales are able to contribute, making
the model prediction more accurate.

Focus on Crucial Rationales The average
salience scores of gold triggers and all rationale
words are plotted in Figure 2. As can be seen, for
both Gate Loss and Base Loss, the salience score

0 2 4 6 8 10 12 14
(b) Random adding percentage of the rationales

70.0

70.5

71.0

71.5

72.0

F1
 S

co
re

s(
%

)

Gate Loss
Base Loss
Baseline

0 2 4 6 8 10 12 14
(a) Random dropping percentage of the rationales

70.25

70.50

70.75

71.00

71.25

71.50

71.75

72.00

F1
 S

co
re

s(
%

)

Order Loss
Base Loss
Baseline

Figure 3: Results of perturbation experiments on ACE-
2005. (a) shows the consequences of randomly remov-
ing 10%, 20%, 30% of the distantly-labeled rationales,
and (b) shows the effects of randomly adding 5%, 10%,
15% extra words to rationale annotations.

of gold triggers increases quickly and surpasses
the average salience scores of all rationales at the
beginning. However, the salience score of gold
triggers in Base Loss begins to decline as training
proceeds, to finally comparable with other ratio-
nales. In contrast, with Gate Loss, the salience of
gold triggers remains rather stable at a high value.
Such stability shows that the early-stop mechanism
introduced by Gate Loss helps maintain the focus
on these crucial rationales, instead of forcing them
to approach average.

5.2 Robustness Analysis

As shown in the previous section, our proposed
methods can alleviate the Insufficiency and Indis-
crimination issues of the non-perfect rationales.
Here, we take a step forward to the robustness of
our proposed methods, e.g., how our methods will
perform when given a much lower quality of ratio-
nales.

Working with scarcer rationales Now the ques-
tion is: how our method will perform if the
rationale-labeling rules are less inclusive and the
rationales are even scarcer? To study the stability
of the Order Loss, we create a more tough situ-
ation of scarcer rationales by gradually throwing
away a small, random proportion of words from
the original rationales on ACE-2005.

Figure 3(a) shows the performance of Order Loss
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under up to 30% reduction of rationales, compared
with Base Loss. We see that Order Loss undergoes
only minor losses of performance as more rationale
words are transferred to non-rationales, since Order
Loss is designed to consider the PINs by spreading
the model focus to those non-rationale words that
can contribute to the final classification. However,
Base Loss gradually loses its ability to incorporate
priors, since it attempts to give the model focus
entirely to the rationales, and finally slides to near
baseline performance at around 30% amount of
perturbation. This indicates that our Order Loss
can stably and efficiently learn from insufficient
rationales while keeping an eye on other helpful
words that are left out.

Working with noisy rationales A robust model
should be capable of discerning whether a word is
important indeed by itself, instead of simply check-
ing the rationale label. We seek to examine whether
the Gate Loss can still take effect under more and
more severe pollution of false rationales. Specif-
ically, we intentionally introduce noises to the ra-
tionale annotations by randomly labeling several
non-rationale words in each case as “rationale” in
ACE-2005, and see how the performance of differ-
ent methods is affected.

As can be seen in Figure 3(b), more noises do
not pose a big threat to Gate Loss, with only a
0.6% decline in its performance under at most 15%
amount of perturbation. However, Base Loss turns
out to be highly dependent on the purity and reli-
ability of the rationales, as its performance drasti-
cally falls to even below baseline within less than
10% perturbation. This is not surprising, since Base
Loss requires equally high attention on rationales,
which is unreasonable for noisy rationale annota-
tions. Nonetheless, the early-stop mechanism of
Gate Loss circumvents overtraining on noises, thus
outperforming the rigid requirements of Base Loss.

6 Related Works

Incorporating human priors has been well studied
in different NLP applications with different forms
of rationales. Zaidan et al. (2007) attains a more
reliable Support Vector Machine by adding con-
trast training examples, which mask out important
substrings. Yu et al. (2019) exploit pre-annotated
rationales to train an extractor and use the extracted
words for classification. Luo et al. (2018) concate-
nates information of regular expressions to word
embeddings for spoken language understanding.

Jiang et al. (2020) uses an RNN to model regular ex-
pressions for text classification tasks. Most of these
works provide effective ways to utilize word-level
knowledge, but none of them formally considers
the quality issues with the distantly-labeled ratio-
nales. Additionally, Poulis and Dasgupta (2017)
discuss the insufficiency issue in the feature feed-
back framework, and try to incorporate vague fea-
ture feedback into a linear classifier.

As a widely-used explanation method, the atten-
tion mechanism is often applied with constraints
to guide model focus towards the significant part
of inputs (Liu et al., 2017; Nguyen and Nguyen,
2018; Bao et al., 2018). Our proposed methods are
currently based on gradient-based salience calcula-
tion, which is easier to obtain and model-agnostic,
thus can be applied to a wider range with ease. But
our methods do not depend on specific calculation
methods for word salience, and can be easily trans-
planted to attention-based constraints, which we
will leave for future work.

Recent studies have provided various techniques
to constrain gradient-based word salience. Ross
et al. (2017) forces the gradient of features, which
are annotated non-helpful, to be zero, to alter the
decision boundary of the model. Liu and Avci
(2019) calculates L2 distance between Path Inte-
grated Gradients attribution for selected tokens and
a target value in the objective function, to mitigate
unintended bias in toxic comment classification and
improve classifier performance in scarce settings.
Ghaeini et al. (2019) requires the gradients of all
rationales to be positive to encourage the model
to focus on salient words. The success of these
works motivates us to further explore the impact of
distantly-labeled rationales, which are easier to ob-
tain but will bring challenges to previous methods
as we have shown in experiments. In our method,
we formally consider the insufficiency and indis-
crimination issues, and design two losses to not
only push the classification model to take care of
those potentially important non-rationales, but also
discriminatively focus on rationales to avoid over-
training on those non-helpful annotations.

There is another line of works that try to ex-
plicitly produce human-readable rationales during
model learning. Lei et al. (2016) use reinforce-
ment learning to identify keywords as rationales
to improve model interpretability. DeYoung et al.
(2020) further constructs a benchmark dataset to
engage the research about interpretable model de-
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sign. While, our work is to examine how to better
incorporate non-perfect rationales into neural net-
work models, which is orthogonal to that line of
research.

7 Conclusions

While distantly-labeled rationales are easy to ob-
tain, they are often insufficient and indiscriminative,
compared with high quality expert annotations. In
this paper, we provide new perspectives on how to
deal with such rationales, and propose two novel
methods to guide a classification model to learn
from potentially important non-rationales while
avoiding over-training on noisy annotations. Ex-
periments on two NLP classification tasks show
that our methods can effectively tackle the men-
tioned quality issues and are robust enough to ex-
ploit the non-perfect rationales even in more tough
situations. Our methods are not limited to spe-
cific salience calculations, we hope to explore more
forms of word salience and rationales in the future.
We also expect our approaches to be beneficial in
other scenarios where rationales are noisy and in-
complete. This even includes scenarios when ratio-
nales are not distantly labeled, e.g., crowdsourced
human annotations with low agreement (Sen et al.,
2020).
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Appendix

Different Implementation of Gate Loss
Considering the sum of rationale words salience
shows whether the rational words have gained ade-
quate focus in total, we use Bernoulli distribution
as a gate to control the constraint in our Gate Loss:

La gate = Bern(1−
∑

xi∈SR

si)
∑

xi∈SR

(si − 1)2

(11)
We have tried other ways to perform the gate.

First, we try to use the sum of rationale salience as
a weight directly. We define Soft Gate Loss as

La soft gate = (
∑

xi∈SR

si)
∑

xi∈SR

(si − 1)2 (12)

Another way is to use a threshold to determine
whether the focus rational words gained are suffi-
cient. we define Marginal Gate Loss as

La marginal gate = I(
∑

xi∈SR

si ≤ t)
∑

xi∈SR

(si − 1)2

(13)
where I is an indicator function and t is a prede-
fined threshold.

The performance of Soft Gate Loss and Marginal
Gate Loss is shown in Table 3. As can be seen, our
Bernoulli gate performs best among all the three
gate calculation methods. Soft Gate Loss can bring
a bit more improvement than Base Loss, but not
significant enough, which illustrates that a soft con-
trol may not be suitable. As for the Marginal Gate
Loss, its performance is very sensitive to the se-
lection of threshold and the best F1 is only 71.1%,
which is still lower than Bernoulli Gate.

Thus, taking both performance and stability into
consideration, we choose Bernoulli Gate as our
implementation of Gate Loss.

F1

Baseline 0.698

+Base Loss 0.704

+Soft 0.707

+Marginal (0.9) 0.709
+Marginal (0.7) 0.711
+Marginal (0.5) 0.698
+Marginal (0.3) 0.699

+Bernoulli 0.715

Table 3: The performance of different gate calculations
on ACE-2005. +Soft, +Marginal, +Bernoulli means
use Soft Gate Loss, Marginal Gate Loss and Gate
Loss respectively. And the number in the bracket for
Marginal Gate represents the threshold.


