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Abstract

In this work, we demonstrate that the contex-
tualized word vectors derived from pretrained
masked language model-based encoders share
a common, perhaps undesirable pattern across
layers. Namely, we find cases of persistent
outlier neurons within BERT and RoBERTa’s
hidden state vectors that consistently bear the
smallest or largest values in said vectors. In
an attempt to investigate the source of this in-
formation, we introduce a neuron-level anal-
ysis method, which reveals that the outliers
are closely related to information captured by
positional embeddings. We also pre-train the
RoBERTa-base models from scratch and find
that the outliers disappear without using posi-
tional embeddings. These outliers, we find, are
the major cause of anisotropy of encoders’ raw
vector spaces, and clipping them leads to in-
creased similarity across vectors. We demon-
strate this in practice by showing that clipped
vectors can more accurately distinguish word
senses, as well as lead to better sentence em-
beddings when mean pooling. In three super-
vised tasks, we find that clipping does not af-
fect the performance.

1 Introduction

A major area of NLP research in the deep learn-
ing era has concerned the representation of words
in low-dimensional, continuous vector spaces.
Traditional methods for achieving this have in-
cluded word embedding models such as Word2Vec
(Mikolov et al., 2013), GloVe (Pennington et al.,
2014), and FastText (Bojanowski et al., 2017).
However, though influential, such approaches all
share a uniform pitfall in assigning a single, static
vector to a word type. Given that the vast major-
ity of words are polysemous (Klein and Murphy,
2001), static word embeddings cannot possibly rep-
resent a word’s changing meaning in context.

* Work partly done during internship at NetEase Inc..

In recent years, deep language models, like
ELMo (Peters et al., 2018), BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019b), have
achieved great success across many NLP tasks.
Such models introduce a new type of word vectors,
deemed the contextualized variety, where the repre-
sentation is computed with respect to the context
of the target word. Since these vectors are sensitive
to context, they can better address the polysemy
problem that hinders traditional word embeddings.
Indeed, studies have shown that replacing static
embeddings (e.g. word2vec) with contextualized
ones (e.g. BERT) can benefit many NLP tasks,
including constituency parsing (Kitaev and Klein,
2018), coreference resolution (Joshi et al., 2019)
and machine translation (Liu et al., 2020).

However, despite the major success in deploy-
ing these representations across linguistic tasks,
there remains little understanding about informa-
tion embedded in contextualized vectors and the
mechanisms that generate them. Indeed, an en-
tire research area central to this core issue — the
interpretability of neural NLP models — has re-
cently emerged (Linzen et al., 2018, 2019; Alishahi
et al., 2020). A key theme in this line of work
has been the use of linear probes in investigating
the linguistic properties of contextualized vectors
(Tenney et al., 2019; Hewitt and Manning, 2019).
Such studies, among many others, show that con-
textualization is an important factor that sets these
embeddings apart from static ones, the latter of
which are unreliable in extracting features central
to context or linguistic hierarchy. Nonetheless,
much of this work likewise fails to engage with
the raw vector spaces of language models, pre-
ferring instead to focus its analysis on the trans-
formed vectors. Indeed, the fraction of work that
has done the former has shed some curious insights:
that untransformed BERT sentence representations
still lag behind word embeddings across a variety
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of semantic benchmarks (Reimers and Gurevych,
2019) and that the vector spaces of language mod-
els are explicitly anisotropic (Ethayarajh, 2019;
Li et al., 2020a). Certainly, an awareness of the
patterns inherent to models’ untransformed vector
spaces — even if shallow — can only benefit the
transformation-based analyses outlined above.

In this work, we shed light on a persistent pattern
that can be observed for contextualized vectors pro-
duced by BERT and RoBERTa. Namely, we show
that, across all layers, select neurons in BERT and
RoBERTa consistently bear extremely large values.
We observe this pattern across vectors for all words
in several datasets, demonstrating that these sin-
gleton dimensions serve as major outliers to the
distributions of neuron values in both encoders’
representational spaces. With this insight in mind,
the contributions of our work are as follows:

1. We introduce a neuron-level method for ana-
lyzing the origin of a model’s outliers. Using
this, we show that they are closely related to
positional information.

2. In investigating the effects of clipping the out-
liers (zeroing-out), we show that the degree
of anisotropy in the vector space diminishes
significantly.

3. We show that after clipping the outliers, the
BERT representations can better distinguish
between a word’s potential senses in the
word-in-context (WiC) dataset (Pilehvar and
Camacho-Collados, 2019), as well as lead to
better sentence embeddings when mean pool-
ing.

2 Finding outliers

In this section, we demonstrate the existence of
large-valued vector dimensions across nearly all
tokens encoded by BERT and RoBERTa. To illus-
trate these patterns, we employ two well-known
datasets — SST-2 (Socher et al., 2013) and QQP'.
SST-2 (60.7k sentences) is a widely-employed sen-
timent analysis dataset of movie reviews, while
QQP (727.7k sentences) is a semantic textual sim-
ilarity dataset of Quora questions, which collects
questions across many topics. We choose these
datasets in order to account for a reasonably wide
distributions of domains and topics, but note that

'https://www.quora.com/q/quoradata/
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Figure 1: Average vectors for each layer of BERT-base.
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Figure 2: Average vectors for each layer of RoBERTa-
base.

any dataset would illustrate our findings well. We
randomly sample 10k sentences from the training
sets of both SST-2 and QQP, tokenize them, and
encode them via BERT-base and RoBERTa-base.
All models are downloaded from the Huggingface
Transformers Library (Wolf et al., 2020), though
we replicated our results for BERT by loading the
provided model weights via our own loaders.

When discounting the input embedding layers
of each model, we are left with 3.68M and 3.59M
contextualized token embeddings for BERT-base
and RoBERTa-base, respectively. In order to illus-
trate the outlier patterns, we average all subword
vectors for each layer of each model.

In examining BERT-base, we find that the mini-
mum value of 96.60% of vectors lies in the 557"
dimension. Figure 1 displays the averaged subword
vectors for each layer of BERT-base, corroborat-
ing that these patterns exist across all layers. For
RoBERTa-base, we likewise find that the maximum
value of all vectors is the 588" element. Interest-

First—Quora-Dataset—-Release-Question-Pairs ingly, the minimum element of 88.19% of vectors in
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RoBERTa-base is the 77" element, implying that
RoBERTa has two such outliers. Figure 2 displays
the average vectors for each layer of RoBERTa-
base.

Our observations here reveal a curious pattern
that is present in the base versions of BERT and
RoBERTa. We also corroborate the same findings
for the large and distilled (Sanh et al., 2020) vari-
ants of these architectures, which can be found in
the Appendix A. Indeed, it would be difficult to
reach any sort of conclusion about the represen-
tational geometry of such models without under-
standing the outliers’ origin(s).

3 Where do outliers come from?

In this section, we attempt to trace the source of the
outlier dimensions in BERT-base and RoBERTa-
base (henceforth BERT and RoBERTa). Similarly
to the previous section, we can corroborate the re-
sults of the experiments described here (as well
as in the remainder of the paper) for the large and
distilled varieties of each respective architecture.
Thus, for reasons of brevity, we focus our forth-
coming analyses on the base versions of BERT
and RoBERTa and include results for the remain-
ing models in the Appendix B.2 for the interested
reader.

In our per-layer analysis in §2, we report that
outlier dimensions exist across every layer in each
model. Upon a closer look at the input layer (which
features a vector sum of positional, segment, and
token embeddings), we find that the same outliers
also exist in positional embeddings. Figure 3 shows
that the 1st positional embedding of BERT has
two such dimensions, where the 557" element is
likewise the minimum. Interestingly, this pattern
does not exist in other positional embeddings, nor
in segment or token embeddings. Furthermore,
Figure 4 shows that the 4th positional embedding
of RoBERTa has four outliers, which include the
aforementioned 77" and 588" dimensions. We
also find that, from the 4th position to the final po-
sition, the maximum element of 99.8% positional
embeddings is the 588" element.

Digging deeper, we observe similar patterns in
the Layer Normalization (LN, Ba et al. (2016)) pa-
rameters of both models. Recall that LN has two
learnable parameters — gain () and bias (8) —
both of which are 768-dimension vectors (in the
case of the base models). These are designed as
an affine transformation over dimension-wise nor-

The first positional embedding of BERT-base
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Figure 3: The first positional embedding of BERT-base.
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Figure 4: The fourth positional embedding of
RoBERTa-base.

malized vectors in order to, like most normaliza-
tion strategies, improve their expressive ability and
to aid in optimization. Every layer of BERT and
RoBERTa applies separate LNs post-attention and
pre-output. For BERT, the 557" element of the y
vector is always among the top-6 largest values for
the first ten layers’ first LN. Specifically, it is the
largest value in the first three layers. For RoOBERTa,
the 588" element of the first LN’s 3 vector is al-
ways among the top-2 largest values for all layers —
it is largest in the first five layers. Furthermore, the
77t" element of the second LN’s +y are among the
top-7 largest values from the second to the tenth
layer.

It is reasonable to conclude that, after the vector
normalization performed by LN, the outliers
observed in the raw embeddings are lost. We
hypothesize that these particular neurons are
somehow important to the network, such that they
retained after scaling the normalized vectors by the
affine transformation involving v and . Indeed,
we observe that, in BERT, only the 1st position’s
embedding has such an outlier. However, it is
subsequently observed in every layer and token

5314



after the first LN is applied. Since LayerNorm
is trained globally and is not token specific, it
happens to rescale every vector such that the
positional information is retained. We corroborate
this by observing that all vectors share the same .
This effectively guarantees the presence of outliers
in the 1st layer, which are then propagated upward
by means of the Transformer’s residual connection
(He et al., 2015). Also, it is important to note that,
in the case of BERT, the first position’s embedding
is directly tied to the requisite [CLS] token, which
is prepended to all sequences as part of the MLM
training objective. This has been recently noted to
affect e.g. attention patterns, where much of the
probability mass is distributed to this particular
token alone, despite it bearing the smallest norm
among all other vectors in a given layer and head
(Kobayashi et al., 2020).

Neuron-level analysis In order to test the extent
to which BERT and RoBERTa’s outliers are related
to positional information, we employ a probing
technique inspired by Durrani et al. (2020). First,
we train a linear probe W € RM*N without bias
to predict the position of a contextualized vector
in a sentence. In Durrani et al. (2020), the weights
of the classifier are employed as a proxy for select-
ing the most relevant neurons to the prediction. In
doing so, they assume that, the larger the absolute
value of the weight, the more important the corre-
sponding neuron. However, this method disregards
the magnitudes of the values of neurons, as a large
weights do not necessarily imply that the neuron
has high contribution to the final classification re-
sult. For example, if the value of a neuron is close
to zero, a large weight also leads to a small contri-
bution. In order to address this issue, we define the
contribution of the i*" neuron as c(i) = abs(w;*v;)
fori =1,2,3,...,n, where wj is the i*"* weight and
v; is the 7" neuron in the contextualized word vec-
tor. We name C' = [¢(1), ¢(2), ..., ¢(n)] as a contri-
bution vector. If a neuron has a high contribution,
this means that this neuron is highly relevant to the
final classification result.

We train, validate, and test our probe on the
splits provided in the SST-2 dataset (as mentioned
in §2, we surmise that any dataset would be ade-
quate for demonstrating this). The linear probe is
a 768 x 300 matrix, which we train separately for
each layer. Since all SST-2 sentences are shorter
than 300 tokens in length, we set M = 300. We

use a batch size of 128 and train for 10 epochs
with a categorical cross-entropy loss, optimized by
Adam (Kingma and Ba, 2017).

Figure 5a shows that, while it is possible to
decode positional information from the lowest
three layers with almost perfect accuracy, much
of this information is gradually lost higher up
in the model. Furthermore, it appears that the
higher layers of RoOBERTa contain more positional
information than BERT. Looking at Figure 5b,
we see that BERT’s outlier neuron has a higher
contribution in position prediction than the average
contribution of all neurons. We also find that
the contribution values of the same neuron are
the highest in all layers. Combined with the
aforementioned pattern of the first positional
embedding, we can conclude that the 557" neuron
is related to positional information. Likewise,
for ROBERTa, Figure 5c shows that the 77"
and 588" neurons have the highest contribution
for position prediction. We also find that the
contribution values of the 588" neurons are always
largest for all layers, which implies that these neu-
rons are likewise related to positional information.”

Removing positional embeddings In order to
isolate the relation between outlier neurons and
positional information, we pre-train two RoOBERTa-
base models (with and without positional embed-
dings) from scratch using Fairseq (Ott et al., 2019).
Our pre-training data is the English Wikipedia Cor-
pus’, where we train for 200k steps with a batch
size of 256, optimized by Adam. All models share
the same hyper-parameters, which are listed in the
Appendix C.1. We use four NVIDIA A100 GPUs
to pre-train each model, costing about 35 hours per
model.

We find that, without the help of positional em-
beddings, the validation perplexity of RoOBERTa-
base is very high at 354.0, which is in line
with Lee et al. (2019)’s observation that the self-
attention mechanism of Transformer Encoder is
order-invariant. In other words, the removal of PEs
from RoBERTa-base makes it a bag-of-word model,
whose outputs do not contain any positional infor-
mation. In contrast, the perplexity of RoBERTa
equipped with standard positional embeddings is
much lower at 4.3, which is likewise expected.

2We also use heatmaps to show the contribution values in
Appendix B.1.

3We randomly select 158.4M sentences for training and
50k sentences for validation.
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In examining outlier neurons, we employ the
same datasets detailed in §2. For the RoOBERTa-
base model with PEs, we find that the maximum
element of 82.56% of all vectors is the 815! dimen-
sion*, similarly to our findings above. However, we
do not observe the presence of such outlier neurons
in the RoBERTa-base model without PEs, which
indicates that the outlier neurons are tied directly
to positional information. Similar to §2, we display
the averaged subword vectors for each layer of our
models in Appendix C.2, which also corroborate
our results.

4 Clipping the outliers

In §3, we demonstrated that outlier neurons are re-
lated to positional information. In this section, we
investigate the effects of zeroing out these dimen-
sions in contextualized vectors, a process which we
refer to as clipping.

4.1 Vector space geometry

Anisotropy Ethayarajh (2019) observe that con-
textualized word vectors are anisotropic in all non-
input layers, which means that the average cosine
similarity between uniformly randomly sampled
words is close to 1. To corroborate this finding, we
randomly sample 2000 sentences from the SST-2
training set and create 1000 sentence-pairs. Then,
we randomly select a token in each sentence, dis-
carding all other tokens. This effectively sets the
correspondence between the two sentences to two
tokens instead. Following this, we compute the
cosine similarity between these two tokens to mea-
sure the anisotropy of contextualized vectors.

In the left plot of Figure 6, we can see that con-
textualized representations of BERT and RoBERTa
are more anisotropic in higher layers. This is espe-

“Different initializations make our models have different
outlier dimensions.

tion.

cially true for ROBERTa, where the average cosine
similarity between random words is larger than 0.5
after the first non-input layer. This implies that the
internal representations in BERT and RoBERTa
occupy a narrow cone in the vector space.

Since outlier neurons tend to be valued higher
or lower than all other contextualized vector
dimensions, we hypothesize that they are the main
culprit behind the degree of observed anisotropy.
To verify our hypothesis, we clip BERT and
RoBERTa’s outliers by setting each neuron’s value
to zero. The left plot in Figure 6 shows that, after
clipping the outliers, their vector spaces become
close to isotropic.

Self-similarity In addition to remarking upon the
anisotropic characteristics of contextualized vector
spaces, Ethayarajh (2019) introduce several mea-
sures to gauge the extent of “contextualization” in-
herent models. One such metric is self-similarity,
which the authors employ to compare the similar-
ity of a word’s internal representations in different
contexts. Given a word w and n different sentences
$1, 82, .., S, which contain such word, f{(w) is the
internal representation of w in sentence s; in the
I*" layer. The average self-similarity of w in the I*"
layer is then defined as:

S i cos (£ (w), f (w))

SelfSimy (w) = S p—

)
Intuitively, a self-similarity score of 1 indicates
that no contextualization is being performed by the
model (e.g. static word embeddings), while a score
of 0 implies that representations for a given word
are maximally different given various contexts.

To investigate the effect of outlier neurons on a
model’s self-similarity, we sample 1000 different
words from SST-2 training set, all of which appear
at least in 10 different sentences. We then com-
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Figure 6: Left: anisotropy measurement of contextualized word vectors in BERT and RoBERTa before and after
clipping the outlier dimensions. Right: self-similarity measurement of BERT and RoBERTa before and after

clipping.

pute the average self-similarity of these words as
contextualized by BERT and RoOBERTa — before
and after clipping the outliers. To adjust for the
effect of anisotropy, we subtract the self-similarity
from each layer’s anisotropy measurement, as in
Ethayarajh (2019).

The right plot in Figure 6 shows that, similarly
to the findings in (Ethayarajh, 2019), a word’s self-
similarity is highest in the lower layers, but de-
creases in higher layers. Crucially, we also observe
that, after clipping the outlier dimensions, the self-
similarity increases, indicating that vectors become
closer to each other in the contextualized space.
This bears some impact on studies attempting to
characterize the vector spaces of models like BERT
and RoBERTa4, as it is clearly possible to overstate
the degree of “contextualization” without address-
ing the effect of positional artefacts.

4.2 Word sense

Bearing in mind the findings of the previous sec-
tion, we now turn to the question of word sense, as
captured by contextualized embeddings. Suppose
that we have a target word w, which appears in two
sentences. w has the same sense in these two sen-
tences, but its contextualized representations are
not identical due to the word appearing in (perhaps
slightly) different contexts. In the previous few sec-
tions, we showed that outlier neurons are related
to positional information and that clipping them
can make a word’s contextualized vectors more
similar. Here, we hypothesize that clipping such
dimensions can likewise aid in intrinsic semantic
tasks, like differentiating senses of a word.

To test our hypothesis, we analyze contextu-
alized vectors using the word-in-context (WiC)
dataset (Pilehvar and Camacho-Collados, 2019),
which is designed to identify the meaning of words

Model Layer Threshold Accuracy
Baseline - - 50.0%
Before clipping

BERT 7 0.7 67.5%
RoBERTa 10 0.9 69.0%
After clipping

BERT-clip 10 0.5 68.4%
RoBERTa-clip 11 0.6 69.9%

Table 1: The best accuracy scores on WiC dataset.
Bold indicates that the best result increases after clip-

ping.

in different contexts. WiC is a binary classification
task, where, given a target word and two sentences
which contain it, models must determine whether
the word has the same meaning across the two sen-
tences.

In order to test how well we can identify differ-
ences in word senses using contextualized vectors,
we compute the cosine similarity between contex-
tualized vectors of target words across pairs of sen-
tences, as they appear in the WiC dataset. If the
similarity value is larger than a specified threshold,
we assign the true label to the sentence pair; other-
wise, we assign the false label. We use this method
to compare the accuracy of BERT and RoBERTa
on WiC before and after clipping the outliers. Since
this method does not require any training, we test
our models on the WiC training dataset.’ We com-
pare 9 different thresholds from 0.1 to 0.9, as well
as a simple baseline model that assigns the true
labels to all samples.

Table 1 shows that after clipping outliers, the
best accuracy scores of BERT and RoBERTa in-
crease about 1%.5 This indicates that these neurons

5The WiC test set does not provide labels and the size
of validation set is too small (638 sentences pairs). We thus
choose to use the training dataset (5428 sentences pairs).

8The thresholds are different due to the fact that the cosine
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Dataset STS-B SICK-R STS-12 STS-13 STS-14 STS-15  STS-16
Baseline

Avg. GloVe 58.02 53.76 55.14 70.66 59.73 68.25 63.66
Before clipping

BERT 58.61(3) 60.78(2) 48.00(1) 61.19(12) 50.10(12) 61.15(1) 62.38(12)
RoBERTa 56.60(11) 64.68(11) 40.00(1) 58.33(11) 49.79(8) 64.39(9) 64.82(11)
After clipping

BERT-clip 63.06(2) 61.74(2) 50.40(1) 61.44(1) 54.52(2) 67.00(2) 64.18(2)
RoBERTa-clip 60.61(11) 64.82(11) 43.44(1) 59.72(11) 51.92(3) 66.15(3) 67.14(11)

Table 2: Experimental results on semantic textual similarity, where the baselines results are published in Reimers
and Gurevych (2019). We show the best Spearman rank correlation between sentence embeddings’ cosine simi-
larity and the golden labels. The results are reported as » x 100. The number in the parenthesis denotes that this
result belongs to the specific layer. Bold indicates that the best result increases after clipping.

are less related to word sense information and can
be safely clipped for this particular task (if per-
formed in an unsupervised fashion).

4.3 Sentence embedding

Venturing beyond the word-level, we also hypothe-
size that outlier clipping can lead to better sentence
embeddings when relying on the cosine similar-
ity metric. To test this, we follow Reimers and
Gurevych (2019) in evaluating our models on 7
semantic textual similarity (STS) datasets, includ-
ing the STS-B benchmark (STS-B) (Cer et al.,
2017), the SICK-Relatedness (SICK-R) dataset
(Bentivogli et al., 2016) and the STS tasks 2012-
2016 (Agirre et al., 2012, 2013, 2014, 2015, 2016).
Each sentence pair in these datasets is annotated
with a relatedness score on a 5-point rating scale,
as obtained from human judgments. We load each
dataset using the SentEval toolkit (Conneau and
Kiela, 2018).

Indeed, the most common approach for com-
puting sentence embeddings from contextualized
models is simply averaging all subword vectors that
comprise a given sentence (Reimers and Gurevych,
2019). We follow this method in obtaining embed-
dings for each pair of sentences in the aforemen-
tioned tasks, between which we compute the cosine
similarity. Given a set of similarity and gold relat-
edness scores, we then calculate the Spearman rank
correlation. As a comparison, we also consider
averaged GloVe embeddings as our baseline.

Table 2 shows that, after clipping the outliers, the
best Spearman rank correlation scores for BERT
and RoBERTa increase across all datasets, some
by a large margin. This indicates that clipping the
outlier neurons can lead to better sentence embed-
dings when mean pooling. However, like Li et al.

similarity is inflated in the presence of outlier neurons.

Model SST-2 IMDB SST-5
Before clipping

BERT 85.9%(12) 86.8%(10) 46.2%(10)
RoBERTa 88.4%(8) 91.5%(9) 46.9%(7)
After clipping

BERT-clip 85.4%(12) 86.4%(10) 46.1%(12)
RoBERTa-clip 88.7%(8) 91.6%(9) 47.0%(7)

Table 3: The best accuracy scores on different super-
vised tasks. The number in the parenthesis denotes that
this result belongs to the specific layer.

(2020b), we also notice that averaged GloVe em-
beddings still manage outperform both BERT and
RoBERTa on all STS 2012-16 tasks. This implies
that the post-clipping reduction in anisotropy is
only a partial explanation for why contextualized,
mean-pooled sentence embeddings still lag behind
static word embeddings in capturing the semantics
of a given sentence.

4.4 Supervised tasks

In the previous sections, we analyzed the effects of
clipping outlier neurons on various intrinsic seman-
tic tasks. Here, we explore the effects of clipping in
a supervised scenario, where we hypothesize that
a model will learn to discard outlier information
if it is not needed for a given task. We consider
two binary classification tasks, SST-2 and IMDB
(Maas et al., 2011), and a multi-class classification
task, SST-5, which is a 5-class version of SST-2.
First, we freeze all the parameters of the pre-trained
models and use the same method in §4.3 to get the
sentence embedding of each sentence. Then, we
train a simple linear classifier W € R7%3*N for
each layer, where N is the number of classes. We
use different batch sizes for different tasks, 768 for
SST-2, 128 for IMDB and 1536 for SST-5. Then we
train for 10 epochs with a categorical cross-entropy
loss, optimized by Adam.

5318



Table 3 shows that there is little difference in
employing raw vs. clipped vectors in terms of task
performance. This indicates that using vectors with
clipped outliers does not drastically affect classifier
accuracy when it comes to these common tasks.

5 Discussion

The experiments detailed in the previous sections
point to the dangers of relying on metrics like co-
sine similarity when making observations about
models’ representational spaces. This is particu-
larly salient when the vectors being compared are
taken off-the-shelf and their composition is not
widely understood. Given the presence of model
idiosyncracies like the outliers highlighted here,
mean-sensitive, L2 normalized metrics (e.g. cosine
similarity or Pearson correlation) will inevitably
weigh the comparison of vectors along the highest-
valued dimensions. In the case of positional arte-
facts propagating through the BERT and RoBERTa
networks, the basis of comparison is inevitably
steered towards whatever information is captured in
those dimensions. Furthermore, since such outlier
values show little variance across vectors, proxy
metrics of anisotropy like measuring the average
cosine similarity across random words (detailed
in §4.1) will inevitably return an exceedingly high
similarity, no matter what the context. When cosine
similarity is viewed primarily as means of seman-
tic comparison between word or sentence vectors,
the prospect of calculating cosine similarity for
a benchmark like WiC or STS-B becomes erro-
neous. Though an examination of distance metrics
is outside the scope of this study, we acknowledge
similar points as having been addressed in regards
to static word embeddings (Mimno and Thomp-
son, 2017) as well as contextualized ones (Li et al.,
2020b). Likewise, we would like to stress that our
manual clipping operation was performed for il-
lustrative purposes and that interested researchers
should employ more systematic post-hoc normal-
ization strategies, e.g. whitening (Su et al., 2021),
when working with hidden states directly.
Relatedly, the anisotropic nature of the vector
space that persists even after clipping the outliers
suggests that positional artefacts are simply part of
the explanation. Per this point, Gao et al. (2019)
prove that, in training any sort of model with likeli-
hood loss, the representations learned for tokens be-
ing predicted will be naturally be pushed away from
most other tokens in order to achieve a higher like-

lihood. They relate this observation to the Zipfian
nature of word distributions, where the vast major-
ity of words are infrequent. Li et al. (2020a) extend
this insight specifically to BERT and show that,
while high frequency words concentrate densely,
low frequency words are much more sparsely dis-
tributed. Though we do not attempt to dispute
these claims with our findings, we do hope our
experiments will highlight the important role that
positional embeddings play in the representational
geometry of Transformer-based models. Indeed, re-
cent work has demonstrated that employing relative
positional embeddings and untying them from the
simultaneously learned word embeddings has lead
to impressive gains for BERT-based architectures
across common benchmarks (He et al., 2020; Ke
et al., 2020). It remains to be seen how such pro-
cedures affect the representations of such models,
however.

Beyond this, it is clear that LayerNorm is the
reason positional artefacts propagate though model
representations in the first place. Indeed, our exper-
iments show that the outlier dimension observed for
BERT is tied directly to the [CLS] token, which
always occurs at the requisite 1st position —- de-
spite having no linguistic bearing on the sequence
of observed tokens being modeled. However, the
fact that ROBERTa (which employs a similar de-
limiter) retains outliers originating from different
positions’ embeddings implies that the issue of
artefact propagation is not simply a relic of task
design. It is possible that whatever positional id-
iosyncrasies contribute to a task’s loss are likewise
retained in their respective embeddings. In the case
of BERT, the outlier dimension may be granted a
large negative weight in order to differentiate the
(privileged) 1st position between all others. This
information being reconstructed by the LayerNorm
parameters, which are shared for all positions in the
sequence length, and then propagated up through
the Transformer network is a phenomenon worthy
of further attention.

6 Related work

In recent years, an explosion of work focused on
understanding the inner workings of pretrained neu-
ral language models has emerged. One line of
such work investigates the self-attention mecha-
nism of Transformer-based models, aiming to e.g.
characterize its patterns or decode syntactic struc-
ture (Raganato and Tiedemann, 2018; Vig, 2019;
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Marecek and Rosa, 2018; Voita et al., 2019; Clark
et al., 2019; Kobayashi et al., 2020). Another line
of work analyzes models’ internal representations
using probes. These are often linear classifiers that
take representations as input and are trained with
supervised tasks in mind, e.g. POS-tagging, de-
pendency parsing (Tenney et al., 2019; Liu et al.,
2019a; Lin et al., 2019; Hewitt and Manning, 2019;
Zhao et al., 2020). In such work, high probing
accuracies are often likened to a particular model
having “learned” the task in question.

Most similar to our work, Ethayarajh (2019) in-
vestigate the extent of “contextualization” in mod-
els like BERT, ELMo, and GPT-2 (Radford et al.,
2019). Mainly, they demonstrate that the contextu-
alized vectors of all words are non-isotropic across
all models and layers. However, they do not indi-
cate why these models have such properties. Also
relevant are the studies of Dalvi et al. (2018), who
introduce a neuron-level analysis method, and Dur-
rani et al. (2020), who use this method to analyze
individual neurons in contextualized word vectors.
Similarly to our experiment, Durrani et al. (2020)
train a linear probe to predict linguistic information
stored in a vector. They then employ the weights
of the classifier as a proxy to select the most rele-
vant neurons to a particular task. In a similar vein,
Coenen et al. (2019) demonstrate the existence of
syntactic and semantic subspaces in BERT repre-
sentations.

7 Conclusion

In this paper, we called attention to sets of out-
lier neurons that appear in BERT and RoBERTa’s
internal representations, which bear consistently
large values when compared to the distribution of
values of all other neurons. In investigating the
origin of these outliers, we employed a neuron-
level analysis method which revealed that they are
artefacts derived from positional embeddings and
Layer Normalization. Furthermore, we found that
outliers are a major cause for the anisotrophy of
a model’s vector space (Ethayarajh, 2019). Clip-
ping them, consequently, can make the vector space
more directionally uniform and increase the similar-
ity between words’ contextual representations. In
addition, we showed that outliers can distort results
when investigating word sense within contextual-
ized representations as well as obtaining sentence
embeddings via mean pooling, where removing
them leads to uniformly better results. Lastly, we

find that “clipping” does not affect models’ perfor-
mance on three supervised tasks.

It is important to note that the exact dimensions
at which the outliers occur will vary pending dif-
ferent initializations and training procedures (as
evidenced by our own RoBERTa model). As such,
future work will aim at investigating strategies for
mitigating the propagation of these artefacts when
pretraining. Furthermore, given that both BERT
and RoBERTa are masked language models, it will
be interesting to investigate whether or not similar
artefacts occur in e.g. autoregressive models like
GPT-2 (Radford et al., 2019) or XL Net (Yang et al.,
2019). Per the insights of Gao et al. (2019), it is
very likely that the representational spaces of such
models are anisotropic, but it is important to gauge
the extent to which this can be traced to positional
artefacts.

Authors’ Note We would like to mention Koval-
eva et al. (2021)’s contemporaneous work, which
likewise draws attention to BERT’s outlier neurons.
While our discussion situates outliers in the con-
text of positional embeddings and vector spaces,
Kovaleva et al. (2021) offer an exhaustive analy-
sis of LayerNorm parameterization and its impact
on masked language modeling and finetuning. We
refer the interested reader to that work for a thor-
ough discussion of LayerNorm’s role in the outlier
neuron phenomenon.
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Figure 7: Average vectors for each layer of BERT-
distil.
RoBERTa-distil
Layer-1 Layer-2 Layer-3
20
10 10 10
o ’ - o = 0
Layer-4 Layer-5 Layer-6
20 20 10
10 10 5
0 0 0
=5 ]

Figure 8: Average vectors for each layer of RoOBERTa-
distil.

A Outliers of distilled and large models

For BERT-distil, Figure 7 shows the patterns of
BERT-distil across all layers. The 557" element
is an outlier. For RoBERTa-distil, Figure 8 shows
the patterns of RoBERTa-distil across all layers.
the 77*" and 588*" elements are two outliers. For
BERT-large, Figure 9 shows the patterns of BERT-
large across all layers. From the first layer to the
tenth layer, the 896" element is an outlier. From
the tenth layer to the seventeenth layer, the 678"
element is an outlier. From the sixteenth layer to
the nineteenth layer, the 122"¢ element is an outlier.
From the nineteenth layer to the twenty-third layer,
the 928" element is an outlier. The final layer
does not have outliers. For RoBERTa-large, Figure
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Figure 9: Average vectors for each layer of BERT-
large.
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Figure 10: Average vectors for each layer of ROBERTa-
large.

10 shows the patterns of RoBERTa-large across
all layers. From the first layer to the twenty-third
layer, the 673" element is an outlier. From the
fifteenth layer to the final layer, the 631! element
is an outlier. From the first layer to the sixth layer,
the 981°! element is an outlier.

B Neuron-level analysis

B.1 Heatmaps of base models

Figure 11 and 12 show the heatmaps of the outlier
neurons and the highest non-outlier contribution
values.

B.2 Distilled and large models

Figure 13 show the accuracy scores of position
prediction of distilled and large models.

Distil-models Figure 14 shows the contribution
value of distilled models’ outlier neurons on
position prediction.

Large-models Figure 15 shows the contribution
value of large models’ outlier neurons on position
prediction.

C Our Pre-training Models

C.1 Hyper-parameters

Table 4 shows the hyper-parameters of pre-training
our RoBERTa-base models.
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Hyper-parameter

Our RoBERTa-base

Number of Layers
Hidden size

FNN inner hidden size
Attention Heads
Attention Head size
Dropout

Warmup Steps

Max Steps

Learning Rates
Batch Size

Weight Decay
Learning Rate Decay
Adam (¢, B1, B2)
Gradient Clipping

12

768
3072

12

64

0.1

10k
200k
le-4
256
0.01

Polynomial
(1le-6, 0.9, 0.98)

0.5

Table 4:
RoBERTa-base models.

Hyper-parameters for pre-training our

Our RoBERTa-base w/ PE
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Figure 16: Average vectors for each layer of our
RoBERTa-base w/ or w/o PE.

C.2 Average subword vectors

Figure 16 show the average vectors for each of our
models.

D Clipping the outliers

D.1 Geometry of vector space

Distil-models Figure 17 shows the anisotropic
measurement of distilled models and the self-
similarity measurement of distilled models.

Large-models Figure 18 shows the anisotropic
measurement of large models and Figure 19 shows
the self-similarity measurement of large models.
We “clip” different outlier neurons in different lay-
ers. For BERT-large, we zero-out the 896! neuron
from the first layer to the tenth layer, the 678"
neuron from the tenth layer to the seventeenth
layer, the 122"? neuron from the sixteenth layer
to the nineteenth layer and the 928 neuron from
the nineteenth layer to the twenty-third layer. For
RoBERTa-large, we zero-out the 673"¢ neuron for
all non-input layers, the 9815 neuron for the first 9
layers and the 6315 neuron for the last 10 layers.
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Figure 17: Up: average cosine similarity between ran-
dom words of distil-models. Down: self-similarity
measurement of BERT-distil and RoBERTa-distil (ad-
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liers™.
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Figure 18: Average cosine similarity between random
words of large-models.
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Figure 19: Self-similarity measurement of BERT-large
and RoBERTa-large (adjusted by anisotropy) before
and after “clipping the outliers”.

Model Layer Threshold Acc.
Baseline - - 50.0%
Before clipping

BERT-distil 5 0.9 66.5%
RoBERTa-distil 5 0.9 63.7%
BERT-large 12 0.7 70.2%
RoBERTa-large 10 0.9 70.4%
After clipping

BERT-distil-clip 6 0.6 67.3%
RoBERTa-distil-clip 5 0.6 66.7 %
BERT-large-clip 12 0.6 70.3 %
RoBERTa-large-clip 16 0.6 71.3%

Table 5: The best accuracy scores on WiC dataset for
distilled and large models. Bold indicates that the best
result increases after clipping.

BERT RoBERTa
Dataset | DERD  ROBERTa g5 distil
distil distil R .
clip clip
STS-B 59.65(6) 56.06(5) 56.62(6) 58.47(5)
SICK-R 62.64(6) 62.63(5) 62.42(6) 62.73(6)
STS-12 42.96(1) 40.19(1) 46.47(1) 42.36(1)
STS-13 | 59.33(1)  56.42(5) | 55.74(1)  60.64(6)
STS-14 53.81(6) 49.59(6) 50.57(1) 52.51(2)
STS-15 61.40(6) 65.10(5) 61.48(1) 65.93(2)
STS-16 61.43(6) 62.90(5) 60.75(6) 64.49(5)

Table 6: Experimental results on semantic textual simi-
larity of distilled models. The number in the parenthe-
sis denotes that this result belongs to the specific layer.
Bold indicates that the best result increases after clip-

ping.

D.2 Word sense

Table 5 shows the accuracy scores of distill-models
and large-models on WiC dataset before and after
“clipping the outliers”.

D.3 Sentence embedding

Table 6 shows the results on semantic textual sim-
ilarity tasks of distilled models before and after
“clipping the outliers”.

Table 7 shows the results on semantic textual
similarity tasks of large models before and after
“clipping the outliers”.

BERT RoBERTa | BERT RoBERTa
Dataset large large

large large p p

clip clip

STS-B 62.56(1) 59.71(19) | 66.43(3) 62.01(23)
SICK-R | 64.47(24)  63.08(14) | 65.72(23)  63.50(16)
STS-12 54.05(1) 44.72(1) 56.44(3) 49.69(1)
STS-13 68.80(2) 61.68(8) 71.07(2) 62.82(10)
STS-14 60.46(1) 51.39(8) 63.35(1) 57.33(1)
STS-15 73.91(1) 65.98(7) 76.51(1) 69.71(1)
STS-16 66.35(17)  66.50(14) | 71.41(3) 68.25(11)

Table 7: Experimental results on semantic textual sim-
ilarity of large models. The number in the parenthe-
sis denotes that this result belongs to the specific layer.
Bold indicates that the best result increases after clip-

ping.
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