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Abstract
Multimodal sentiment analysis is the challeng-

ing research area that attends to the fusion of

multiple heterogeneous modalities. The main

challenge is the occurrence of some missing

modalities during the multimodal fusion pro-

cedure. However, the existing techniques re-

quire all modalities as input, thus are sensi-

tive to missing modalities at predicting time.

In this work, the coupled-translation fusion

network (CTFN) is firstly proposed to model

bi-direction interplay via couple learning, en-

suring the robustness in respect to missing

modalities. Specifically, the cyclic consistency

constraint is presented to improve the transla-

tion performance, allowing us directly to dis-

card decoder and only embraces encoder of

Transformer. This could contribute to a much

lighter model. Due to the couple learning,

CTFN is able to conduct bi-direction cross-

modality intercorrelation parallelly. Based on

CTFN, a hierarchical architecture is further es-

tablished to exploit multiple bi-direction trans-

lations, leading to double multimodal fusing

embeddings compared with traditional trans-

lation methods. Moreover, the convolution

block is utilized to further highlight explicit

interactions among those translations. For

evaluation, CTFN was verified on two mul-

timodal benchmarks with extensive ablation

studies. The experiments demonstrate that the

proposed framework achieves state-of-the-art

or often competitive performance. Addition-

ally, CTFN still maintains robustness when

considering missing modality.

1 Introduction
Sentiment analysis has witnessed many significant

advances in the artificial intelligence community, in

which text (Yadollahi et al., 2017), visual (Kahou

et al., 2016), and acoustic (Luo et al., 2019) modal-

ities are primarily employed to the related research
∗∗Equal contribution
††Corresponding author: Wanzeng Kong

respectively, allowing to exploit the human emo-

tional characteristic and intention effectively (Deng

et al., 2018). Intuitively, due to the consistency and

complementarity among different sources, the joint

representation attend to reason about multimodal

messages, which are capable of boosting the perfor-

mance of the specific task (Pan et al., 2016; Gebru

et al., 2017; Al Hanai et al., 2018).

Multimodal fusion procedure is to incorporate

multiple knowledge for predicting a precise and

proper outcome (Baltrušaitis et al., 2018). Histori-

cally, the existing fusion has been done generally

by leveraging the model-agnostic process, consid-

ering the early fusion, late fusion, and hybrid fu-

sion technique (Poria et al., 2017a). Among those,

early fusion focussed on the concatenation of the

unimodal presentation (D’mello and Kory, 2015).

On the contrast, late fusion performs the integra-

tion at the decision level, by voting among all the

model results (Shutova et al., 2016). As to the hy-

brid fusion, the output comes from the combination

of the early fusion and unimodal prediction (Lan

et al., 2014). Nevertheless, multimodal sentiment

sequences often consists of unaligned properties,

and the traditional fusion manners are failed to take

the heterogeneity and misalignment into account

carefully, which raises a question on investigating

the more sophisticated models and estimating emo-

tional information. (Tsai et al., 2020; Niu et al.,

2017).

Recently, Transformer-based multimodal fusion

framework has been developed to address the above

issues with the help of multi-head attention mech-

anism (Rahman et al., 2020; Le et al., 2019; Tsai

et al., 2019). By introducing the standard Trans-

former network (Vaswani et al., 2017) as the basis,

Tsai et al. (Tsai et al., 2019) captured the integra-

tions directly from unaligned multimodal streams

in an end-to-end fashion, latently adapted streams

from one modality to another with the cross-modal
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Figure 1: Comparison of CTFN with existing translation-based models. In our model, the cyclic consistency

constraint is presented to improve the translation performance, allowing us directly to discard decoder and only

embrace encoder of Transformer. This could contribute to a much lighter model. Due to the couple learning,

CTFN is able to conduct bi-direction cross-modality intercorrelation parallelly, ensuring the robustness in respect

to missing modalities.

attention module, regardless of the need for align-

ment. Furthermore, Wang et al. (Wang et al., 2020)

proposed a parallel Transformer unit, allowing to

explore the correlation between multimodal knowl-

edge effectively. However, the decoder component

of standard Transformer is employed to improve

the translation performance, which may lead to

some redundancy. Moreover, the explicit interac-

tion among cross-modality translations were not

considered. Essentially, compared to our CTFN,

their architecture require access to all modalities as

inputs for exploring multimodal interplay with the

sequential fusion strategy, thus are rather sensitive

in the case of multiple missing modalities.

In this paper, CTFN is proposed to model bi-

directional interplay based on coupled learning, en-

suring the robustness in respect to missing modali-

ties. Specifically, the cyclic consistency constraint

is proposed to improve the translation performance,

allowing us directly to discard decoder and only

embrace encoder of Transformer. This could con-

tribute to a much lighter model. Thanks to the cou-

ple learning, CTFN is able to conduct bi-direction

cross-modality intercorrelation parallelly. Take

CTFN as a basis, a hierarchical architecture is es-

tablished to exploit modality-guidance translation.

Then, the convolution fusion block is presented to

further explore the explicit correlation among the

above translations. Importantly, based on the paral-

lel fusion strategy, our CTFN model still provides

flexibility and robustness when considering only

one input modality.

For evaluation, CTFN was verified on two multi-

modal sentiment benchmarks, CMU-MOSI (Zadeh

et al., 2016) and MELD (Poria et al., 2019). The

experiments demonstrate that CTFN could achieve

the state-of-the-art or even better performance com-

pared to the baseline models. We also provide

several extended ablation studies, to investigate

intrinsic properties of the proposed model.

2 Related Work

The off-the-shelf multimodal sentiment fusion

architecture comprises two leading groups:

translation-based and non-translation based model.

Non-translation based: Recently, RNN-based

models, considering GRU and LSTM, have re-

ceived significant advances in exploiting the

context-aware information across the data (Yang

et al., 2016; Agarwal et al., 2019). bc − LSTM
(Poria et al., 2017b) and GME − LSTM (Chung

et al., 2014) presented a LSTM-based model to re-

trieve contextual information, where the unimodal

features are concatenated into a unit one as the

input information. Similarly, MELD − base (Po-

ria et al., 2019) leveraged the concatenation of au-

dio and textual features on the input layer, and

employed GRU to model sentimental context. In

contrast, CHFusion (Majumder et al., 2018) em-

ployed the RNN-based hierarchical structure to

draw fine-grained local correlations among the

modalities, and the empirical evidence illustrates

superior advances compared to the simple concate-

nation of unimodal presentation. On the basis of

RNN, MMMU−BA (Ghosal et al., 2018) further

employed multimodal attention block to absorb

the contribution of all the neighboring utterances,

which demonstrates that the attention mechanism
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Figure 2: CTFN: Xa and Xv refer to the features of modality audio and video respectively. The blue line

indicates the primal process, and the yellow line indicates the dual procedure. Note that the cyclic consistency

constraint is presented to improve the translation performance, allowing us directly to discard decoder and only

embrace encoder of Transformer. And thanks to couple learning, CTFN could combine primal and dual process

into a coupled structure, ensuring the robustness in respect to missing modalities.

can utilize the neighborhood contribution for inte-

grating the contextual information. However, all

these methods are suitable for the low-level pre-

sentation within the single modality with a non-

translation manner, which may be easily sensitive

to the noisy terms and missing information in the

sources.

Translation-based model: Inspired by the re-

cent success of sequence to sequence (Seq2Seq)

models (Lin et al., 2019; ?) in machine translation,

(Pham et al., 2019) and (Pham et al., 2018) pre-

sented multimodal fusion model via the essential

insight that translates from a source modality to

a target modality, which is able to capture much

more robust associations across multiple modalities.

MCTN model incorporated a cyclic translation

module to retrieve the robust joint representation

between modalities in a sequential manner, e.g.,

the language information firstly associated with

the visual modality, and latently translated into the

acoustic modality. Compared with the MCTN ,

Seq2Seq2Sent introduced a hierarchical fusion

model using the Seq2Seq methods. For the first

layer, the joint representation of a modality pair is

treated as an input sequence for the next Seq2Seq

layer in an attempt to decode the third modality.

Inspired by the success of the Transformer-based

model, Tsai et al. introduced a directional cross-

modality attention module to extend the standard

Transformer network. Follow the basic idea of Tsai

et al., Wang et al. provided a novel multimodal

fusion cell which is comprised of two standard

Transformers, embracing the association with a

modality pair during the forward and backward

translation implicitly. However, all existing models

adopt sequential multimodal fusion architecture,

which requires all modalities as input, therefore

they can be sensitive to the case of multiple miss-

ing modalities. Moreover, the explicit interactions

among cross-modality translations were not con-

sidered.

3 Methodology

In this section, we firstly present CTFN (Figure 2),

which is capable of exploring bi-direction cross-

modality translation via couple learning. On the

basis of CTFN, a hierarchical architecture is estab-

lished to exploit multiple bi-direction translations,

leading to double multimodal fusing embeddings

(Figure 4). Then, the convolutional fusion block

(Figure 3) is applied to further highlight explicit

correlation among cross-modality translations.

3.1 Preliminaries

The two benchmarks consist of three modalities,

audio, video and textual modality. Specifically,

the above utterance-level modalities are denoted as

Xa ∈ R
Ta×da , Xv ∈ R

Tv×dv and Xt ∈ R
Tt×dt ,

respectively. The number of utterances is presented

as Ti(i ∈ {a, v, t}), and di(i ∈ {a, v, t}) stands

for the dimension of the unimodality features.

3.2 Coupled-Translation Fusion Network

For simplicity, we consider two unimodality pre-

sentation Xa and Xv explored from audio (A)

and video (V), respectively. In the primal pro-

cess of CTFN, we focus on learning a directional

translator TranA→V (Xa,Xv) for translating the

modality audio to video. Then, the dual pro-

cess aims to learn an inverse directional translator

TranV→A(Xv,Xa), allowing for the translation

from modality video to audio. Inspired by the suc-
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Figure 3: Multimodal convolutional fusion block: Mat ∈ R
T×Fat and Mav ∈ R

T×Fav refer to the cross-

modality translations, where T and F∗ are the size of time and feature domain respectively. Subsequently, Mat

and Mav are concatenated along the feature domain, and the convolution operation is utilized to exploit the local

and explicit interplay between cross-modality translations.

cess of Transformer in Natural Language Process-

ing, the encoder of Transformer is introduced to our

model as the translation block, which is an efficient

and adaptive manner for retrieving the long-range

interplay along the temporal domain. Importantly,

the cyclic consistency constraint is presented to im-

prove the translation performance. And due to the

couple learning, CTFN is able to combine primal

and dual process into a coupled structure, ensuring

the robustness in respect to missing modalities.

For the primal task, Xa ∈ R
Ta×da is firstly de-

livered to a densely connected layer for receiving a

linear transformation Xa ∈ R
Ta×La , where La is

the output dimension of the linear layer. And the

corresponding query matrix, key matrix and value

matrix are denoted as Qa = XaWQa ∈ R
Ta×La ,

Ka = XaWKa ∈ R
Ta×La , Va = XaWVa ∈

R
Ta×La , where WQa ∈ R

La×La , WKa ∈
R
La×La and WVa ∈ R

La×La are weight matrixes.

The translation from modality A to V is performed

as Xv
, = TranA→V (Xa,Xv) ∈ R

Ta×Lv , where

Xv
, refers to the fake Xv, and

√
La is the scale

coefficient. Note that the input Xa is directly de-

livered to the translation process, while the input

Xv is used to analyze the difference between real

data Xv and fake output Xv
,. Subsequently, Xv

,

is passed through the TranV→A, leading to the

reconstruct output Xa
, = TranV→A(Xv

,, Xa),
and the Xa is only used to calculate the diversity

between the real and reconstruct data.

Xv
, = TranA→V (Xa,Xv)

= softmax(
QaKa

T

√
La

)Va

= softmax(
XaWQaWKa

TXa
T

√
La

)XaWVa . (1)

Analogously, in the dual process, Xv ∈
R
Tv×Lv is captured based on the input Xv ∈

R
Tv×dv , Xa

, = TranV→A(Xv,Xa) ∈
R
Ta×La , and reconstructed representation Xv

, =
TranA→V (Xa

,,Xv) ∈ R
Tv×Lv . Essentially,

TranA→V and TranV→A are implemented by

several sequential encoder layers. During the trans-

lation period, we hypothesize that intermediate en-

coder layer contains the cross-modality fusion in-

formation and effectively balance the contribution

of two modalities. Hence, the output of the middle

encoder layer TranA→V
[L/2] and TranV→A

[L/2]

stand for the multimodal fusion knowledge, where

L refers to the number of layers, and when L is

odd number, then L = L+ 1.

As for the model reward, the primal

process has an immediate reward rp =
‖Xa − TranV→A(Xv

,)‖F , and the dual step re-

lated reward is rd = ‖Xv − TranA→V (Xa
,)‖F ,

indicating the similarity between the real data and

the reconstructed output of the translator. For sim-

plicity, a linear transformation module is adopted

to combine the primal and dual step reward into a

total model reward, e.g., rall = αrp + (1 − α)rd,

where α is employed to balance the contribution

between dual and primal block. Additionally, the

loss functions utilized in the coupled-translation

multimodal fusion block are defined as follows:

lA→V (Xa,Xv) =‖TranA→V (Xa,Xv)−Xv‖F+
‖TranA→V (Xa

,,Xv)−Xv‖F
lV →A(Xv,Xa) =‖TranV →A(Xv,Xa)−Xa‖F+

‖TranV →A(Xv
,,Xa)−Xa‖F

lA↔V = αlA→V (Xa,Xv) + (1− α)lV →A(Xv,Xa),
(2)

where lA→V (Xa,Xv) and lV→A(Xv,Xa) re-

fer to the training loss of the primal and dual trans-

lator respectively, and lA↔V stands for the loss of

bi-directional translator unit. Essentially, when the

training process of all coupled-translation blocks
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Figure 4: The hierarchical framework associated with three CTFNs during the training period. Each CTFN is

utilized to explore the specific bi-direction cross-modality interplay. On the basis of this, three CTFN are stacked

into a united one for exploiting multiple bi-direction translations, leading to double multimodal fusing embeddings.

Then, multiple multimodal fusing embeddings are delivered to the multimodal convolutional fusion block.

are finished, our model only needs one input modal-

ity at predicting time, without the help of target

modalities.

Indeed, lA↔V indicates the cycle-consistency

constraint in our couple learning model. The cycle-

consistency is well-known, which refers to combi-

nation of forward and backward cycle-consistency.

However, our goal is to solve missing modality

problem in multi-modal learning, which cannot be

achieved by applying cycle-consistency straightfor-

ward. This is because that introducing this strict

cycle-consistency to CTFN fail to effectively asso-

ciate primal task with dual task of the couple learn-

ing model. To solve this problem, we relaxed con-

straint of original cycle-consistency by using a pa-

rameter ‘α’ to balance the contribution of forward

and backward cycle-consistency, leading to a much

more flexible cycle-consistency. Thanks to the

great flexibility of new proposed cycle-consistency,

we could adaptively and adequately associate pri-

mal with dual task, resulting in much more bal-

anced consistency among modalities.

3.3 Multimodal convolutional fusion block
Based on CTFN, each modality is treated as the

source moment for (M − 1) times, which means

that each modality holds (M − 1) directional trans-

lations, {Tranmodality source→modality m}Mm=1,

where M refers to the total number of modalities.

For instance, given modality audio, we can retrieve

the following two modality-guidance translations:

[Trana→v
L/2, video,] = Trana→v(audio, video)

[Trana→t
L/2, text,] = Trana→t(audio, text).

(3)
Note that audio plays a key role in different cross-

modality translations, and provides the strong guid-

ance for capturing various cross-modality interplay.

For blending the contribution of source modality

(audio) effectively, a convolution fusion block is in-

corporated to explore explicit and local correlation

among modality-guidance translations.

Initially, the two cross-modality interme-

diate correlations Tranaudio→vedio
L/2 and

Tranaudio→text
L/2 are concatenated along the

temporal domain into a unit representation, where

the size of time sequence is equal (Ta = Tv = Tt),

thus the concatenation is of size Ta × (Lv + Lt):

Zconcat = Trana→v
L/2 ⊕ Trana→t

L/2. (4)

Subsequently, the temporal convolution is em-

ployed to further retrieve explicit interactions

among cross-modality translations. Specifically,

we adopt a 1D temporal convolutional layer to ex-

ploit the local patten in a light manner:

Ẑconcat = Conv1D(Zconcat,Kconcat) ∈ R
Ta×Ld ,

(5)
where Kconcat is the size of the convolutional

kernel, and Ld is the length of the cross-modality

integration dimension. The temporal kernel is used

to perform the convolutional operation along the

feature dimension, allowing to further exploit local

interplay among cross-modality translations. That

is to say, the local interplay fully exploits the con-

tribution from modality-guidance translations.

3.4 Hierarchical Architecture
On the basis of CTFN and convolutional mul-

timodal fusion network, a hierarchical architec-

ture was proposed for exploiting multiple bi-

direction translations, leading to double multi-

modal fusing embeddings. For instance, given

M modalities, our model could achieve double
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, is transmitted to TranV→A and TranV→T respectively. And, Xt

, is sent to TranT→V

and TranT→A respectively. Hence, the tree structure only need one input modality to do the multimodal fusion

task.

C2
M embeddings. As illustrated in Figure 4, the

proposed architecture consists of three CTFNs

TranA↔V , TranA↔T and TranV↔T . Consider-

ing the contribution of the guidance (source) modal-

ity, the modality-guidance translations are denoted

as TranT←A→V = [Tran
L/2
A→V , T ran

L/2
A→T ],

TranT←V→A = [Tran
L/2
V→T , T ran

L/2
V→A], and

TranA←T→V = [Tran
L/2
T→A, T ran

L/2
T→V ], respec-

tively. Similarly, when taking the contribution

of target modalities into account, correspond-

ing modality-guidance translations are illustrated

as TranT→A←V = [Tran
L/2
V→A, T ran

L/2
T→A],

TranT→V←A = [Tran
L/2
T→V , T ran

L/2
A→V ], and

TranA→T←V = [Tran
L/2
A→T , T ran

L/2
V→T ], respec-

tively. Subsequently, the convolutional fusion layer

is used to further exploit explicit local interplay

among modality-guidance translations associated

with the same source/target modality, which can

fully leverage the contribution of source/target

modality.

Essentially, as demonstrated in Figure 4, our

model has “12+1” loss constraints in total, which

includes 3 CTFNs, each one has 4 training loss

(primal & dual translator training loss), and 1 clas-

sification loss. However, we do not need to bal-

ance these targets together, which is achieved by

our training strategy that 3 CTFNs are trained in-

dividually. For each CTFN, one hyper-parameter

‘α’ is introduced to balance the loss of primal trans-

lator and dual translator, and this hyper-parameter

is shared among 3 CTFNs. Hence, 3 CTFNs only

need 1 hyper-parameter to balance the training loss,

which is easy to be tuned. The classification loss

is used for training the classifier on the 3 CTFNs’s

outputs.

4 Experiments

4.1 Experimental setups

Datasets. CMU-MOSI consists of 2199 opin-

ion video clips from online sharing websites (e.g.,

YouTube). Each utterance of the video clip is anno-

tated with a specific sentimental label of positive

or negative in the range scale of [−3,+3]. The

corresponding training, validation, and testing size

refer to division set (1284, 229, 686). Addition-

ally, the same speaker will not appear in both train-

ing and testing sets, allowing to exploit speaker-

independent joint representations. MELD dataset

contains 13000 utterances from the famous TV-

series Friends. Each utterance is annotated with

emotion and sentiment labels, considering 7 classes

of emotion tag (anger, disgust, fear, joy, neutral,

sadness, and surprise) and 3 sentimental tendency

levels (positive, neutral, and negative). Hence, the

original dataset can be denoted as MELD (Senti-

ment) and MELD (Emotion) with respect to the

data annotation, we only verified our model on

the MELD (Sentiment). Note that CMU-MOSI

and MELD are the public and widely-used datasets

which have been aligned and segmented already.

Features. For CMU-MOSI dataset, we adopt

the same preprocess manner mentioned in MFN

(Zadeh et al., 2018) to extract the low-level rep-

resentation of multimodal data, and synchronized

at the utterance level that in consistent with text

modality. For MELD benchmark, we follow
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Models

CMU-MOSI MELD (Sentiment)

Bi-modality Tri-modality Bi-modality

(video, audio) (text, video) (text, audio) (text, audio, video) (text, audio)

GME-LSTM (Chung et al., 2014) 52.90 74.30 73.50 76.50 66.46

bc-LSTM (Poria et al., 2017b) 56.52 78.59 78.86 79.26 66.09

MELD-based (Poria et al., 2019) 54.79 76.60 76.99 79.19 66.68

CHFusion (Majumder et al., 2018) 54.49 74.77 78.54 76.51 65.85

MMMU-BA (Ghosal et al., 2018) 57.45 80.85 79.92 81.25 65.56

SeqSeq2Sent (Pham et al., 2018) 58.00 67.00 66.00 70.00 63.84

MCTN (Pham et al., 2019) 53.10 76.80 76.40 79.30 66.27

TransModality (Wang et al., 2020) 59.97 80.58 81.25 82.71 67.04

CTFN (ours, L=1) 62.20 80.49 81.4 80.18 67.82
CTFN (ours, L=3) 63.11 81.55 82.16 82.77 67.78

CTFN (ours, L=6) 64.48 80.79 81.71 81.10 67.24

Table 1: Comparison of performance results for sentiment analysis on CMU-MOSI and MELD (Sentiment) bench-

mark using various SOTA models.

the related work of MELD, in which the 300-

dimensional GloVe (Pennington et al., 2014) text

vectors are fed into a 1D-CNN (Chen et al., 2017)

layer to extract textual representation, and audio-

based descriptors are explored with the popular

toolkit openSMILE (Eyben et al., 2010), while vi-

sual features were not taken into account for the

sentiment analysis.

Comparisons. We introduced the translation-

based and non-translation based models to this

work as the baselines. Translation-based: Mul-

timodal Cyclic Translation Network (MCTN), Se-

quence to Sequence for Sentiment (Seq2Seq2Sent),

Multimodal Sentiment Analysis with Transformer

(TransModality). And non-translation based: bi-

directional contextual LSTM (bc-LSTM), Gated

Embedding LSTM (GME-LSTM), Multimodal

EmotionLines Dataset baseline model (MELD-

base), Hierarchical Fusion with Context Model-

ing (CHFusion), Multi-Modal Multi-Utterance -

Bi-Modal Attention (MMMU-BA).

4.2 Experiment results and analysis

Performance comparison with state-of-the-art
models. Firstly, we analyzed the performance be-

tween state-of-the-art baselines and our proposed

model. The bottom rows in Table 1 indicate the

effectiveness and superiority of our model. Particu-

larly, on CMU-MOSI dataset, CTFN exceeded the

previous best TransModality on (video, audio) by

a margin of 4.51. Additionally, on MELD (Senti-

ment) dataset, the empirical improvement of CTFN

was 0.78. It is interesting to note that the improve-

ment of (video, audio) is more significant than

(text, video) and (text, audio). This implies that

coupled-translation structure is capable of decreas-

ing the risk of interference between video and audio

efficiently, and further leverage the explicit con-

sistency between auxiliary features. As for (text,

audio, video), CTFN exceeds the previous best

TransModality with an improvement of 0.06, lead-

ing to a comparable performance. Indeed, for the

same tri-modality fusion task, TransModality needs

4 encoders and 4 decoders, while CTFN only re-

quires 6 encoders. It should be emphasized that the

cyclic consistency mechanism could contribute to

a much lighter model, as well as the more effective

bi-directional translation. In addition, compared

to the bi-modality setting, the tri-modality case

achieved the improvement of 0.61, indicating the

benefits brought by hierarchical architecture and

convolution fusion.

Settings

CMU-MOSI

CTFN SeqSeq2Sent

F1 Acc F1 Acc

1 missing modality

(audio, video, text) 81.82 81.55 67.00 67.00

(audio, video, text) 82.23 82.16 65.00 66.00

(audio, video, text) 66.79 61.59 58.00 58.00

2 missing modalities

(audio,video, text) 80.78 80.79 76.00 77.00

(audio, video, text) 62.82 61.43 56.00 56.00

(audio, video, text) 63.94 60.98 48.00 57.00

0 missing modality (text, audio, video) 82.85 82.77 66.00 70.00

Table 2: Multimodal fusion results of SeqSeq2Sent

and CTFN with missing modalities. The setting (au-

dio, video, text) refers to the process that CTFN only

employs a single input modality (audio) to do the mul-

timodal fusion task, shown in Figure 5.

Effect of CTFN with missing modalities. Ex-

isting translation-based manners focus only on the

join representation between modalities, and ignore

the potential occurrence of the missing modalities.

Therefore, we analyzed how does missing modality

may affect the final performance of CTFN and the

sequential translation-based model SeqSeq2Sent.

Note that SeqSeq2Sent only employs LSTM to

analyze uni-modality rather than the translation-

based method. Specifically, we take the hierarchi-

cal architecture combined with three CTFNs as
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the testing model. From the Table 2, we observe

that compared to the setting (text, audio, video),

the text-based settings {(audio, video, text), (au-

dio, video, text), (audio,video, text)} seem to reach

the comparable result with only a relatively small

performance drop. On the contrast, when text was

missing, the model has a relatively large perfor-

mance drop, which implies that language modal-

ity contains much more discriminative sentimental

message than audio and video, leading to the sig-

nificantly better performance. Essentially, the per-

formance of (audio,video, text) demonstrates that

hierarchical CTFN is able to maintain robustness

and consistency when considering only a single in-

put modality. In other words, the cyclic consistency

mechanism allows CTFN to fully exploit the cross-

modality interplay, thus hierarchical CTFN could

transmit the single modality to various pre-trained

CTFNs for retrieving multimodal fusion message.

MOSI dataset
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Figure 6: Effect of the translation direction.

Effect of the translation direction. In this pa-

per, we propose a coupled-translation block, which

aims to embrace fusion messages from the bi-

directional translation process. Hence, we are in-

terested to investigate the impact of translation

direction. Figure 6 depicts the performance of

various translations, considering (audio, text), (au-

dio, video), and (text, video) translation. For the

(audio, text) instance, the translation text→audio

achieves better performance than audio→text .

Similarly, the translation text→video surpasses

the result of video→text. However, the perfor-

mance of audio→video and video→audio seems

to be quite similar. The superiority of text→video

and text→audio may demonstrate that text modal-

ity possesses much more sentimental information.

Moreover, the prospects of text modality allow text

to be the strong backbone of the translation.

MOSI dataset
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Figure 7: Effect of the translator layer.

Effect of the translator layer. As each trans-

lator is comprised of several sequential encoder

layers. In this part, we assume that the output

representation of a specific layer may affect the

performance of the proposed model. For simplicity,

we perform the related task on CMU-MOSI with

the setting of (a, v, t), as well as the (t, a) on MELD

(Sentiment). Initially, we retrieve the embedding

from the specific layer, where the layer ranges from

1 to L (L is the total number of the layer). In Figure

7, it is interesting to note that the model reaches

the peak value at layer 5 on CMU-MOSI, which

means that the output of the fifth layer embraces the

most discriminative fusion message. In compari-

son, on MELD (Sentiment), the model achieves the

best performance at layer 1, which may imply that

the simple translator associated with only one layer

is able to capture the joint representation for the

simple case (text, audio). In conclusion, the lower

encoder layer may involve low-level characteristics

of interplay, while the higher encoder layer may

embrace the explicit messages. Additionally, the

output of the specific layer of the encoder lies on

the corresponding task and dataset. We tried also

(text, audio) on MOSI, and CTFN maximizes the

performance at layer 3. Compared to (text, audio,

video), (text, audio) is the relatively simple case,

thus the lower encoder layer may is sufficient to

demonstrate the interaction between text and audio.

Effect of concatenation strategy of transla-
tion. In our work, those translations associated
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Figure 8: Effect of concatenation strategy via

source/target modality on MOSI. [A→T,A→V]

indicates the audio-based source concatenation

[(A→T)⊕(A→V)], and [T→A,V→A] indicates the

audio-based target concatenation.

with the same guidance (source) modality are con-

catenated along the feature domain. As each

modality serves as the source and target modal-

ity in turn, we are interested to analyze the im-

pact of the distinct concatenation strategies, e.g.,

concatenate the translations via the same source

or target modality. As shown in Figure 8, it

is obvious to find that audio-based target con-

catenation [(T→A) ⊕ (V→A)] performs signifi-

cantly better than [(A→T)⊕(A→V)] with a large

margin. Analogously, video-based target con-

catenation [(T→V)⊕(A→V)] works better than

[(V→A)⊕(V→T)]. The above performance may

indicate that joint presentation is able to achieve

the significantly improved benefits with the help of

guidance modality text. In conclusion, when text

modality serves as the guidance modality, which

may effectively leverage the contribution from au-

dio and video, and further boost the task perfor-

mance in a robust and consistent way.

5 Conclusion

In this paper, we present a novel hierarchical multi-

modal fusion architecture using coupled-translation

fusion network (CTFN). Initially, CTFN is uti-

lized for exploiting bi-directional interplay via cou-

ple learning, ensuring the robustness in respect to

missing modalities. Specifically, the cyclic mech-

anism directly discards the decoder and only em-

braces the encoder of Transformer, which could

contribute to a much lighter model. Due to the cou-

ple learning, CTFN is able to conduct bi-direction

cross-modality intercorrelation parallelly. Based

on CTFN, a hierarchical architecture is further es-

tablished to exploit multiple bi-direction transla-

tions, leading to double multimodal fusing embed-

dings compared with traditional translation meth-

ods. Additionally, a multimodal convolutional

fusion block is employed to further explore the

complementarity and consistency between cross-

modality translations. Essentially, the parallel fu-

sion strategy allows the model maintains robust-

ness and flexibility when considering only one

input modality. CTFN was verified on two pub-

lic multimodal sentiment benchmarks, the exper-

iments demonstrate the effectiveness and flexi-

bility of CTFN, and CTFN achieves state-of-the-

art or comparable performance on CMU-MOSI

and MELD (Sentiment). For future work, we

like to evaluate CTFN on more multimodal fu-

sion tasks. The source code can be obtained from

https://github.com/deepsuperviser/CTFN.
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