
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 5506–5516

August 1–6, 2021. ©2021 Association for Computational Linguistics

5506

BanditMTL: Bandit-based Multi-task Learning for Text Classification

Yuren Mao1,Zekai Wang2,Weiwei Liu2∗,Xuemin Lin1,Wenbin Hu2

1School of Computer Science and Engineering, University of New South Wales
2School of Computer Science, Wuhan University

yuren.mao@unsw.edu.au, {wzekai99,liuweiwei863}@gmail.com
lxue@cse.unsw.edu.au, hwb@whu.edu.cn

Abstract

Task variance regularization, which can be

used to improve the generalization of Multi-

task Learning (MTL) models, remains unex-

plored in multi-task text classification. Ac-

cordingly, to fill this gap, this paper investi-

gates how the task might be effectively regular-

ized, and consequently proposes a multi-task

learning method based on adversarial multi-

armed bandit. The proposed method, named

BanditMTL, regularizes the task variance by

means of a mirror gradient ascent-descent al-

gorithm. Adopting BanditMTL in the multi-

task text classification context is found to

achieve state-of-the-art performance. The re-

sults of extensive experiments back up our the-

oretical analysis and validate the superiority of

our proposals.

1 Introduction

Multi-task Learning (MTL), which involves the si-

multaneous learning of multiple tasks, can achieve

better performance than learning each task indepen-

dently (Caruana, 1993; Ando and Zhang, 2005). It

has achieved great success in various applications,

ranging from summary quality estimation (Kriz

et al., 2020) to text classification (Liu et al., 2017).

In the multi-task text classification context, MTL

simultaneously learns the tasks by minimizing their

empirical losses together; for example, by mini-

mizing the mean of the empirical losses for the in-

cluded tasks. However, it is common for these tasks

to be competing. Minimizing the losses of some

tasks increases the losses of others, which accord-

ingly increases the task variance (variance between

the task-specific loss). Large task variance can lead

to over-fitting in some tasks and under-fitting in

others, which degenerates the generalization per-

formance of an MTL model. To illustrate this issue,

*Corresponding author.

it is instructive to consider a case of two-task learn-

ing, where task 1 and task 2 are conflicting binary

classification tasks. When the task variance is un-

controlled, it is possible that the empirical loss of

task 1 will converge to 0, while the empirical loss of

task 2 will converge to 0.5. In such a case, although

the mean of the empirical losses is decreasing, task

1 overfits and task 2 underfits, which leads to poor

generalization performance.

To address the problem caused by uncontrolled

task variance, it is necessary to implement task vari-

ance regularization, which regularizes the variance

between the task-specific losses during training.

However, existing deep MTL methods, including

both adaptive weighting sum methods (Kendall

et al., 2018; Chen et al., 2018; Liu et al., 2017)

and multi-objective optimization-based methods

(Sener and Koltun, 2018; Mao et al., 2020b), ig-

nore the task variance. Overlooking task variance

degenerates an MTL model’s generalization ability.

To fill this gap and further improve the general-

ization ability of MTL models, this paper proposes

a novel MTL method, dubbed BanditMTL, which

jointly minimizes the empirical losses and regu-

larizes the task variance. BanditMTL is proposed

based on linear adversarial multi-armed bandit and

implemented with a mirror gradient ascent-descent

algorithm. Our proposed approach can improve the

performance of multi-task text classification.

Moreover, to verify our theoretical analysis and

validate the superiority of BanditMTL in the text

classification context, we conduct experiments on

two classical text classification problems: senti-

ment analysis (on reviews) and topic classification

(on news). The results demonstrate that apply-

ing variance regularization can improve the perfor-

mance of a MTL model; moreover, BanditMTL is

found to outperform several state-of-the-art multi-

task text classification methods.
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2 Related Works

Multi-task Learning methods jointly minimize task-

specific empirical loss based on multi-objective

optimization (Sener and Koltun, 2018; Lin et al.,

2019; Mao et al., 2020a) or optimizing the

weighted sum of the task-specific loss (Liu et al.,

2017; Kendall et al., 2018; Chen et al., 2018). The

multi-objective optimization based MTL can con-

verge to an arbitrary Pareto stationary point, the

task variance of which is also arbitrary. While

the weighted sum methods focus on minimizing

the weighted average of the task-specific empirical

loss, they do not consider the task variance. To fill

the gap in existing methods, this paper proposes

to regularize the task variance, which will signif-

icantly impact the generalization performance of

MTL models.

Variance-based regularization has been used pre-

viously in Single-task Learning to balance the trade-

off between approximation and estimation error

(Bartlett et al., 2006; Koltchinskii et al., 2006;

Namkoong and Duchi, 2017). In the Single-task

Learning setting, the goal of variance-based reg-

ularization is to regularize the variance between

the loss of training samples (Namkoong and Duchi,

2016; Duchi and Namkoong, 2019). While these

variance-based regularization methods can improve

the generalization ability of Single-task Learning

models, they do not fit the Multi-task Learning set-

ting. This paper thus first proposes a novel variance-

based regularization method for Multi-task Learn-

ing to improve MTL models’ generalization ability

by regularizing the between-task loss variance.

3 Preliminaries

Consider a multi-task learning problem with T
tasks over an input space X and a collection of

task spaces {Yt}Tt=1. For each task, we have a

set of i.i.d. training samples Dt = (Xt, Y t) and

(Xt, Y t) = {xti, yti}nt

i=1, where nt is the number of

training samples of task t. In this paper, we focus

on the neural network-based multi-task learning

setting, in which the tasks are jointly learned by

sharing some parameters (hidden layers).

Let h(·, θ) : {X}Tt=1 → {Yt}Tt=1 be the multi-

task learning model, where θ ∈ Θ is the vector

of the model parameters. θ = (θsh, θ1, ..., θT )
consists of θsh (the parameters shared between

tasks) and θt (the task-specific parameters). We

denote ht(·, θsh, θt) : X → Yt as the task-

specific map. The task-specific loss function

is denoted as lt(·, ·) : Yt × Yt → [0, 1]T .

The empirical loss of the task t is defined as

L̂t(θsh, θt)= 1
nt

∑nt
i=1 l

t(h(xti, θ
sh, θt), yti).

The transpose of the vector/matrix is represented

by the superscript �, and the logarithms to base e
are denoted by log.

3.1 The Learning Objective of MTL
Under the Empirical Risk Minimization paradigm,

multi-task learning aims to optimize the vector of

task-specific empirical losses. The learning objec-

tive of multi-task learning is formulated as a vector

optimization objective, as in equation (1).

min
θ

(L̂1(θsh, θ1), ..., L̂T (θsh, θT ))�, (1)

In order to optimize the learning objective, existing

multi-task learning methods tend to adopt either

global criterion optimization strategies (Liu et al.,

2017; Kendall et al., 2018; Chen et al., 2018; Mao

et al., 2020b) or multiple gradient descent strate-

gies (Sener and Koltun, 2018; Lin et al., 2019; De-

babrata Mahapatra, 2020). In this paper, we choose

to adopt the typical linear-combination strategy,

which can achieve proper Pareto Optimality (Mietti-

nen, 2012) and is widely used in the multi-task text

classification context (Liu et al., 2017; Yadav et al.,

2018; Xiao et al., 2018). The linear-combination

strategy is defined in (2):

min
θ

1

T

T∑
t=1

L̂t(θsh, θt), (2)

3.2 Adversarial Multi-armed Bandit
Adversarial multi-armed bandit, a case in which a

player and an adversary simultaneously address the

trade-off between exploration and exploitation, is

one of the fundamental multi-armed bandit prob-

lems (Bubeck and Cesa-Bianchi, 2012). In this

paper, we consider the linear multi-armed bandit,

which is a generalized adversarial multi-armed ban-

dit. In our linear multi-armed bandit setting, the set

of arms is a compact set A ∈ R
T . At each time step

k = 1, 2, ...,K the player chooses an arm from A
while; simultaneously, the adversary chooses a loss

vector from [0, 1]T . For linear multi-armed bandit,

the Online Mirror Descent (OMD) algorithm is a

powerful technology that can be used to achieve

proper regret (Srebro et al., 2011).

3.3 Online Mirror Descent
The Online Mirror Descent (OMD) algorithm is a

generalization of gradient descent for sequential de-
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Figure 1: Illustration of the framework of hard

parameter-sharing MTL models.

cision problems. Rather than taking gradient steps

in the primal space, the mirror descent approach in-

volves taking gradient steps in the dual space. The

bijection ∇Φ and its inverse ∇Φ∗ are used to map

back and forth between primal and dual points. To

obtain a good regret bound, Φ must be a Legendre

function (Definition 1).

Assume that we update uk with gradient gk using

OMD. The OMD algorithm consists of three steps:

(1) select a Legendre function Φ; (2) perform a

gradient descent step in the dual space vk+1 =
∇Φ∗(∇Φ(uk) − ηgk), where Φ∗ and ∇Φ∗ are as

defined in Definition 2 and η is the step length;

(3) project back to the primal space according to

the Bregman divergence (Definition 3): uk+1 =
argminuDΦ(u, v

k+1) .

Definition 1 (Legendre Function). Let O ⊂ R
T be

an open convex set, and let O be the closure of O.
A continuous function Φ : O → R is Legendre if:

(i) Φ is strictly convex and admits continuous
first partial derivatives on O;

(ii) limu→O/O ‖ ∇Φ(u) ‖= +∞.

Definition 2 (Fenchel Conjugate). The Fenchel
conjugate Φ∗ of Φ is Φ∗(u) = supv{〈u, v〉 +
Φ(v)}, and ∇Φ∗(u) = argmaxv{〈u, v〉+Φ(v)}.

Definition 3 (Bregman Divergence). The Bregman
divergence DΦ : O × O → R associated with
a Legendre function Φ is defined by DΦ(u, v) =
Φ(u)− Φ(v)− (u− v)�∇Φ(v).

3.4 Hard Parameter-sharing MTL Model
This paper adopts the most prevalent and efficient

hard parameter-sharing MTL model (Kendall et al.,

2018; Chen et al., 2018; Sener and Koltun, 2018;

Mao et al., 2020b) to perform multi-task text classi-

fication. As shown in Figure 1, the hard parameter-

sharing MTL model learns multiple related tasks

simultaneously by sharing the hidden layers (fea-

ture extractor) across all tasks while retaining task-

specific output layers for each task. In multi-

task text classification, the feature extractor can

be LSTM (Hochreiter and Schmidhuber, 1997),

TextCNN (Kim, 2014), and so on. The task-specific

layers are typically formulated by fully connected

layers, ending with a softmax function.

4 Bandit-based Multi-task Learning

To avoid uncontrolled task variance, we need to

develop a learning method that regularizes the task

variance during training. Regularized Loss Mini-

mization (RLM) is a learning method that jointly

minimizes the empirical risk and a regularization

function, and is thus a natural choice. While RLM

is widely used in Single-task Learning, it cannot be

directly used in Multi-task Learning to regularize

the task variance. In this section, we propose a sur-

rogate for RLM in MTL and accordingly develop a

novel MTL method, namely BanditMTL.

4.1 Regularizing the Task Variance
RLM is a natural choice for regularizing the task

variance. RLM for task-variance-regularized MTL

can be formulated as in equation (3):

min
θ

1

T

T∑
t=1

L̂t(θsh, θt) +

√
ρV ar(L̂t(θsh, θt)),

(3)

where V ar(L̂t(θsh, θt)) = 1
T

∑T
t=1(L̂t(θsh, θt)−

1
T

∑T
t=1 L̂t(θsh, θt))2 is the empirical variance be-

tween the task-specific losses.

However, formulation (3) is generally non-

convex and associated NP-hardness. To handle

the non-convexity, we select a convex surrogate for

(3) based on its equivalent formulation (4) (Ben-Tal

et al., 2013; Bertsimas et al., 2018).

sup
p∈Pρ,T

1

T

T∑
t=1

ptL̂t(θsh, θt) =
1

T

T∑
t=1

L̂t(θsh, θt)

+

√
ρV ar(L̂t(θsh, θt)) + o(T− 1

2 ),
(4)

where Pρ,T := {p ∈ R
T :

∑T
t=1 pt = 1, pt ≥

0,
∑T

t=1 pt log(Tpt) ≤ ρ}.

supp∈Pρ,T

1
T

∑T
t=1 ptL̂t(θsh, θt) is convex and

can be used as a convex surrogate for (3). This pa-

per proposes to perform task-variance-regularized

multi-task-learning with the following learning ob-

jective:

min
θ

sup
p∈Pρ,T

1

T

T∑
t=1

ptL̂t(θsh, θt) (5)

Optimizing (5) is equivalent to optimizing (3).
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In the proposed learning objective (5), ρ is the

regularization parameter that controls the trade-off

between the mean empirical loss and the task vari-

ance. Experimental analysis on the influence of

ρ is presented in Section 5.6. To learn an MTL

model via learning objective (5), we formulate the

learning problem as an adversarial multi-armed

bandit problem in Section 4.2 and further propose

the BanditMTL algorithm in Section 4.3.

4.2 Task-Variance-Regularized MTL as
Adversarial Multi-armed Bandit

In deep multi-task learning, an MTL model is typ-

ically learnt by iteratively optimizing the learn-

ing objective. To iteratively optimize the pro-

posed learning objective (5), we formulate it

as an adversarial multi-armed bandit problem

in which the player chooses an arm from Pρ,T

and the adversary assigns a loss vector L(θ) =
(L̂1(θsh, θ1), ..., L̂T (θsh, θT ))� to each arm. In

each learning iteration, the player chooses an arm

from Pρ,T to increase the weighted sum loss, while

the adversary aims to decrease the loss by updating

the learning model. Moreover, both the player and

the adversary aim to find a trade-off between ex-

ploration and exploitation to achieve proper regret.

When lt(·, ·) is convex and Θ is compact,

the adversarial multi-armed bandit problem can

achieve a saddle point (θ∗, p∗) (Boyd and

Vandenberghe, 2014). The saddle point sat-

isfies Lp
sup ≤ p∗�L(θ∗) ≤ Lθ

inf , where

Lp
sup = sup{p�L(θ∗)|p ∈ Pρ,T} and Lθ

inf =
inf{p∗�L(θ)|θ ∈ Θ}.

To achieve a proper regret and saddle point, we

adopts mirror gradient ascent for the player and mir-

ror gradient descent for the adversary. The mirror

gradient ascent-descent algorithm for MTL, namely

BanditMTL, is proposed in the next section.

4.3 BanditMTL
In this paper, the task-variance-regularized multi-

task learning is formulated as a linear adversarial

multi-armed bandit problem. For a problem of this

kind, mirror gradient descent (ascent) is a power-

ful technique for the adversary and the player to

achieve proper regret (Bubeck and Cesa-Bianchi,

2012; Namkoong and Duchi, 2016). Moreover,

based on the mirror gradient ascent-descent, we

can reach the saddle point of the minimax optimiza-

tion problem when the task-specific loss functions

are convex and the parameter space Θ is compact

(Boyd and Vandenberghe, 2014).

Algorithm 1: BanditMTL

Input: data {Dt}Tt=1, the learning rate ηp
and ηa, the approximation parameter ε.
Initialization: p1 = ( 1

T ,
1
T , ...,

1
T )

�, ran-

domly initialize θ1.

for k = 1 to K do
Compute λ with Algorithm 2.

Update p: :

pk+1
t = e

1
1+λ

(log pkt +ηpL̂t(θ
k
sh,θkt ))

∑T
t=1 e

1
1+λ

(log pkt +ηpL̂t(θ
k
sh

,θkt ))

Update θ:
θk+1 = θk − ηa∇θ

1
T

∑T
t=1 p

k
t L̂t(θsh, θt)

end for
return θk with best validation performance.

Algorithm 2: Compute λ

Input: pk, θk, ε, β.

Initialization: λl = 0, λr = 0.

if f(0) ≤ 0 then
return 0.

end if
while f(λr) ≥ 0 do

λl = λr.

λr = λl + β.

end while
while |f(λ̂)| > ε do

λ̂ = λl+λr

2 .

if f(λ̂) > 0 then
λl = λ̂.

else
λr = λ̂.

end if
end while
return λ̂.

In this paper, we propose a task-variance-

regularized multi-task learning algorithm based

on mirror gradient ascent-descent, dubbed Ban-

ditMTL. The proposed method is presented in al-

gorithmic form in Algorithm 1. We assume that

the training procedure has K learning iterations. In

each learning iteration 1 ≤ k < K, the player and

the adversary update via mirror gradient ascent and

descent.

4.3.1 Mirror Gradient Ascent for the Player
For the player, considering the constraint in

Pρ,T , we choose the Legendre function Φp(p) =∑T
t=1 pt log pt. Based on the Legendre function,

we propose the update rule of p in (6) (see the
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Appendix for derivations of the update rule).

pk+1
t =

e
1

1+λ
(log pkt+ηpL̂t(θksh,θ

k
t ))

∑T
t=1 e

1
1+λ

(log pkt+ηpL̂t(θksh,θ
k
t ))

(6)

where ηp is the step size for the player. Moreover,λ
is the solution of equation, where f(λ) is defined

in (7). f(λ) is non-increasing and λ ≥ 0.

f(λ) =

∑T
t=1(log qt)qt

1
1+λ

∑T
t=1(1 + λ)qt

1
1+λ

− log
T∑
t=1

qt
1

1+λ

+ log T − ρ,

(7)

where qt = e(log p
k
t+ηpL̂t(θksh,θ

k
t )). To solve f(λ) =

0, we propose a bisection search-based algorithm,

as outlined in Algorithm 2.

4.3.2 Mirror Gradient Descent for the
Adversary

For the adversary, to simplify calculation, we

choose the Legendre function Φθ(θ) =
1
2 ‖ θ ‖22.

By using Φθ(θ), the update rule of mirror gradient

descent (presented in (8)) is the same as that of

same with the common gradient descent. (see the

Appendix for derivations of the update rule).

θk+1 = θk − ηa∇θ
1

T

T∑
t=1

pkt L̂t(θsh, θt), (8)

where ηa is the learning rate for the adversary.

5 Experiments

In this section, we perform experimental studies

on sentiment analysis and topic classification re-

spectively to evaluate the performance of our pro-

posed BanditMTL and verify our theoretical anal-

ysis. The implementation is based on PyTorch

(Paszke et al., 2019). The code is attached in the

supplementary materials.

5.1 Datasets
Sentiment Analysis . We evaluate our algorithm

on product reviews from Amazon. The dataset

(Blitzer et al., 2007) contains product reviews from

14 domains, including books, DVDs, electronics,

kitchen appliances and so on. We consider each

domain as a binary classification task. Reviews

with rating > 3 were labeled positive, those with

rating < 3 were labeled negative, reviews with

https://www.cs.jhu.edu/˜mdredze/
datasets/sentiment/

rating = 3 are discarded as the sentiments were

ambiguous and hard to predict.

Topic Classification . We select 16 newsgroups

from the 20 Newsgroup dataset, which is a col-

lection of approximately 20,000 newsgroup doc-

uments that is partitioned (nearly) evenly across

20 different newsgroups, then formulate them into

four 4-class classification tasks (as shown in Table

1) to evaluate the performance of our algorithm on

topic classification.

Table 1: Data Allocation for Topic Classification Tasks.

TASKS NEWSGROUPS

COMP
OS.MS-WINDOWS.MISC, SYS.MAC.HARDWARE,
GRAPHICS, WINDOWS.X

REC
SPORT.BASEBALL, SPORT.HOCKEY

AUTOS, MOTORCYCLES

SCI
CRYPT, ELECTRONICS,
MED, SPACE

TALK
POLITICS.MIDEAST, RELIGION.MISC,
POLITICS.MISC, POLITICS.GUNS

5.2 Baselines

We compare BanditMTL with following baselines.

Single-Task Learning: learning each task inde-

pendently.

Uniform Scaling: learning the MTL model with

learning objective (2), the uniformly weighted sum

of task-specific empirical loss.

Uncertainty: using the uncertainty weighting

method proposed by (Kendall et al., 2018).

GradNorm: using the gradient normalization

method proposed by (Chen et al., 2018).

MGDA: using the MGDA-UB method proposed

by (Sener and Koltun, 2018).

AdvMTL: using the adversarial Multi-task

Learning method proposed by (Liu et al., 2017).

Tchebycheff: using the Tchebycheff procedure

proposed by (Mao et al., 2020b).

5.3 Experimental Settings

We adopt the hard parameter-sharing MTL model

shown in Fig. 1. The shared feature extractor is

formulated via a TextCNN which is structured with

three parallel convolutional layers with kernels size

of 3, 5, 7 respectively. The task-specific module is

formulated by means of one fully connected layer

ending with a softmax function. To ensure consis-

tency with the state-of-the-art multi-task classifica-

tion methods (Liu et al., 2017; Mao et al., 2020b)

and ensure fair comparison, we adopt Pre-trained

http://qwone.com/˜jason/20Newsgroups/
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Figure 2: Classification accuracy of Single Task Learning, Uniform Scaling, AdvMTL, MGDA, Tchebycheff,

GradNorm, Uncertainty, and BanditMTL on the sentiment analysis dataset. Each colored cluster illustrates the

classification accuracy performance of a method over 10 runs. Our proposed BanditMTL outperforms all baselines

in all tasks. (ρ = 1.2, ηp = 0.5)

Figure 3: Classification accuracy of Single Task Learning, Uniform Scaling, Uncertainty, GradNorm, Tchebycheff,

MGDA, AdvMTL, and BanditMTL on the topic classification dataset. Each colored cluster illustrates the classifi-

cation accuracy performance of a method over 10 runs. Our proposed BanditMTL outperforms all baselines in all

tasks except Rec. BanditMTL’s average performance is also superior to that of all baselines. (ρ = 1.2, ηp = 0.5)

GloVe (Pennington et al., 2014) word embeddings

in our experimental analysis.

We train the deep MTL network model in line

with Algorithm 1. The learning rate for the ad-

versary is 1e − 3 for both sentiment analysis and

topic classification. We use the Adam optimizer

(Kingma and Ba, 2015) and train over 3000 epochs

for both sentiment analysis and topic classification.

The batch size is 256. We use dropout with a prob-

ability of 0.5 for all task-specific modules.

5.4 Classification Accuracy
We compare the proposed BanditMTL with the

baselines and report the results over 10 runs by

plotting the classification accuracy of each task

for both sentiment analysis and topic classification.

The results are shown in Fig. 2 and 3.
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Figure 4: Evolution of task variance during training of baseline methods and BanditMTL on the sentiment analysis

and topic classification datasets. ρ = 1.2, ηp = 0.5 for both sentiment analysis and topic classification.

Figure 5: Evolution of task variance during training w.r.t different value of ρ on the sentiment analysis and topic

classification datasets. ηp = 0.5 for both sentiment analysis and topic classification.

All experimental results show that our pro-

posed BanditMTL significantly outperforms Uni-

form Scaling, which demonstrates that adopting

task variance regularization can boost the perfor-

mance of MTL models. Moreover, BanditMTL

can be seen to outperform all baselines and achieve

state-of-the-art performance.

5.5 Task Variance

In this section, we experimentally investigate how

BanditMTL regularizes the task variance during

training and compare the task variance of Ban-

ditMTL with the baselines. The results are plotted

in Fig. 4. As the figure shows, all MTL methods

have lower task variance than single task learning

during training. Moreover, BanditMTL has lower

task variance and smoother evolution during train-

ing than other MTL methods. After considering the

results obtained in Section 5.4, we conclude that

task variance has a significant impact on multi-task

text classification performance.

5.6 Impact of ρ

In BanditMTL, ρ is the regularization parameter. In

this section, we experimentally investigate the im-

pact of ρ on task variance and average classification

accuracy over the tasks of interest.

5.6.1 Impact on Variance

Fig. 5 plots how the task variance evolves during

training w.r.t different values of ρ. The task vari-

ance decreases as ρ increases. It reveals that we

can control the task variance by adjusting ρ.
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Figure 6: Task-average classification accuracy w.r.t dif-

ferent value of ρ. For each value of ρ, we report the

results over five runs. ηp = 0.5.

Figure 7: Changing of task-average classification ac-

curacy w.r.t. increasing ηp. For each value of ηp, we

report the results over five runs. ρ = 1.2 for both senti-

ment analysis and topic classification.

5.6.2 Impact on Average Accuracy
The changes in BanditMTL’s average classification

accuracy w.r.t different values of ρ is illustrated in

Fig. 6. In this figure, as ρ increases, the average

accuracy of BanditMTL first increases and then

decreases. This reveals that ρ significantly impacts

the performance of multi-task text classification.

As ρ controls the trade-off between the empirical

loss and the task variance, we can conclude that

this trade-off significantly impacts the multi-task

text classification performance. Thus, in the multi-

task text classification, it is necessary for us to

find a proper trade-off between the empirical loss

and the task variance rather than focusing only on

empirical loss. These results verify the necessary

of task variance regularization.

5.7 Sensitivity Study on ηp

In BanditMTL, ηp is a hyper-parameter. To deter-

mine whether the performance of BanditMTL is

sensitive to ηp, we conduct experiments on the clas-

sification performance of BanditMTL w.r.t differ-

ent values of ηp. The results of these experiments

are presented in Fig. 7. As the figure shows, the

performance of our proposed method is not very

sensitive to ηp when ηp is within the range of 0.3

Figure 8: Comparison of task weight adaption pro-

cesses between BanditMTL, Uncertainty, Gradnorm,

and MGDA for topic classification. ρ = 1.2, ηp = 0.5.

to 0.9 for both sentiment analysis and topic clas-

sification. Setting ηp to between 0.3 and 0.9 can

generally provide satisfactory results.

5.8 Evolution of pt
In this section, we observe the changes in pt during

training and compare these changes with the task

weight adaption process of three weight adaptive

MTL methods (i.e., Uncertainty, Gradnorm, and

MGDA). The results for topic classification are

reported in Fig. 9. Due to space limitations, the

sentiment analysis results are presented in the ap-

pendix. From the results, we can see that the weight

adaption process of BanditMTL is more stable than

that of Uncertainty, Gradnorm, and MGDA.

6 Conclusion

This paper proposes a novel Multi-task Learning

algorithm, dubbed BanditMTL. It fills the task vari-

ance regularization gap in the field of MTL and

achieves state-of-the-art performance in real-world

text classification applications. Moreover, our pro-

posed BanditMTL is model-agnostic; thus, it could

potentially be used in other natural language pro-

cessing applications, such as Multi-task Named

Entity Recognition.
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Appendix

1 Derivations of the Update Rule for the
Player

Assume the mirror gradient ascent step in the dual

space is qk+1 w.r.t the k + 1th learning iteration.

Then, the qk+1 can be obtained as the follows.

According to the gradient descent step,

∇Φp(q
k+1) = ∇Φp(p

k) + ηpL(θk). (9)

For each task, the t-th element of ∇Φp(q
k+1),

∇Φp(q
k+1
t ) = 1 + log qk+1

t . (10)

Combining (9) and (10), we have

qk+1
t = e(∇Φp(pkt )+ηpL̂t(θksh,θ

k
t ))−1). (11)

To map back to the primal space, we need to

solve optimization objective (12).

pk+1 = arg min
p∈Pρ,T

DΦp(p, q
k+1), (12)

The Lagrangian for the optimization problem (12)

is:

L(pk+1, α, λ) =

T∑
t=1

pk+1
t log

pk+1
t

qk+1
t

− α(

T∑
t=1

pk+1
t − 1)− λ(ρ−

T∑
t=1

pk+1
t log pk+1

t T ).

(13)

The partial derivative w.r.t pt is:

∇pk+1
t

L(pk+1, α, λ) =(1 + λ) log pk+1
t − log qk+1

t

− α+ λ log T + 1 + λ.
(14)

Using the first order conditions w.r.t pk+1
t

(∇pk+1
t

L(pk+1, α, λ) = 0), we have

pk+1
t = (qk+1

t )
1

1+λT− λ
1+λ exp(

α

1 + λ
− 1). (15)

Combining with
∑T

t=1 p
k+1
t = 1, we have

pk+1
t = (qk+1

t )
1

1+λ /(
T∑
t=1

(qk+1
t )

1
1+λ ). (16)

Plugging this back into the Lagrangian, we have

L(λ) =min
α

max
pk+1∈Pρ,T

L(pk+1, α, λ)

=λ(log T − ρ)− (1 + λ) log
T∑
t=1

(qk+1
t )

1
1+λ .

(17)

Taking derivatives, we have

d

dλ
L(λ) = log T − ρ− log

T∑
t=1

(qk+1
t )

1
1+λ

−
∑T

t=1 log(q
k+1
t )(qk+1

t )
1

1+λ

(1 + λ)
∑T

t=1(q
k+1
t )

1
1+λ

.

(18)

Combining (11) and (16), we have

pk+1
t =

e
1

1+λ
(log pkt+ηpL̂t(θksh,θ

k
t ))

∑T
t=1 e

1
1+λ

(log pkt+ηpL̂t(θksh,θ
k
t ))

(19)

where λ is obtained by solving the equation
d
dλL(λ) = 0, which is the necessary condition to

optimize the Lagrangian function.

2 Derivations of the Update Rule for the
Adversary

Assume the mirror gradient descent step in the dual

space is γk+1 w.r.t the k + 1th learning iteration.

Then, the γk+1 can be obtained as the follows.

∇Φθ(γ
k+1) = ∇Φθ(θ

k)− ηa
1

T

T∑
t=1

pkt L̂t(θsh, θt)

(20)

For Φθ(θ) = 1
2 ‖ θ ‖22, we have ∇Φθ(γ

k+1) =
γk+1 and ∇Φθ(θ

k) = θk. Thus,

γk+1 = θk − ηa
1

T

T∑
t=1

pkt L̂t(θsh, θt). (21)

Moreover, it is obvious that

argminDΦθ
(Φθ, γ

k+1) = γk+1. (22)

Then,

θk+1 = θk − ηa
1

T

T∑
t=1

pkt L̂t(θsh, θt). (23)

which means that the update rule of the mirror

gradient descent is same with the vanilla gradient

descent when Legendre function Φθ(θ) =
1
2 ‖ θ ‖22

is adopted.

3 Weight Adaption Process for Sentiment
Analysis

The results of the change of pt during a training

banditMTL model are shown in Fig. 9. Comparing

it with the task weights adaption process of three

weight adaptive MTL methods (i.e., Uncertainty,

Gradnorm, MGDA), we can see that the weights

adaption process of banditMTL is more stable.
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Figure 9: Comparison of task weight adaption processes between BanditMTL, Uncertainty, Gradnorm, and MGDA

for sentiment analysis. ρ = 1.2, ηp = 0.5.

4 Hardware Specification and
Environment

Our experiments are conducted on a Ubuntu 64-

Bit Linux workstation, having 10-core Intel Xeon

Silver CPU (2.20 GHz) and Nvidia GeForce RTX

2080 Ti GPUs with 11GB graphics memory.


