Obtaining Better Static Word Embeddings
Using Contextual Embedding Models

Prakhar Gupta
EPFL, Switzerland
prakhar.guptalRepfl.ch

Abstract

The advent of contextual word embeddings—
representations of words which incorporate se-
mantic and syntactic information from their
context—has led to tremendous improvements
on a wide variety of NLP tasks. However,
recent contextual models have prohibitively
high computational cost in many use-cases
and are often hard to interpret. In this work,
we demonstrate that our proposed distilla-
tion method, which is a simple extension of
CBOW-based training, allows to significantly
improve computational efficiency of NLP ap-
plications, while outperforming the quality
of existing static embeddings trained from
scratch as well as those distilled from previ-
ously proposed methods. As a side-effect, our
approach also allows a fair comparison of both
contextual and static embeddings via standard
lexical evaluation tasks.

1 Introduction

Word embeddings—representations of words
which reflect semantic and syntactic information
carried by them are ubiquitous in Natural Language
Processing. Static word representation models
such as GLOVE (Pennington et al., 2014), CBOW,
SKIPGRAM (Mikolov et al., 2013) and SENT2VEC
(Pagliardini et al., 2018) obtain stand-alone rep-
resentations which do not depend on their sur-
rounding words or sentences (context). Contex-
tual embedding models (Devlin et al., 2019; Peters
etal., 2018; Liu et al., 2019; Radford et al., 2019;
Schwenk and Douze, 2017) on the other hand, em-
bed the contextual information as well into the
word representations making them more expressive
than static word representations in most use-cases.

While recent progress on contextual embeddings
has been tremendously impactful, static embed-
dings still remain fundamentally important in many
scenarios as well:

Martin Jaggi
EPFL, Switzerland
martin. jaggi@epfl.ch

e Even when ignoring the training phase, the
computational cost of using static word em-
beddings is typically tens of millions times
lower than using standard contextual embed-
ding models', which is particularly important
for latency-critical applications and on low-
resource devices, and in view of environmen-
tal costs of NLP models (Strubell et al., 2019).

e Many NLP tasks inherently rely on static word
embeddings (Shoemark et al., 2019), for ex-
ample for interpretability, or e.g. in research
in bias detection and removal (Kaneko and
Bollegala, 2019; Gonen and Goldberg, 2019;
Mangzini et al., 2019) and analyzing word vec-
tor spaces (Vulic et al., 2020) or other metrics
which are non-contextual by choice.

e Static word embeddings can complement con-
textual word embeddings, for separating static
from contextual semantics (Barsalou, 1982;
Rubio-Fernandez, 2008), or for improving
joint embedding performance on downstream
tasks (Alghanmi et al., 2020).

We also refer the reader to this article? illustrating
several down-sides of using BERT-like models over
static embedding models for non-specialist users.
Indeed, we can see continued prevalence of static
word embeddings in industry and research areas
including but not limited to medicine (Zhang et al.,
2019; Karadeniz and Ozgiir, 2019; Magna et al.,
2020) and social sciences (Rheault and Cochrane,
2020; Gordon et al., 2020; Farrell et al., 2020; Lucy
et al., 2020).

From a cognitive science point of view, Human
language has been hypothesized to have both con-

'BERT base (Devlin et al., 2019) produces 768 dimen-
sional word embeddings using 109M parameters, requiring
29B FLOPs per inference call (Clark et al., 2020).

Do humanists need BERT? (https://
tedunderwood.com/2019/07/15/)

5241

Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 5241-5253
August 1-6, 2021. ©2021 Association for Computational Linguistics

https://tedunderwood.com/2019/07/15/
https://tedunderwood.com/2019/07/15/

textual as well as context-independent properties
(Barsalou, 1982; Rubio-Fernandez, 2008) underlin-
ing the need for continued research in studying the
expressiveness context-independent embeddings
on the level of words.

Most existing word embedding models, whether
static or contextual, follow Firth (1957)’s famous
hypothesis - “You shall know a word by the com-
pany it keeps” , i.e., the meaning of a word arises
from its context. During training existing static
word embedding models, representations of con-
texts are generally approximated using averaging
or sum of the constituent word embeddings, which
disregards the relative word ordering as well as
the interplay of information beyond simple pairs
of words, thus losing most contextual information.
Ad-hoc remedies attempt to capture longer con-
textual information per word using higher order
n-grams like bigrams or trigrams, and have been
shown to improve the performance of static word
embedding models (Gupta et al., 2019; Zhao et al.,
2017). However, these methods are not scalable to
cover longer contexts.

In this work, we obtain improved static word
embeddings by leveraging recent contextual em-
bedding advances, namely by distilling existing
contextual embeddings into static ones. Our pro-
posed distillation procedure is inspired by existing
CBOW-based static word embedding algorithms,
but during training plugs in any existing contextual
representation to serve as the context element of
each word.

Our resulting embeddings outperform the cur-
rent static embedding methods, as well as the cur-
rent state-of-the-art static embedding distillation
method on both unsupervised lexical similarity
tasks as well as on downstream supervised tasks,
by a significant margin. The resulting static em-
beddings remain compatible with the underlying
contextual model used, and thus allow us to gauge
the extent of lexical information carried by static
vs contextual word embeddings. We release our
code and trained embeddings publicly on GitHub?.

2 Related Work

A few methods for distilling static embeddings
have already been proposed. Ethayarajh (2019)
propose using contextual embeddings of the same
word in a large number of different contexts. They
take the first principal component of the matrix

Shttps://github.com/epfml/X2Static

formed by using these embeddings as rows and use
it as a static embedding. However, this method is
not scalable in terms of memory (the embedding
matrix scaling with the number of contexts) and
computational cost (PCA).

Bommasani et al. (2020) propose two different
approaches to obtain static embeddings from con-
textual models.

1. Decontextualized Static Embeddings - The
word w alone without any context, after tok-
enization into constituents wi, . . . , w, is fed
to the contextual embedding model denoted
by M and the resulting static embedding is
given by g(M (wy), ..., M(wy,)) where g is
a pooling operation. It is observed that these
embeddings perform dismally on the standard
static word embedding evaluation tasks.

2. Aggregated Static Embeddings - Since con-
textual embedding models are not trained on
a single word (without any context) as input,
an alternative approach is to obtain the con-
textual embedding of the word w in different
contexts and then pool(max, min or average)
the embeddings obtained from these different
contexts. They observe that average pooling
leads to the best performance. We refer to
this method (with average pooling) as ASE
throughout the rest of the paper. As we see
in our experiments, the performance of ASE
embeddings saturates quickly with increasing
size of the raw text corpus and is therefore not
scalable.

Other related work includes distillation of con-
textual word embeddings to obtain sentence em-
beddings (Reimers and Gurevych, 2019). We also
refer the reader to Mickus et al. (2020) for a dis-
cussion on the semantic properties of contextual
models (primarily BERT) as well as Rogers et al.
(2020), a survey on different works exploring the
inner workings of BERT including its semantic
properties.

3 Proposed Method

To distill existing contextual word representation
models into static word embeddings, we augment
a CBOW-inspired static word-embedding method
as our anchor method to accommodate additional
contextual information of the (contextual) teacher
model. SENT2VEC (Pagliardini et al., 2018) is a

5242

https://github.com/epfml/X2Static

modification of the CBOW static word-embedding
method which instead of a fixed-size context win-
dow uses the entire sentence to predict the masked
word. It also has the ability to learn n-gram rep-
resentations along with unigram representations,
allowing to better disentangle local contextual in-
formation from the static unigram embeddings.
SENT2VEC, originally meant to obtain sentence
embeddings and later repurposed to obtain word
representations (Gupta et al., 2019) was shown to
outperform competing methods including GLOVE
(Pennington et al., 2014), CBOW, SKIPGRAM
(Mikolov et al., 2013) and FASTTEXT (Bojanowski
et al., 2016) on word similarity evaluations. For
a raw text corpus C (collection of sentences), the
training objective is given by

min Y Y f(ww,, Eax(S,wr) (1)

T SeCwieS

where f(u,v) = l(u'v) + 3 oy l(—uv).
Here, wy is the masked target word, U and V' are
the target word embedding and the source n-gram
matrices respectively, IV is the set of negative target
samples and, ¢ : = — log (1 4+ e™%) is the logistic
loss function.

For SENT2VEC, the context encoder Eix used
in optimizing (1) is simply given by the (static,
non-contextual) sum of all vectors in the sentence
without the target word,

Ectx(& wt) = m Z Vy , ()
weR(S\{w})

where R(.S) denotes the optional expansion of the
sentence S from words to short n-grams, i.e., the
context sentence embedding is obtained by aver-
aging the embeddings of word n-grams in the sen-
tence S.

We will now generalize the objective (1) by al-
lowing the use of arbitrary modern contextual rep-
resentations Egty instead of the static context repre-
sentation as in (2). This key element will allow us
to translate quality gains from improved contextual
representations also to better static word embed-
ding in the resulting matrix U. We propose two
different approaches of doing so, which differ in
the granularity of context used for obtaining the
contextual embeddings.

3.1 Approach 1 - Sentences as context

Using contextual representations of all words in the
sentence S (or the sentence S \ {w;} without the

target word) allows for a more refined representa-
tion of the context, and to take in account the word
order as well as the interplay of information among
the words of the context.

More formally, let M (S, w) denote the output
of a contextual embedding-encoder, e.g. BERT,
corresponding to the word w when a piece of text S
containing w is fed to it as input. We let Egix (S, w)
to be the average of all contextual embeddings of
words w returned by the encoder,

Eax(S,w) = &y Y M(S,w) 3)
weS

This allows for a more refined representation of the
context as the previous representation did not take
in account neither the word order nor the interplay
of information among the words of the context. Cer-
tainly, using Smwt (S with w; masked) and w would
make for an even better word-context pair but
that would amount to one contextual embedding-
encoder inference per word instead of one inference
per sentence as is the case in (3) leading to a drastic
drop in computational efficiency.

3.2 Approach 2 - Paragraphs as context

Since contextual models are trained on large pieces
of texts (generally > 512 tokens), we instead use
paragraphs instead of sentences to obtain the con-
textual representations. However, in order to pre-
dict target words, we use the contextual embed-
dings within the sentence only. Consequently, for
this approach, we have

Eax(S,we) := gy M(Ps,w), (4
weS

where Pg is the paragraph containing sentence .S.

In the transfer phase, this approach is more com-
putationally efficient than the previous approach,
as we have to invoke the contextual embedding
model M only once for each paragraph as opposed
to once for every constituent sentence. Moreover,
it encapsulates the related semantic information in
paragraphs in the contextual word embeddings.

We call our models X2STATICgep; in the sen-
tence case (3), and X2STATIC 4 in the paragraph
case (4) respectively where X denotes the parent
model.

4 Experiments and Discussion

4.1 Corpus Preprocessing and Training

We use the same English Wikipedia Dump as
Pagliardini et al. (2018); Gupta et al. (2019) to

5243

Number .

Epoch(s) Max of Target W(?rd Minimum Imtl{fll Batch
. Vocab. . Subsampling Learning .
trained Size Negatives hyperparameter Word Count Rate Size

Sampled yperp
1 750000 10 Se-6 10 0.001 128

Table 1: Training hyperparameters used for training X2STATIC models

Number . ..
Epoch(s) Max of Target W(?rd Min. Imtlgl Word | Character | Window
Model . Vocab. . Subsampling Word | Learning .
trained . Negatives N-grams | N-grams | Size
Size hyperparameter Count| Rate
Sampled
SENT2VEC | {5,10,15} | 750000 | {5,8,10} |{le-4, 5e-6, le-5, 5e-6} | 10 0.2 {1,2,3} N.A. N.A.
SKIPGRAM | {5,10,15} | N.A. | {5,8,10} |{le-4, 5e-6, 1e-5, 5e-6} | 10 0.05 N.A. |{N.A.3-6}|{2,5,10}
CBOW [{5,10,15} | N.A. | {5,8,10} |{le-4, 5e-6, 1e-5, 5e-6} | 10 0.05 N.A. |{N.A.3-6}|{2,5,10}

Table 2: Hyperparameter search space description for the training of SENT2VEC, SKIPGRAM and CBOW
models: Best hyperparameters for the chosen model in our experiments are shown in bold. N.A. indicates not

applicable.

generate distilled X2STATIC representations. as
our corpus for training static word embedding base-
lines as well as for distilling static word embed-
dings from pre-trained contextual embedding mod-
els. We remove all paragraphs with less than 3
sentences or 140 characters, lowercase the char-
acters and tokenize the corpus using the Stanford
NLP library (Manning et al., 2014) resulting in a
corpus of approximately 54 Million sentences and
1.28 Billion words. We then use the Transform-
ers library* (Wolf et al., 2020) to generate repre-
sentations from existing transformer models. Our
X2STATIC representations are distilled from the
last representation layers of these models.

We use the same hyperparameter set for train-
ing all X2STATIC models, i.e., no hyperparameter
tuning is done at all. We use 12-layer as well as 24-
layer pre-trained models using BERT (Devlin et al.,
2019), ROBERTA (Liu et al., 2019) and GPT2
(Radford et al., 2019) architectures as the teacher
model to obtain X2STATIC word embeddings. All
the X2STATIC models use the same set of train-
ing parameters except the parent model. Training
hyperparameters are provided in Table 1. The dis-
tillation/training process employs the lazy version
of the Adam optimizer (Kingma and Ba, 2015a),
suitable for sparse tensors. We use a subsam-
pling parameter similar to FASTTEXT (Bojanowski
et al., 2016) in order to subsample frequent target
words during training. Each X2STATIC model was
trained using a single V100 32 GB GPU. Obtaining
X2STATIC embeddings from 12-layer contextual
embedding models took 15-18 hours while it took

*nttps://huggingface.co/transformers/

35-38 hours to obtain them from their 24-layer
counterparts.

To ensure a fair comparison, we also evaluate
SENT2VEC, CBOW and SKIPGRAM models that
were trained on the same corpus. We do an exten-
sive hyperparameter tuning for these models and
choose the one which shows best average perfor-
mance on the 5 word similarity datasets used in
Subsection 4.2. These hyperparameter sets can be
accessed in Table 2 where the chosen hyperparam-
eters are shown in bold. We set the number of di-
mensions to be 768 to ensure parity between them
and the X2STATIC models compared. We used
the SENT2VEC library® for training SENT2VEC
and the FASTTEXT library® for training CBOW
and SKIPGRAM models. We also evaluate some
pre-trained 300 dimensional GLOVE (Pennington
et al., 2014) and FASTTEXT (Bojanowski et al.,
2016) models in Table 3. The GLOVE model was
trained on Common-Crawl corpus of 840 Billion
tokens (approximately 650 times larger than our
corpus) while the FASTTEXT vectors were trained
on a corpus of 16 Billion tokens (approximately
12 times larger than our corpus)). We also extract
ASE embeddings from each layer using the same
Wikipedia corpus.

We perform two different sets of evaluations.
The first set corresponds to unsupervised word sim-
ilarity evaluations to gauge the quality of the ob-
tained word embeddings. However, we recognize
that there are concerns regarding word-similarity

*https://github.com/epfml/sent2vec
*https://github.com/facebookresearch/
fastText/

5244

https://huggingface.co/transformers/
https://github.com/epfml/sent2vec
https://github.com/facebookresearch/fastText/
https://github.com/facebookresearch/fastText/

evaluation tasks (Faruqui et al., 2016) as they are
shown to exhibit significant difference in perfor-
mance when subjected to hyperparameter tuning
(Levy et al.,, 2015). To address these limitations
in the evaluation, we also evaluate the X2STATIC
embeddings on a standard set of downstream su-
pervised evaluation tasks used in Pagliardini et al.
(2018).

4.2 Unsupervised word similarity evaluation

To assess the quality of the lexical information con-
tained in the obtained word representations, we
use the 4 word-similarity datasets used by (Bom-
masani et al., 2020), namely WordSim353 (353
word-pairs) (Agirre et al., 2009) dataset; SimLex-
999 (999 word-pairs) (Hill et al., 2014) dataset;
RG-65 (65 pairs) (Joubarne and Inkpen, 2011);
and SimVerb-3500 (3500 pairs) (Gerz et al., 2016)
dataset as well as the Rare Words RW-2034 (2034
pairs) (Luong et al., 2013) dataset. To calculate
the similarity between two words, we use the co-
sine similarity between their word embeddings.
These similarity scores are compared to the hu-
man ratings using Spearman’s p (Spearman, 1904)
correlation scores. We use the tool’ provided by
Bommasani et al. (2020) to report these results
on ASE embeddings. It takes around 3 days to
obtain ASE representations of the 2005 words in
these word-similarity datasets for 12-layer models
and around 5 days to obtain them for their 24-layer
counterparts on the same machine used for learning
X2STATIC representations. All other embeddings
are evaluated using the MUSE repository evalua-
tion tool® (Lample et al., 2018).

We perform two sets of experiments concerning
the unsupervised evaluation tasks. The first set
is the comparison of our X2STATIC models with
competing models. For ASE, we report two sets of
results, one which per task reports the best result
amongst all the layers and other, which reports the
results obtained on the best performing layer on
average.

We report our observations in Table 3. We pro-
vide additional results for larger models in Ap-
pendix B. We observe that X2STATIC embeddings
outperform competing models on most of the tasks.
Moreover, the extent of improvement on SimLex-
999 and SimVerb-3500 tasks compared to the pre-

"https://github.com/rishibommasani/
Contextual2Static

$https://github.com/facebookresearch/
MUSE

vious models strongly highlights the advantage of
using improved context representations for training
static word representations.

Second, we study the performance of the best
ASE embedding layer with respect to the size of
corpus used. Bommasani et al. (2020) report their
results on a corpus size of only up to N = 100, 000
sentences. In order to measure the full potential
of the ASE method, we obtain different sets of
ASE embeddings as well as X2STATIC),,-, embed-
dings from small chunks of the corpus to the full
wikipedia corpus itself and compare their perfor-
mance on SimLex-999 and RW-2034 datasets. We
choose SimLex-999 as it captures true similarity in-
stead of relatedness or association (Hill et al., 2014)
and RW-2034 to gauge the robustness of the embed-
ding model on rare words. We report our observa-
tions in Figure 1. We observe that the performance
of the ASE embeddings tends to saturate with the
increase in the corpus size while X2STATICqrq
embeddings are either significantly outperforming
the ASE embeddings or still show a significantly
greater positive growth rate in performance w.r.t.
the corpus size. Thus, the experimental evidence
suggests that on larger texts, X2STATIC embed-
dings will have an even better performance and
hence, X2STATIC is a better alternative than ASE
embeddings from any of the layers of the contex-
tual embedding model, and obtains improved static
word embeddings from contextual embedding mod-
els.

4.3 Downstream supervised evaluation

We evaluate the obtained word embeddings on var-
ious sentence-level supervised classification tasks.
Six different downstream supervised evaluation
tasks namely classification of movie review sen-
timent(MR) (Pang and Lee, 2005), product re-
views(CR) (Hu and Liu, 2004), subjectivity classi-
fication(SUBJ) (Pang and Lee, 2004), opinion po-
larity (MPQA) (Wiebe et al., 2005), question type
classification (TREC) (Voorhees, 2002) and fine-
grained sentiment analysis (SST-5) (Socher et al.,
2013) are employed to gauge the performance of
the obtained word embeddings.

We use a standard CNN based architecture on
the top of our embeddings to train our classifier.
We use 100 convolutional filters with a kernel size
of 3 followed by a ReLLU activation function. A
global max-pooling layer follows the convolution
layer. Before feeding the max-pooled output to a

5245

https://github.com/rishibommasani/Contextual2Static
https://github.com/rishibommasani/Contextual2Static
https://github.com/facebookresearch/MUSE
https://github.com/facebookresearch/MUSE

Model \
Distilled Model

Parent Model \
Other details

Dim.| RG-65 | WS-353 | SL-999 | SV-3500 | RW-2034 | Average

Size of the
training corpus
relative to ours

Existing pre-trained models

FASTTEXT 12x 300 | 0.7669 0.596 0.416 0.3274 | 0.5226 | 0.5276
GLOVE 650x 300 | 0.6442 | 0.5791 0.3764 | 0.2625 | 0.4607 | 0.4646
Models trained by us

SKIPGRAM N.A. 768 | 0.8259 | 0.7141 0.4064 | 0.2722 | 0.4849 | 0.5407
CBOW N.A. 768 | 0.8348 | 0.4999 | 0.4097 | 0.2626 | 0.4043 | 0.4823
SENT2VEC N.A. 768 | 0.7811 | 0.7407 | 0.5034 | 0.3297 | 0.4248 | 0.55594
Models distilled by us Parent Model

ASE - best layer per task | BERT-12 768 |0.7449(1)|0.7012(1) | 0.5216(4) | 0.4151(5) | 0.4577(5) | 0.5429(3)
ASE - best overall layer |BERT-12 768 |0.6948(3)|0.6768(3)|0.5195(3) | 0.3889(3) | 0.4343(3) | 0.5429(3)
BERT2STATIC et BERT-12 768 | 0.7421 | 0.7297 | 0.5461 | 0.4437 | 0.5469 | 0.6017
BERT2STATICparq BERT-12 768 | 0.7555 | 0.7598 | 0.5384 | 0.4317 | 0.5299 | 0.6031
ASE - best layer per task | ROBERTA-12 |768 | 0.673(0) [0.7023(0) | 0.554(5) |0.4602(4) | 0.5075(3) | 0.5600(0)
ASE - best overall layer |ROBERTA-12 |768 | 0.673(0) [0.7023(0) |0.5167(0) | 0.4424(0) | 0.4657(0) | 0.5600(0)
ROBERTA2STATIC et ROBERTA-12 |768 | 0.7999 | 0.7452 | 0.5507 | 0.4658 | 0.5496 | 0.6222
ROBERTA2STATICp,r, ~ ROBERTA-12 |768 | 0.8057 | 0.7638 | 0.5544 | 0.4717 | 0.5501 | 0.6291

ASE - best layer per task | GPT2-12 768 |0.7013(1) | 0.6879(0) | 0.4972(2) | 0.3905(2) | 0.4556(2) | 0.5365(2)
ASE - best overall layer | GPT2-12 768 |0.6833(2) |0.6560(2) |0.4972(2) | 0.3905(2) | 0.4556(2) | 0.5365(2)
GPT2STATIC, s GPT2-12 768 | 0.7484 | 07151 | 0.5397 | 0.4676 | 0.5760 | 0.6094
GPT,2STATIC g1 GPT2-12 768 | 0.7881 | 07267 | 0.5417 | 0.4733 | 0.5668 | 0.6193

Table 3: Comparison of the performance of different embedding methods on word similarity tasks. Models
are compared using Spearman correlation for word similarity tasks. All X2STATIC method performances which
improve over all ASE methods on their parent model as well as all static models are shown in bold. Best perfor-
mance in each task is underlined. For all ASE methods, the number in parentheses for each dataset indicates which

layer was used for obtaining the static embeddings.

classifier, it is passed through a dropout layer with
dropout probability of 0.5 to prevent overfitting.
We use Adam (Kingma and Ba, 2015b) to train our
classifier. To put the performance of these static
models into a broader perspective, we also fine-tune
linear classifiers on the top of their parent mod-
els as well as sentence-transformers (Reimers and
Gurevych, 2019) obtained from ROBERTA-12 and
BERT-12. For the sentence-transformer models,
we use the sentence-transformer models obtained
by fine-tuning their parent models on the Natural
Language Inference(INLI) task using the combina-
tion of Stanford NLI (Bowman et al., 2015) and the
Multi-Genre NLI (Williams et al., 2018) datasets.
The models are refered to as SBERT-BASE-NLI
and SROBERTA-BASE-NLI in the rest of the pa-
per.

The hyperparameter search space for the fine-
tuning process involves the number of epochs (8-

16) and the learning rates[1e-4,3e-4,1e-3]. Wher-
ever train, validation, and test split is not given, we
use 60% of the data as the training data, 20% of the
data as validation data and the rest as the test data.
After obtaining the best hyperparameters, we train
on the train and validation data together with these
hyperparameters and predict the results on the test
set. For the linear classifiers on the top of parent
models, we set the number of epochs and learning
rate search space for parent model + linear classifier
combination to be [3,4,5,6] and [2e-5,5¢e-5] respec-
tively. The learning rates in the learning rate search
space are lower than those for static embeddings as
the contextual embeddings are also fine-tuned and
follow the recommendation of Devlin et al. (2019).
For the sentence-transformer models, we only train
the linear classifier and set the number of epochs
and learning rate search space to be [3,4,5,6] and
[1e-4,3e-4,1e-3] respectively. We use cross-entropy

5246

Performance of the models on SIMLEX-999

0.55 +

0.50 ~

Spearman’s p
o
»
[9,]
)

&====‘-----.--———-.-|:---

—@ - ASEgerr-12
=@ - ASERoBERTa-12

0.40 1
ASEGpr2 - 12
—8— BERT2STATICpara
—@— ROBERTa2STATICpara
0.35 1 GPT22STATICpara
1072 1071 100
Fraction of the full wikipedia dataset used
Performance of the models on RW-2034
0.55 4
0.50 1
————————- o--—~<
o 045{ ® .
c
g .
£040{ @---"" ¢
8 / —@® - ASEgerT-12
w0
0.35 1 =@ - ASERoBERTa- 12
ASEGpr2 -12
—&— Bert2Staticpara
0.301 —@— Roberta2Staticpara
GPT22Staticpara
0.25 - . T
101 10°

Fraction of the full wikipedia dataset used

Figure 1: Effect of corpus size on the word-embedding quality for ASE best task independent layer and
X2STATIC)q : In the legend, parent model is indicated in subscript.

loss for training all the models. We use Macro-F1
score and Accuracy to gauge the quality of our
predictions. We compare X2STATIC models with
all other static models trained from scratch on the
same corpus as well as the GLOVE and FASTTEXT
models used in the previous section. We also use
existing GLOVE embeddings trained on tweets(27
billion tokens - 20 times larger than our corpus)
(Pennington et al., 2014) to make the comparison
even more extensive. We report our observations in
Table 4. For ASE embeddings, we take the layer
with best average macro-F1 performance.

We observe that when measuring the
overall performance, with the exception of
ROBERTA2STATICg.;,; which has similar av-

erage F-1 score to ASE owing to its dismal
performance on the CR task, all X2STATIC
embeddings outperform their competitors by a
significant margin. Even though the GLOVE
and FASTTEXT embeddings were trained on
corpora of one to two magnitudes larger and
have a larger vocabulary, their performance lags
behind that of the X2STATIC embeddings. To
ensure statistical soundness, we measure mean
and standard deviation of the performance on 6
runs of X2STATICy,4.q model training followed by
downstream evaluation along with 6 runs of ASE
embedding downstream evaluation with different
random seeds in Table 5 in the Appendix. We see
that X2STATIC),r, embeddings outperform ASE

5247

. . CR MR MPQA | SUBJ TREC SST-5 | Average
Embeddings \Task PIM £/ Ace. | F1/ Ace. | F1/ Ace. |F1/ Ace. |1/ Ace. |FI / Acc. | FI / Acc.
Existing pre-trained models ‘

GLOVE 300 |81.6/83.2|78.2/78.2|85.1/87.690.9/90.9 | 45.4/86.2 | 15.5/43.2 | 66.1/78.1
GLOVE (Twitter) 200 |79.0/80.9 |74.1/74.2|82.1/85.0 | 89.6/89.7|49.1/87.8 | 13.1/37.5 | 64.5/75.9
FASTTEXT 300 |80.3/81.9|78.3/78.4|86.5/88.1|90.9/90.9 | 45.3/85.9 | 13.9/43.9 | 66.2/78.2
Models trained by us

SKIPGRAM 768 |78.4/80.9|75.2/75.2|83.1/85.891.5/91.5|50.2/88.6 | 13.9/39.0 | 65.4/76.8
CBOW 768 |75.9/78.5|72.6/72.7|83.3/86.0 | 85.5/85.5|43.2/85.7 | 13.4/38.9 | 62.0/74.6
SENT2VEC 768 |79.8/81.2|74.1/74.1|81.0/84.5|89.4/89.4 | 42.9/84.1 | 13.2/38.6 | 63.4/75.3
Models distilled by us ‘

ASE - BERT-12 (5) 768 |81.5/83.0|78.5/78.5|86.0/86.091.0/91.0|48.3/87.6 | 15.0/42.1 | 66.7/78.0
BERT2STATIC et 768 |80.1/82.0|78.9/78.9 | 87.4/89.1 | 91.8/91.8 | 50.6/88.7 | 16.1/43.7 | 67.5/79.0
BERT2STATICparq 768 | 81.1/83.6 | 80.8/80.8 | 87.3/89.3 | 91.6/91.6 | 51.8/89.2 | 16.1/44.9 | 68.1/79.9
ASE - ROBERTA-12 (2) |768 |78.4/81.2|78.3/78.3|86.4/88.5|89.5/89.5(52.0/89.1 | 15.2/43.0|66.6/78.3
ROBERTA2STATIC et 768 |76.5/79.6 | 80.2/80.2 | 85.6/88.0 [92.2/92.2|49.7/89.1 | 15.7/43.8 | 66.7/78.8
ROBERTA2STATICpare | 768 |80.9/82.3|80.0/80.1 | 87.3/89.4 | 92.4/92.4 | 49.3/88.8 | 16.3/43.4| 67.7/79.4
ASE - GPT2-12 (4) 768 |81.0/82.1]80.1/80.1|84.8/86.291.2/91.2|51.0/88.8 | 15.5/42.0| 67.3/78.4
GPT22STATIC0s 768 | 81.5/83.5|79.5/79.5| 86.5/88.5 | 91.8/91.8 | 51.8/89.2 | 16.2/43.8 | 67.9/79.4
GPT22STATIC 4, 768 | 81.0/82.6|79.7/79.7 | 86.9/88.8 | 92.1/92.1 | 53.0/89.1 | 16.2/44.1 | 68.1/79.4

Parent contextual
models and derivatives

BERT-12 768 |89.6/90.6 | 87.4/87.4|89.4/90.8 | 96.7/96.7 | 77.6/94.7 | 30.7/54.0 | 78.6/85.7
SBERT-BASE-NLI 768 | 87.4/88.7|83.3/83.3|86.8/88.293.6/93.6|41.6/72.2 125.3/48.2|69.7/79.1
ROBERTA-12 768 190.0/90.8 [90.1/90.1 | 89.1/90.6 | 96.3/96.3 | 95.1/99.2 | 34.0/57.6 | 82.4/87 .4
SROBERTA-BASE-NLI 768 | 87.6/88.6|86.3/86.3 | 86.8/88.8 |94.6/94.6 | 52.4/80.6 | 23.7/53.5 | 72.7/82.1

GPT2-12

768 |88.5/89.5|87.1/87.1|87.3/89.1|96.1/96.1 | 76.8/94.3 | 30.8/54.5 | 77.8/85.1

Table 4: Comparison of the performance of different static embeddings on downstream tasks. All X2STATIC
method performances which improve or are at par over all other static embedding methods and the best ASE layer
on their parent model are shown in bold. Best static embedding performance for each task is underlined. For each
ASE method, the number in brackets indicates the layer with best average performance. We use macro-F1 scores
and accuracy as the metrics to gauge the performance of models on these downstream tasks. Note: Contextual
embeddings for BERT-12, ROBERTA-12 and GPT2-12 in the SOTA section are also fine-tuned while SBERT-

BASE-NLI and SROBERTA-BASE-NLI are not.

by a significant margin.

For both word similarity evaluations and
downstream supervised tasks, we observe that
X2STATICpqrq embeddings perform slightly better
than X2STATICse,,: embeddings. However, since
no hyperparameter tuning was performed on the
distillation of X2STATIC embeddings, it is hard
to discern which X2STATIC variant shows better
performance. Moreover, owing to the same fact
concerning hyperparameter tuning, we expect to

see even larger improvements with proper hyperpa-
rameter tuning as well as training on larger data.

5 Conclusion and Future Work

This work proposes to augment earlier
WORD2VEC-based methods by leveraging
recent more expressive deep contextual embedding
models to extract static word embeddings. The
resulting distilled static embeddings, on an average,
outperform their competitors on both unsupervised

5248

as well downstream supervised evaluations and
thus can be used to replace compute-heavy
contextual embedding models (or existing static
embedding models) at inference time in many
compute-resource-limited applications. The result-
ing embeddings can also be used as a task-agnostic
tool to measure the lexical information conveyed
by contextual embedding models and allow a fair
comparison with their static analogues.

Further work can explore extending this dis-
tillation framework into cross-lingual domains
(Schwenk and Douze, 2017; Lample and Conneau,
2019) as well as using better pooling methods in-
stead of simple averaging for obtaining the con-
text representation, or joint fine-tuning to obtain
even stronger static word embeddings. Another
promising avenue is the use of a similar approach
to learn sense embeddings from contextual embed-
ding models. We would also like to investigate the
performance of these embeddings when distilled
on a larger corpus along with more extensive hyper-
parameter tuning. Last but not the least, we would
like to release X2STATIC models for different lan-
guages for further public use.

References

Eneko Agirre, Enrique Alfonseca, Keith B. Hall, Jana
Kravalova, Marius Pasca, and Aitor Soroa. 2009.
A study on similarity and relatedness using distri-
butional and wordnet-based approaches. In HLT-
NAACL.

Israa Alghanmi, Luis Espinosa Anke, and Steven
Schockaert. 2020. Combining BERT with Static
Word Embeddings for Categorizing Social Media.
In Proceedings of the Sixth Workshop on Noisy User-
generated Text (W-NUT 2020), pages 28-33.

L. Barsalou. 1982. Context-independent and context-
dependent information in concepts. Memory & Cog-
nition, 10:82-93.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135—-146.

Rishi Bommasani, Kelly Davis, and Claire Cardie.
2020. Interpreting pretrained contextualized repre-
sentations via reductions to static embeddings. In
ACL.

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In EMNLP.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: pre-
training text encoders as discriminators rather than
generators. In ICLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In NAACL-HLT.

Kawin Ethayarajh. 2019. How contextual are contex-
tualized word representations? comparing the ge-
ometry of BERT, ELMo, and GPT-2 embeddings.
In EMNLP-1JCNLP - Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing, pages 55—65.
ACL.

T. Farrell, Oscar Araque, Miriam Ferndndez, and
H. Alani. 2020. On the use of jargon and word
embeddings to explore subculture within the reddits
manosphere. 12th ACM Conference on Web Sci-
ence.

Manaal Faruqui, Yulia Tsvetkov, Pushpendre Rastogi,
and Chris Dyer. 2016. Problems with evaluation of
word embeddings using word similarity tasks. In
RepEval @ACL.

J. R. Firth. 1957. A synopsis of linguistic theory, 1930-
1955.

Daniela Gerz, Ivan Vulié, Felix Hill, Roi Reichart, and
Anna Korhonen. 2016. Simverb-3500: A large-
scale evaluation set of verb similarity. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 2173-2182.

Hila Gonen and Yoav Goldberg. 2019. Lipstick on a
pig: Debiasing methods cover up systematic gender
biases in word embeddings but do not remove them.
In NAACL-HLT.

Joshua Gordon, Marzieh Babaeianjelodar, and Jeanna
Matthews. 2020. Studying political bias via word
embeddings. In WWW ’20 - Companion Proceed-
ings of the Web Conference 2020, page 760764.

Prakhar Gupta, Matteo Pagliardini, and Martin Jaggi.
2019. Better word embeddings by disentangling
contextual n-gram information. In NAACL-HLT.

Felix Hill, Roi Reichart, and Anna Korhonen. 2014.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics, 41:665-695.

Minqging Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 168-177.
ACM.

5249

https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.1145/3366424.3383560
https://doi.org/10.1145/3366424.3383560
https://www.aclweb.org/anthology/N19-1098/
https://www.aclweb.org/anthology/N19-1098/

Colette Joubarne and Diana Inkpen. 2011. Compari-
son of semantic similarity for different languages us-
ing the google n-gram corpus and second-order co-
occurrence measures. In Canadian Conference on
AL

Masahiro Kaneko and Danushka Bollegala. 2019.
Gender-preserving debiasing for pre-trained word
embeddings. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1641-1650, Florence, Italy. ACL.

Ilknur Karadeniz and Arzucan Ozgiir. 2019. Linking
entities through an ontology using word embeddings
and syntactic re-ranking. BMC Bioinformatics, 20.

Diederik P Kingma and Jimmy Ba. 2015a. Adam: A
method for stochastic optimization. In /CLR.

Diederik P. Kingma and Jimmy Ba. 2015b. Adam: A
method for stochastic optimization. In ICLR - Inter-
national Conference on Learning Representations.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. In NeurlPS
2019 - Advances in Neural Information Processing
Systems.

Guillaume Lample, Alexis Conneau, Marc’ Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou. 2018.
Word translation without parallel data. In Interna-
tional Conference on Learning Representations.

Omer Levy, Y. Goldberg, and I. Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the Associ-
ation for Computational Linguistics, 3:211-225.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv, abs/1907.11692.

Li Lucy, Dorottya Demszky, Patricia Bromley, and Dan
Jurafsky. 2020. Content analysis of textbooks via
natural language processing: Findings on gender,
race, and ethnicity in texas u.s. history textbooks.
AERA Open, 6.

Thang Luong, Richard Socher, and Christopher D.
Manning. 2013. Better word representations with re-
cursive neural networks for morphology. In CoNLL.

Andrés Alejandro Ramos Magna, Héctor Allende-Cid,
Carla Taramasco, C. Becerra, and R. Figueroa. 2020.
Application of machine learning and word embed-
dings in the classification of cancer diagnosis using
patient anamnesis. IEEE Access, 8:106198-106213.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP Natural Lan-
guage Processing Toolkit. In ACL.

Thomas Manzini, Lim Yao Chong, Alan W. Black, and
Yulia Tsvetkov. 2019. Black is to criminal as cau-
casian is to police: Towards detecting, evaluating
and removing multiclass bias in word embeddings.
In NAACL 2019.

Timothee Mickus, Denis Paperno, Mathieu Constant,
and Kees van Deemter. 2020. What do you mean,
BERT? Assessing BERT as a Distributional Seman-
tics Model. Proceedings of the Society for Computa-
tion in Linguistics, 3(1):350-361.

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and
Jeffrey Dean. 2013. Efficient estimation of word rep-
resentations in vector space. In ICLR - International
Conference on Learning Representations.

Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi.
2018. Unsupervised learning of sentence embed-
dings using compositional n-gram features. In
NAACL-HLT.

Bo Pang and Lillian Lee. 2004. A sentimental educa-
tion: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In Proceedings of
the 42nd annual meeting on Association for Compu-
tational Linguistics, page 271. Association for Com-
putational Linguistics.

Bo Pang and Lillian Lee. 2005. Seeing stars: Ex-
ploiting class relationships for sentiment categoriza-
tion with respect to rating scales. In Proceedings of
the 43rd annual meeting on association for compu-
tational linguistics, pages 115—124. Association for
Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In EMNLP.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227—
2237, New Orleans, Louisiana. ACL.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In EMNLP-IJCNLP - Proceedings of the
2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint
Conference on Natural Language Processing, pages
3982-3992, Hong Kong, China. ACL.

L. Rheault and C. Cochrane. 2020. Word embeddings
for the analysis of ideological placement in parlia-
mentary corpora. Political Analysis, 28:112-133.

5250

https://doi.org/10.18653/v1/P19-1160
https://doi.org/10.18653/v1/P19-1160
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://www.aclweb.org/anthology/N18-1049/
https://www.aclweb.org/anthology/N18-1049/
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A primer in bertology: What we know about
how bert works. Transactions of the Association for
Computational Linguistics, 8:842—-866.

Paula Rubio-Ferndndez. 2008. Concept narrowing:
The role of context-independent information. J. Se-
mant., 25:381-409.

Holger Schwenk and Matthijs Douze. 2017. Learn-
ing joint multilingual sentence representations with
neural machine translation. In Proceedings of the
2nd Workshop on Representation Learning for NLP,
pages 157-167, Vancouver, Canada. ACL.

Philippa Shoemark, Farhana Ferdousi Liza, Dong
Nguyen, Scott Hale, and Barbara McGillivray. 2019.
Room to Glo: A systematic comparison of semantic
change detection approaches with word embeddings.
In EMNLP-1JCNLP - Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing, pages 6676,
Hong Kong, China. ACL.

R. Socher, Alex Perelygin, J. Wu, Jason Chuang,
Christopher D. Manning, A. Ng, and Christopher
Potts. 2013. Recursive deep models for seman-
tic compositionality over a sentiment treebank. In
EMNLP.

Charles Spearman. 1904. The proof and measurement
of association between two things. The American
Jjournal of psychology, 15(1):72-101.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and Policy Considerations for
Deep Learning in NLP. In ACL.

Ellen M Voorhees. 2002. Overview of the TREC 2001
question answering track. In NIST special publica-
tion, pages 42-51.

Ivan Vulic, Sebastian Ruder, and Anders Sggaard.
2020. Are all good word vector spaces isomorphic?
In EMNLP.

Janyce Wiebe, Theresa Wilson, and Claire Cardie.
2005. Annotating expressions of opinions and emo-
tions in language. Language resources and evalua-

tion, 39(2):165-210.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112—-1122.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,

Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In EMNLP - Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 38-45,
Online. ACL.

Yijia Zhang, Qingyu Chen, Z. Yang, H. Lin, and Zhiy-
ong Lu. 2019. Biowordvec, improving biomedi-
cal word embeddings with subword information and
mesh. Scientific Data, 6.

Zhe Zhao, Tao Liu, Shen Li, Bofang Li, and Xiaoyong
Du. 2017. Ngram2vec: Learning improved word
representations from ngram co-occurrence statistics.
In EMNLP.

5251

https://doi.org/10.18653/v1/W17-2619
https://doi.org/10.18653/v1/W17-2619
https://doi.org/10.18653/v1/W17-2619
https://doi.org/10.18653/v1/D19-1007
https://doi.org/10.18653/v1/D19-1007
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

A Comparison of multiple downstream

runs

Embeddings \Task

Average
Mean F1 / Acc.

ASE - BERT-12 (5)
BERT2STATICprq

67.0£0.2/78.1 + 0.2
68.3 +0.3/79.9 4 0.2

ASE - ROBERTA-12 (2)
ROBERTA2STATICpurq

67.0+£0.2/78.24+0.3
67.9+0.2/79.6 + 0.3

ASE - GPT2-12 (4)
GPT22STATIC4pq

67.44+0.3/78.3+0.3
68.4 £0.2/80.0 £ 0.4

Table 5: Comparison of the overall performance
of X2STATICy,,, With ASE on downstream tasks.
Mean and standard deviation of performance on each

task over six runs is shown.

B Experiments on larger models

In addition to the smaller 12-layer contextual em-
bedding models, we also obtain X2STATIC word
vectors from larger 24-layer contextual embedding
models, once again outperforming their ASE coun-
terparts by a significant margin. The evaluation
results can be accessed in the Table 6.

5252

Model \

Parent Model \

Distilled Model Other details Dim. ‘ RG-65 ‘ WS-353 ‘ SL-999 ‘ SV-3500 ‘ RW-2034 ‘ Average
Size of the

Existing models training corpus

relative to ours
FASTTEXT 12x 300 0.7669 0.596 0416 0.3274 0.5226 0.5276
GLOVE 650x 300 0.6442 0.5791 0.3764 0.2625 0.4607 0.4646
Models trained by us
SKIPGRAM N.A. 768 0.8259 0.7141 0.4064 0.2722 0.4849 0.5407
CBOW N.A. 768 0.8348 0.4999 0.4097 0.2626 0.4043 0.4823
SENT2VEC N.A. 768 0.7811 0.7407 0.5034 0.3297 0.4248 0.55594
Models distilled by us Parent Model
ASE - best layer per task BERT-12 768 | 0.7449(1) | 0.7012(1) | 0.5216(4) | 0.4151(5) | 0.4577(5) | 0.5429(3)
ASE - best overall layer BERT-12 768 | 0.6948(3) | 0.6768(3) | 0.5195(3) | 0.3889(3) | 0.4343(3) | 0.5429(3)
BERT2STATIC et BERT-12 768 0.7421 0.7297 0.5461 0.4437 0.5469 0.6017
BERT2STATICpgrq BERT-12 768 0.7555 0.7598 0.5384 0.4317 0.5299 0.6031
ASE - best layer per task BERT-24 1024 | 0.7745(9) | 0.7267(6) |0.5404(15)|0.4364(10) | 0.4735(6) | 0.5782(7)
ASE - best task independent layer | BERT-24 1024 | 0.7677(7) | 0.7052(7) | 0.5209(7) | 0.4307(7) | 0.4665(7) | 0.5782(7)
BERT2STATICent BERT-24 1024 | 0.8031 0.7239 0.5675 0.4692 0.5595 0.6247
BERT2STATICpgrq BERT-24 1024 | 0.8085 0.7652 0.5607 0.4543 0.5504 0.6278
ASE - best layer per task ROBERTA-12 |768 | 0.673(0) | 0.7023(0) | 0.554(5) | 0.4602(4) | 0.5075(3) | 0.5600(0)
ASE - best overall layer ROBERTA-12 |768 | 0.673(0) | 0.7023(0) | 0.5167(0) | 0.4424(0) | 0.4657(0) | 0.5600(0)
ROBERTA2STATICent ROBERTA-12 |768 0.7999 0.7452 0.5507 0.4658 0.5496 0.6222
ROBERTA2STATIC4rq ROBERTA-12 |768 0.8057 0.7638 0.5544 0.4717 0.5501 0.6291
ASE - best layer per task ROBERTA-24 1024 | 0.6782(8) | 0.6736(6) |0.5526(18) | 0.4571(9) | 0.5385(9) | 0.5680(9)
ASE - best task independent layer | ROBERTA-24 1024 | 0.6738(6) | 0.6270(9) | 0.5437(9) | 0.4571(9) | 0.5385(9) | 0.5680(9)
ROBERTA2STATICsent ROBERTA-24 1024 | 0.7677 0.7336 0.5397 0.4576 0.5720 0.6141
ROBERTA2STATICparq ROBERTA-24 |1024| 0.7939 0.7523 0.5476 0.4663 0.5739 0.6268
ASE - best layer per task GPT2-12 768 | 0.7013(1) | 0.6879(0) | 0.4972(2) | 0.3905(2) | 0.4556(2) | 0.5365(2)
ASE - best overall layer GPT2-12 768 | 0.6833(2) | 0.6560(2) | 0.4972(2) | 0.3905(2) | 0.4556(2) | 0.5365(2)
GPT22STATIC ;0 GPT2-12 768 0.7484 0.7151 0.5397 0.4676 0.5760 0.6094
GPT22STATIC g GPT2-12 768 0.7881 0.7267 0.5417 0.4733 0.5668 0.6193
ASE - best layer per task GPT2-24 1024 | 0.6574(1) | 0.6957(0) |0.4988(13)|0.4226(12)|0.4566(12) [0.5155(13)
ASE - best task independent layer | GPT2-24 1024 10.5773(13) | 0.6242(13) | 0.4988(13) | 0.4210(13) | 0.4561(13) | 0.5155(13)
GPT22STATIC 40y GPT2-24 1024 | 0.7815 0.7311 0.5537 0.4774 0.5939 0.6275
GPT22STATIC 4 GPT2-24 1024 | 0.7907 0.7331 0.5488 0.4850 0.5828 0.6281

Table 6: Comparison of the performance of different embedding methods on word similarity tasks. Models
are compared using Spearman correlation for word similarity tasks. All X2STATIC method performances which
improve over all ASE methods on their parent model as well as all static models are shown in bold. Best perfor-
mance in each task is underlined. For all ASE methods, the number in parentheses for each dataset indicates which
layer was used for obtaining the static embeddings.

5253

