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Abstract

Vision-language pre-training (VLP) on large-
scale image-text pairs has achieved huge suc-
cess for the cross-modal downstream tasks.
The most existing pre-training methods mainly
adopt a two-step training procedure, which
firstly employs a pre-trained object detector
to extract region-based visual features, then
concatenates the image representation and text
embedding as the input of Transformer to
train. However, these methods face problems
of using task-specific visual representation of
the specific object detector for generic cross-
modal understanding, and the computation in-
efficiency of two-stage pipeline.

In this paper, we propose the first end-to-end
vision-language pre-trained model for both
V+L understanding and generation, namely
E2E-VLP, where we build a unified Trans-
former framework to jointly learn visual rep-
resentation, and semantic alignments between
image and text. We incorporate the tasks of
object detection and image captioning into pre-
training with a unified Transformer encoder-
decoder architecture for enhancing visual
learning. An extensive set of experiments have
been conducted on well-established vision-
language downstream tasks to demonstrate the
effectiveness of this novel VLP paradigm.

1 Introduction

Self-supervised pre-training has achieved great suc-
cess in a wide range of natural language under-
standing (Devlin et al., 2018; Liu et al., 2019;
Wang et al., 2019; Lan et al., 2019) and genera-
tion tasks (Song et al., 2019; Lewis et al., 2019; Bi
et al., 2020). Recent studies (Li et al., 2019; Lu
et al., 2019; Chen et al., 2019; Tan and Bansal,
2019; Li et al., 2020b; Yu et al., 2020) have
also witnessed the progress of self-supervised pre-
training on vision-and-language tasks, which learns
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general cross-modal representations from massive
image-text pairs, and fine-tunes vision-language
pre-training (VLP) models on task-specific data
achieving state-of-the-art results on various down-
stream V+L tasks.

Most existing mainstream VLP models adopt
a two-step training method, which firstly extracts
semantic visual features using a pre-trained object
detection model, and then combines the derived
object-centric representation of the image and text
embedding as the input of Transformer (Vaswani
et al., 2017) for cross-modal pre-training. Despite
the superior performance brought by the large-scale
image-text pairs, the two-stage solution suffers
from the following weaknesses: 1) the object de-
tection model in the first step is trained on specific
visual dataset such as Visual Genome dataset (Kr-
ishna et al., 2017), and the visual representation is
not optimized towards a more generic cross-modal
understanding in the second step. It may suffer
from an error propagation problem when the object
detection model fails to recognize certain important
information. 2) extracting region features with an
object detection model is so time-consuming that
most state-of-the-art models are directly trained
and evaluated on cached visual features. This prac-
tice not only imposes unnecessary constraints on
model designs, but also confronts the run-time in-
ference inefficiency in the prediction phase.

Recently, several studies such as (Jiang et al.,
2020) have begun to revisit the grid features for
cross-modal understanding and found the grid fea-
tures can also work surprisingly well, while making
the model design and training process much sim-
pler. One pioneering work Pixel-BERT (Huang
et al., 2020) explores to pre-train with grid features
in an end-to-end fashion directly from pixels. It re-
moves all the fine-grained visual pre-training tasks,
which proves to be important for V+L pre-training.
(Zhang et al., 2021) also demonstrates that visual
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features provided by the object detection model
matter significantly in VLP models.

To address the limitations, we propose a new end-
to-end paradigm for pixel-level vision-language
pre-training, namely E2E-VLP, by enhancing with
fine-grained visual learning. During pre-training,
E2E-VLP jointly learns the visual region features
and the cross-modal representation in a unified
Transformer encoder-decoder architecture directly
from image pixels. In addition to the typical
pre-training tasks of Masked Language Modeling
and Image-Text Matching, we enhance the vision-
language pre-training with fine-grained visual se-
mantic learning. Specifically, two end-to-end pre-
training tasks are further incorporated: 1) Object
Detection: inspired from DETR (Carion et al.,
2020), we view the object detection as a direct
set prediction problem. The cross-modal Trans-
former encoder and image encoder are joint learnt
to fuse the cross-modal data from pixels, while the
decoder is used to capture fine-grained visual infor-
mation via bipartite matching between predicted
and ground-truth objects; 2) Image-Text Genera-
tion: to better understand the semantics within the
image, we also use the paired text to guide the
learning of image features. We use the encoder
network to represent the image and a left-to-right
decoder to generate the caption text. The stan-
dard auto-regressive language model objective is
used to maximize the data probability. These two
tasks can help learn high-quality visual representa-
tions (Zhang et al., 2021; Desai and Johnson, 2020).
Detection task can learn object-level visual seman-
tics, while the image caption task can capture text-
aligned visual semantics. These two kinds of visual
semantics matter significantly in VLP cross-modal
fusion. During fine-tuning, E2E-VLP can be flexi-
bly applied to vision-language understanding tasks
with the encoder module, and vision-language gen-
eration tasks with the encoder-decoder module.

We evaluate E2E-VLP on a variety of represen-
tative vision-language tasks, including visual ques-
tion answering, natural language visual reasoning,
cross-modal retrieval and image captioning. With
the new end-to-end pre-training paradigm, we can
obtain surprising good performance across differ-
ent V+L tasks and greatly decrease the online in-
ference time with the new one-stage solution.

We make the following major contributions in
this paper:

• We propose the first end-to-end vision-language

pre-trained model for both V+L understanding
and generation, namely E2E-VLP, which can
achieve comparable or superior performance
with faster online inference speedup.
• E2E-VLP is the first model that incorporates

fine-grained visual pre-training in an encoder-
decoder architecture, which paves a new way
for designing advanced vision and language pre-
training tasks.
• We enhance cross-modal feature fusion by vi-

sual learning of object detection and image cap-
tion, which has empirically shown to be effec-
tive for vision-language pre-training.

2 Related Work

Self-supervised pre-training has substantially ad-
vanced the performance across a variety of natural
language understanding (Devlin et al., 2018; Liu
et al., 2019; Wang et al., 2019; Lan et al., 2019) and
text generation tasks (Song et al., 2019; Lewis et al.,
2019; Bi et al., 2020). Inspired by language model
pre-training, several researchers propose Vision-
language pre-training(VLP) models on large-scale
image-text pairs, which has proved effective for
a wide range of vision-language (VL) tasks, such
as VQA (Antol et al., 2015), NLVR (Young et al.,
2014), Cross-modal Retrieval (Suhr et al., 2018).

The current VLP models mainly take two-step
training pipeline, which consists of extracting se-
mantic visual features by object detector and train-
ing the cross-modal pre-training model to align text
and visual features. In this kind of method, there
are mainly two broad directions to conduct vision-
language pre-training. The first line uses a single-
stream transformer architecture (Vaswani et al.,
2017) to model both image and text representations
in a unified semantic space such as VLBERT (Su
et al., 2019), UNITER (Chen et al., 2019) and
OSCAR (Li et al., 2020b). In contrast, the other
line adopts a two-stream Transformer architecture
that first encodes the image and text modalities
separately, and then fuses the cross-modal repre-
sentations with another Transformer network, such
as LXMERT (Tan and Bansal, 2019) and ERNIE-
ViL (Yu et al., 2020). Besides, SemVLP (Li et al.,
2021) is pre-trained iteratively with two prevalent
fashions. These methods are directly trained and
evaluated on cached visual features, which im-
poses unnecessary constraints on model designs
and makes it hard to enable an end-to-end vision-
language pre-training. Furthermore, Pixel-BERT
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Figure 1: The overall framework of E2E-VLP. Our model employs a unified encoder-decoder transformer frame-
work to learn visual representation, and semantic alignment between image and text jointly.

(Huang et al., 2020) represents the first and only
work to pre-train with grid features in an end-to-
end fashion. However, due to the characteristics of
learnt grid features, the end-to-end pre-training is
conducted without object-level visual tasks, which
is important in aligning the semantics between
cross-modal representations.

In this paper, we focus on enhancing the end-to-
end vision-language pre-training with more fine-
grained visual semantic learning. The object detec-
tion task and image caption task are incorporated
into the pre-training stage for further improving
the fine-grained visual-language understanding and
generation abilities.

3 E2E-VLP Pre-training

3.1 Model Architecture

The architecture of E2E-VLP is shown in Fig-
ure 1. Inspired by the recent breakthrough of us-
ing Transformer on computer vision tasks such
as DETR (Carion et al., 2020) and ViT Trans-
former (Dosovitskiy et al., 2020), we propose
to use a Transformer encoder-decoder frame-
work (Vaswani et al., 2017) for cross-modal learn-
ing, and a simple CNN backbone module is used
as the image encoder for extracting visual represen-
tations from pixels so as to allow for more flexible
network design. We jointly train the whole frame-
work in an end-to-end fashion, so as to learn the

generic visual representations and high-level cross-
modal alignment simultaneously. Different V+L
pre-training tasks are designed to further enhance
the cross-modal understanding and generation abil-
ities. Next, we describe each component of this
model in detail.

3.1.1 Input Representations
The input to E2E-VLP is an image and its related
text (e.g. caption text). We first introduce the way
to represent the text sequence and raw image pixels
as input to the Transformer.

Sentence Embeddings Each sentence is first
split into a sequence of sub-words {w1, ..., wm} by
WordPiece tokenizer. Then, similar to BERT (De-
vlin et al., 2018), each token wi is assigned three
kinds of embeddings: token, segment and position
embeddings. The three embeddings are summed
and layer-normalized to represent input sentence
representations as a sequence of embedding vectors
Eemb = {eCLS , e1, ..., em, eSEP }, where [CLS]
and [SEP ] are special tokens in BERT.

Image Representations For image feature rep-
resentation, the most existing VLP models follow
Bottom-Up and Top-Down Attention (Anderson
et al., 2018) to extract region features by Faster R-
CNN (Ren et al., 2015) trained on Visual Genome
dataset. The detector extracts region features by
first detecting regions under pre-defined categories,
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and then uses the features before the final classi-
fier as the output. These methods are limited to
the task-specific visual representation of the spe-
cific object detector, which may hinder the generic
cross-modal understanding.

To improve the generalization of the image rep-
resentation, we learn from pixels to represent an im-
age instead of using bounding boxes. The pixel fea-
tures are learned by a CNN visual backbone such as
ResNet (He et al., 2016). Starting from the initial
image vimg ∈ R3×H0×W0 (with 3 color channels),
a conventional CNN backbone generates a lower-
resolution activation map fimg ∈ RC×H×W using
the typical values as in DETR (Carion et al., 2020):
C = 2048 and H = H0

32 ,W = w0
32 . Then, we take

a 1× 1 convolution to reduce the channel dimen-
sion of the high-level activation map f from C to
a smaller dimension d, creating a new feature map
zimg ∈ Rd×H×W . The encoder expects a sequence
as input, hence we collapse the spatial dimensions
of zimg into one dimension, resulting in a HW ×d
feature map Zimg. Since the transformer architec-
ture is permutation-invariant, we supplement the
feature maps with fixed positional encodings (Par-
mar et al., 2018) that are added to the input of each
attention layer. Finally, the sequential image repre-
sentation Zimg = {o1, ..., oHW } can be seen as a
HW length of d-dimensional vector.

3.1.2 Cross-modal Encoder Pre-training
Given the embeddings of the tokens for the sen-
tence {ei}mi=1 and the sequential image represen-
tations {oj}nj=1, we adopt the Transformer en-
coder to learn cross-modal attention between im-
age grid features and language tokens. The en-
coder is a stacked model with L standard blocks,
where the l-th block consists of a multi-head
self-attention module and a feed forward network
(FFN). To allow a fine-grained feature-level se-
mantic fusion, we directly concatenate the de-
rived image features and text embeddings to con-
struct the input sequence, which is formulated as:
{eCLS , e1, ..., em, eSEP , o1, ..., oHW }.

The CNN backbone for visual representation
learning and the Transformer for cross-modal se-
mantic fusion is combined into a single model,
which is end-to-end trainable. In this way, the
learnt visual feature representation can be more
suitable for the pre-training tasks of generic cross-
modal understanding. To facilitate cross-modal
understanding, we follow (Tan and Bansal, 2019;
Chen et al., 2019; Huang et al., 2020) and conduct

two popular pre-training tasks in encoder side, in-
cluding Masked Language Modeling (MLM) and
Image-Text Matching (ITM).

Masked Language Modeling The task setup is
basically the same as in BERT (Devlin et al., 2018),
we randomly mask 15% tokens in the text and the
model is asked to predict these masked words with
the output text and visual representations. Different
from MLM task in BERT that only relies on the
surrounding text of textual modality for prediction,
the masked words will be predicted with the help
of image feature map from visual modality so as to
resolve ambiguity.

Image-Text Matching We randomly sample
50% mismatched image-text pairs and 50%
matched pairs, and train an classifier to predict
whether an image and a sentence match each other
on the representation of token [CLS] in the last
encoder layer hLCLS .

3.1.3 Visual-enhanced Decoder

Due to that the CNN feature map has no object-
level semantics, it is difficult to directly align the
cross-modal semantics between CNN feature map
and the language embeddings. Therefore, we fur-
ther add a Transformer decoder to help capture the
fine-grained semantics of the visual features, where
two specific pre-training tasks of object detection
and image-caption generation are incorporated.

The decoder adopts the standard architecture of
the transformer with multi-headed self-attention
followed by cross-attention and a feed forward net-
work (FFN). Both tasks share the same attention
parameters of decoder, while using different linear
head for the two tasks. The object detection task
focuses more on understanding the fine-grained ob-
ject information within image, while image caption-
ing task helps guide the learning of visual features
regarding the textual semantics.

Enhanced by Object Detection Following the
one-stage detection model DETR (Carion et al.,
2020), we define object detection task as the direct
set prediction problem, and use a set-based global
loss that forces unique predictions via bipartite
matching with the Transformer encoder-decoder
architecture.

Let us denote by y the ground truth set of objects
and ŷ = {ŷi}Ni=1. The set-based loss of bipartite
matching is to search for a permutation of N ele-
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ments σ ∈ LN with the lowest cost:

σ̂ = argmin
σ∈ϕN

N∑
i

Lmatch(yi, ŷσ(i)) (1)

where Lmatch(yi, ŷσ(i)) is a pair-wise matching
cost between ground truth yi and a prediction with
index σ(i).

The Hungarian algorithm (Stewart et al., 2016) is
used to efficiently compute the optimal assignment.
Different from the original DETR for single-modal
learning, our cross-modal pre-training with object
detection differs in two aspects.

In encoder side, we combine both the visual rep-
resentation and language embedding as input and
reuse the Transformer encoder for cross-modal fu-
sion. In decoder side, we take the learned positional
embeddings as the input to multiple L Transformer
decoder layers, and detects theN objects in parallel
at each decoder layer. In addition to the tasks of box
coordinate regression and class category prediction,
we also incorporate an object attribute prediction
task for Visual Genome Dataset so as to enhance
the learning of fine-grained semantics. The model
is trained with a negative log-likelihood loss for
attribute, class prediction and a box regression loss
defined as follows:

Lv(y, ŷ) =
N∑
i=1

[−logp̂σ̂(i)(ai)− logp̂σ̂(i)(ci) +

+ Lbox(bi, b̂σ̂(i)(i))]

where p̂σ̂(i)(ai), p̂σ̂(i)(ci) is the attribute and
class probability, Lbox(bi, b̂σ̂(i)(i)) is a normalized
bounding boxes regression loss as in (Carion et al.,
2020).

Enhanced by Image Captioning To guide the
learning of visual features in regards to the tex-
tual semantics, we use semantically dense captions
to learn vision representations with sequence-to-
sequence (Seq2Seq) image-to-text generation task.
The decoder is pre-trained to auto-regressively gen-
erate the target text based on the contextual rep-
resentations from the image encoder. The pre-
training loss for the decoder is defined as:

Ldec = −
∑

(x,y)∈(X ,Y)

log

n∏
t=1

P (yt|y<t, x) (2)

where X represents the sequence of vision context,
Y represents the set of text to be generated and n
is the length of tokens in output text y.

3.2 Joint Training

We pre-train E2E-VLP with all the encoder and
decoder pre-training tasks (i.e., Masked Language
Modeling, Image-Text Matching, Object Detection,
Image-to-Text Generation) jointly by minimizing
the four loss functions as:

L = Lmlm + Litm + Lv + Ldec (3)

4 Experiments

4.1 Pre-training Dataset

We pre-train our E2E-VLP on two in-domain
image-text datasets: MS-COCO (Lin et al., 2014)
and Visual Genome (Krishna et al., 2017). We
utilize the object detection and image caption anno-
tations in MS-COCO, and object detection, region
description annotations in Visual Genome. The
total amount of the dataset is 6.01M image-and-
sentence pairs on 180K distinct images.

4.2 Implementation Details

The maximum sequence length for the sentence is
set as 40. We use scale augmentation, and resize
the input images so that the shortest side is at least
480 and at most 800 pixels while the longest is at
most 1333 (Carion et al., 2020). For the model
architecture, we pre-train E2E-VLP with 6 and 12
layers of Transformer encoder respectively, while
the decoder is fixed as 6 layers. Each layer block
has 256 hidden units and 12 self-attention heads,
the intermediate layer size is 1,024. The visual
backbone is selected as ResNet with different sizes
(He et al., 2016) from torchvision with frozen batch-
norm layers. We pre-train E2E-VLP model with a
total batch size of 32 for 200 epoches on 8 V100
GPUs. We use the AdamW optimizor (Loshchilov
and Hutter, 2018) for both the Transformer and
ResNet. The initial learning rate is set as 10−4

for Transformer and 10−5 for ResNet. The weight
decay is set as 10−4.

5 Experiments

5.1 Downstream Tasks

We compare E2E-VLP model against other com-
petitive VLP models of the comparable model size
on the following downstream V+L tasks.
• VQA v2.0 (Antol et al., 2015): The VQA

task requires the model to answer natural lan-
guage questions given an image. We conduct
experiments on the widely-used VQA v2.0
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Models Params VQA NLVR2 COCO Caption
Test-dev Test-std Dev Test-P BLEU4 CIDEr

Single-stream

VisualBERT 110M 70.80 71.00 - - - -
VLP 110M 70.5 70.7 - - 36.5 116.9
VLBERT 110M 71.16 - - - - -
Unicoder-VL 110M - - - - - -
UNITER 110M 72.70 72.91 77.14 77.87 - -
OSCAR 110M 73.16 73.61 78.07 78.36 36.5 123.7

Two-stream

ViLBERT 221M 70.55 70.92 67.40 67.00 - -
12-in-1 221M 73.15 - - - - -
LXMERT 183M 72.42 72.54 74.90 74.50 - -
ERNIE-ViL 210M 72.62 72.85 - - - -

End2End PixelBERT 142M 71.35 71.42 71.7 72.4 - -

Our Model E2E-VLP 94M 73.25 73.67 77.25 77.96 36.2 117.3

Table 1: Evaluation Results on VQA, NLVR2 and Image Caption.

Models Params IR-Flickr30K TR-Flickr30K
R@1 R@5 R@10 R@1 R@5 R@10

Single-stream

VisualBERT 110M - - - - - -
VLBERT 110M - - - - - -
Unicoder-VL 110M 71.50 90.90 94.90 86.20 96.30 99.00
UNITER 110M 72.52 92.36 96.08 85.90 97.10 98.80
OSCAR 110M - - - - - -

Two-stream

ViLBERT 221M 58.20 84.90 91.52 - - -
12-in-1 221M 67.90 - - - - -
LXMERT 183M - - - - - -
ERNIE-ViL 210M 74.44 92.72 95.94 86.70 97.80 99.00

End2End PixelBERT 142M 59.8 85.5 91.6 75.7 94.7 97.1

Our Model E2E-VLP 94M 73.58 92.42 96.03 86.24 97.50 98.92

Table 2: Evaluation Results on Flickr30K.

dataset (Antol et al., 2015), which contains
204K images and 1.1M questions about these
images. Following (Anderson et al., 2018), we
treat VQA as a multi-label classification task by
picking an answer from a shared set consisting
of 3,129 answers. To fine-tune VQA task, we
use a binary cross-entropy loss to train a multi-
label classifier, we train with a batch size of 32
for 12 epochs. We set an initial learning rate of
1e-4 which decays by 0.1 at the end of epoch 6
and epoch 9.
• NLVR2 (Suhr et al., 2018): NLVR2 (Suhr et al.,

2018) is a challenging task for visual reason-
ing. The goal is to determine whether a natu-
ral language statement is true about a pair of
images. It consists of 86K/7K data for train-
ing/development. Since each data example in
NLVR2 has two natural images img0, img1 and
one language statement s, we concatenate the
given sentence and each image to build two se-
quences, and then train a binary classifier based
on the concatenation of the two outputs. We

fine-tune NLVR model with a batch size of 32
for 12 epochs, and set an initial learning rate of
1e-4 which decays by 0.1 at the end of epoch 6
and epoch 9.
• Image Caption: A visual generation task that

requires the model to generate the content of an
image. To fine-tune Image Caption task, we use
the seq2seq loss with label smoothing(Szegedy
et al., 2016). During inference, we use beam
search (i.e., beam size=4), and set α = 0.9 for
the length penalty (Wu et al., 2016). We set
initial learning rate of 1e-4 which decays by
0.1 at the end of epoch 6 and epoch 9. We re-
port our results on the COCO image captioning
dataset (Chen et al., 2015).
• Image-Text Retrieval: The image-text re-

trieval task consists of two sub-tasks: image
retrieval and text retrieval, depending on which
modality is used as the retrieval target. We con-
duct experiments on Flickr30K dataset (Young
et al., 2014), which contains 31,000 images col-
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lected from Flickr website and each image has 5
captions. We follow the same split in (Lee et al.,
2018) for training and evaluation. During fine-
tuning, we follow the method in UNITER (Chen
et al., 2019) and formulate it as a ranking prob-
lem. We use the hidden state of hLCLS to com-
pute the similarity scores for the sampled posi-
tive and negative pairs, and maximize the mar-
gin between them through circle loss (Sun et al.,
2020) as ERNIE-ViL (Yu et al., 2020). We fine-
tune our model with a batch size of 64 and a
learning rate of 5e-5 for 4 epochs.

5.2 Baseline Methods
We compare our E2E-VLP model with all the
three prevalent VLP architectures: i.e., single-
stream and two-stream architectures of two-step
pipeline framework and end-to-end one-step so-
lution. Single-stream architecture uses a unified
Transformer to encode the vision-language inputs,
including the state-of-the-art methods such as OS-
CAR(Li et al., 2020b), UNITER(Chen et al., 2019),
Unicoder-VL (Li et al., 2020a), VLBERT (Su et al.,
2019) and VLP (Zhou et al., 2020). Image and
text are separately encoded firstly and then fused
together in two-stream architecture, including the
state-of-the-art methods such as ERNIE-VIL(Yu
et al., 2020), LXMERT (Tan and Bansal, 2019),
ViLBERT (Lu et al., 2019, 2020). These two ar-
chitectures both adopt the region-based visual fea-
tures, where a object detector is first used to obtain
the object-level feature representations. We also
compare with the only end-to-end solution Pixel-
BERT (Huang et al., 2020). PixelBERT adopts
a random pixel sampling strategy to conduct the
cross-modal pre-training, while it has no visual se-
mantic understanding tasks for pre-training which
is very important in V+L tasks.

5.3 Main Results
The results on the downstream V+L tasks are
shown in Table 1. It can be observed that: 1) with
less parameters and only in-domain pre-training
data (MS-COCO and Visual Genome), E2E-VLP
can consistently achieve comparable performance
against two-step region feature-based methods such
as OSCAR and ERNIE-VIL. It shows the effective-
ness of our end-to-end grid feature-based method,
which can offer new perspectives to address the
cross-modal pre-training and conduct fusion at a
more fine-grained level. It has the potential of re-
moving the complex procedure of region feature ex-

Model VQA NLVR2

E2E-VLP 70.76 72.12
-Image-to-Text Generation 70.20 71.59
-Attribute Prediction 69.92 70.92
-Object Detection 68.85 70.38

Table 3: Ablation tests for different visual pre-training
tasks of E2E-VLP (6 layer encoder, and ResNet50
backbone) on development set.

traction, and facilitate deeper interaction between
visual feature and text data in an end-to-end fash-
ion. 2) Our E2E-VLP method can significantly
improve upon the end-to-end method PixelBERT,
which demonstrates the advantages of our method
for enhancing the fine-grained visual learning with
object detection and image captioning,

5.4 Importance of Visual Learning

To further investigate the importance of each com-
ponent in our method, we conduct ablation studies
to assess the impact of different visual learning
tasks on the VQA and NLVR2 development set.
Table 3 shows the result. We can see that: 1) all the
three visual pre-training tasks contribute to the final
performance gain, and removing each of them can
decrease the performance on both tasks. The object
detection and attribute prediction tasks can help
capture fine-grained object-level semantics within
the image, which is consistent with the previous
two-step solutions that using region features from
the detection can help improve the performance
for cross-modal understanding. The image-to-text
generation task can help guide the learning of vi-
sual features in regards to the textual semantics,
which has the same conclusion as VirTex (Desai
and Johnson, 2020). 2) Among the different vi-
sual pre-training tasks, the Object Detection and
Attribute Prediction tasks are more important than
the Image-to-Text Generation task, this may be due
to the fact that the typical cross-modal downstream
tasks such as VQA and NLVR2 focus more on the
fine-grained semantics of the objects within image.

5.5 Inference Efficiency

One of the biggest advantages of end-to-end VLP
method is the inference efficiency with one single
stage. Therefore, we further examine the online
inference efficiency of E2E-VLP, compared with
the two-step region-based models (UNITER and
LXMERT) and the existing end-to-end VLP model
(PixelBERT). We examine the average inference
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Model Parameters Avg Time VQA NLVR2(ms)

LXMERT 183M 496 72.42 72.54
UNITER 110M 501 72.70 77.14

Pixel-BERT 142M 201 71.35 71.7

E2E-VLP 94M 192 73.25 77.25

Table 4: Results of the inference comparison of dif-
ferent pre-trained model architectures on the VQA and
NLVR2 dataset.

Layers Backbone Params VQA NLVR2

6 r50 49M 70.56 72.12
6 r101 68M 71.42 74.34
6 r152 84M 72.23 76.21

12 r50 59M 71.34 73.04
12 r101 78M 72.43 75.23
12 r152 94M 73.25 77.25

Table 5: Results of different pre-trained model architec-
tures on development set.

time (per query) of different models on the VQA
dataset. The result is shown in Table 4. We can see
that: 1) the end-to-end methods can be much more
efficient in online inference (2-3 times speedup)
than the two-step model. We further analyze the
inference time of different components of two-step
models and find that among the total cost of 500ms
per image-text pair, about 80% of the total time is
used to extract region-based features using Faster
R-CNN (Ren et al., 2015). It takes much time for
region selection and this will happen twice when
extracting the final regions, and it contains many
complicated post-processing procedures. 2) Our
E2E-VLP model can achieve comparable results
on both the VQA and NLVR2 datasets by saving
about 3.5 times running time. Besides, we can
also use a smaller image size to further improv-
ing the inference speed. Compared with Pixel-
BERT, E2E-VLP can also obtain some speed-ups
due to the reason that the Transformer hidden size
of E2E-VLP is only 256, which makes E2E-VLP
more light-weight and flexible. Our end-to-end so-
lution can significantly improve the performance
upon PixelBERT, because there are no visual pre-
training tasks for PixelBERT and we enhance the
pre-training of E2E-VLP with both the fine-grained
Object Detection and Image Captioning tasks.

5.6 Architecture Selection
Since our whole framework contains both the vi-
sual backbone and Transformer network as a whole,
we further study the importance of different model

architectures by changing the number of Trans-
former encoder layers and the different ResNet vi-
sual backbone layers. We expect to further examine
whether the visual backbone or Transformer net-
work is more important for the cross-modal under-
standing and fusion. From Table 5, we can see that
both adding more Transformer encoder layers and
using more complicated visual backbones can con-
tribute to the final performance gain, which proves
the importance of both modules for cross-modal
understanding. Learning better visual features and
conducting more deeply interacted visual-language
fusion are both important for V+L tasks. Besides,
we can see that using a more strong visual back-
bone (such as ResNet 152) can give more benefit
to the final performance than just increasing the
number of Transformer encoder layers from 6 to
12. This may be due to the fact that visual seman-
tic understanding is rather important in V+L tasks
and that is also why we design more fine-grained
visual pre-training tasks for further enhancing the
learning of E2E-VLP.

5.7 Impact of Input Image Size
As mentioned in Section 3.1.1, the sequence length
of the visual features is determined by the image
size HW . Therefore, the final sequence length of
the input to the transformer also largely depends on
the image size, which can in turn influence the in-
ference speed of our whole framework. We further
analyze the impact of input image size to the effi-
ciency and effectiveness of E2E-VLP. The results
of E2E-VLP with different image sizes as input
are shown in Table 6. From the results, we can
see that E2E-VLP benefits from larger images as
input, and for larger images, the sequence length
of the visual representation is longer and more in-
formation is embedded in the visual representation.
The cross-modal Transformer is capable of learn-
ing more fine-grained vision-language fusion for
better performance. Moreover, down-sampling the
image to a smaller size can significantly improve
the inference speed of E2E-VLP model, while the
model accuracy only decreases a little. For exam-
ple, when changing the input size from (800, 1333)
to (448, 448), the inference can be about 5 times
faster while the performance only decreases about
2%-3%.

5.8 Object Detection with Paired Text
Finally, we expect to further examine whether the
cross-modal fusion is stable and E2E-VLP capture
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Input Size Speedup VQA NLVR2shorter side longer side

448 448 5x 71.14 75.43
448 746 3x 72.04 75.79
600 1000 1.5x 73.08 76.87
800 1333 - 73.25 77.25

Table 6: Impact of input image size on the VQA and
NLVR2 set.

Model AP AP50 APS APM APL

DETR 40.6 61.6 19.9 44.3 60.2
E2E-VLP 41.9 62.6 20.3 45.6 61.1

Table 7: Results of object detection on MSCOCO de-
velopment dataset

fine-grained semantics by visual learning. There-
fore, we encode both the image content and cap-
tion text with E2E-VLP, and directly fine-tune it
on MSCOCO object detection benchmark dataset
with the decoder as in DETR(Carion et al., 2020).
Table 7 shows the detection result. We can see that
our E2E-VLP model can also support the Object
Detection task based on text-image pairs and per-
form surprising well compared with the original
DETR model. This phenomenon may also demon-
strate that E2E-VLP well captures the fine-grained
semantics within image and can appropriately fuse
the multi-modal information for conducting visual-
only task.

6 Conclusion

In this paper, we propose a new end-to-end
paradigm for pixel-level vision-language pre-
training, to jointly learn visual representation, and
semantic alignments between image and text. Dif-
ferent from the previous methods using the re-
gion features in a two-stage pipeline, we pro-
pose to use the more flexible and efficient image
grid features for vision-language pre-training. We
further incorporate the tasks of object detection
and image captioning into pre-training with a uni-
fied Transformer encoder-decoder architecture for
enhancing visual learning. The experiments on
well-established vision-language downstream tasks
demonstrate the effectiveness and efficiency of our
E2E-VLP model. We hope that this study can po-
tentially offer new perspectives and guide for end-
to-end vision-language pre-training.

In the future, we will explore more deeply in-
teracted ways for image-text fusion from a bottom

layer, and incorporate more advanced vision and
language pre-training tasks for further improving
the performance.
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