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Abstract 

Lately proposed Word Sense 
Disambiguation (WSD) systems have 
approached the estimated upper bound of 
the task on standard evaluation benchmarks. 
However, these systems typically 
implement the disambiguation of words in 
a document almost independently, 
underutilizing sense and word dependency 
in context. In this paper, we convert the 
nearly isolated decisions into interrelated 
ones by exposing senses in context when 
learning sense embeddings in a similarity-
based Sense Aware Context Exploitation 
(SACE) architecture. Meanwhile, we 
enhance the context embedding learning 
with selected sentences from the same 
document, rather than utilizing only the 
sentence where each ambiguous word 
appears. Experiments on both English and 
multilingual WSD datasets have shown the 
effectiveness of our approach, surpassing 
previous state-of-the-art by large margins 
(3.7% and 1.2% respectively), especially 
on few-shot (14.3%) and zero-shot (35.9%) 
scenarios. 

1 Introduction 

Word Sense Disambiguation (WSD) is the task of 
determining a word’s sense given its context. 
Recently, contextualized representation learning 
(Devlin et al., 2019; Liu et al., 2019) have 
accelerated the advancement of WSD, raising the 
performance on a standard evaluation framework 
(Raganato et al., 2017a) from slightly higher than 
70% (Raganato et al., 2017b; Luo et al., 2018; 
Kumar et al., 2019) to about 80% (Vial et al., 2019; 
Blevins and Zettlemoyer, 2020; Bevilacqua and 
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Navigli, 2020). This is an estimated upper bound 
of the task, which is from the inter-annotator 
agreement: the percentage of words that are 
annotated with the same meaning by two or more 
annotators (Navigli, 2009). There is a clear trend 
that supervised systems tend to incorporate sense 
knowledge into their architecture, ranging from 
sense definition, usage examples to sense relation. 

However, the disambiguation of words in a 
document is almost independent of each other, 
especially from the perspective of senses in 
context. The connection of each word’s 
disambiguation is limited to the utilization of a 
sentence (Loureiro and Jorge, 2019; Huang et al., 
2019; Hadiwinoto et al., 2019; Scarlini et al., 
2020a) or a small window of text (Bevilacqua and 
Navigli, 2020) because of computation cost or 
model restriction. More severely, the interaction of 
senses in context is barely explored. Similar to 
word cooccurrence, the appearance of one sense 
can sometimes dominate the choice of another 
sense in the same sentence (Agirre et al., 2014; 
Maru et al., 2019). 

In this paper, we introduce SACE, a similarity-
based WSD approach. Precisely, we transform the 
previously almost isolated disambiguation of 
words in a document into interrelated ones to 
maximize the contribution of context from both 
word and sense perspectives. We summarize our 
contributions as follows: 

1. We devise an interactive sense embedding 
learning technique that takes into account 
senses in context via a selective attention 
layer in a neural architecture. It connects 
senses via their appearance in a piece of text 
rather than using manually constructed sense 
relations, being less costly. 

2. We introduce a method to better exploit the 

Word Sense Disambiguation: Towards Interactive  
Context Exploitation from Both Word and Sense Perspectives 

 
 

Ming Wang1 and Yinglin Wang2, * 

School of Information Management and Engineering 
Shanghai University of Finance and Economics, Shanghai, China 

1wangming@163.sufe.edu.cn, 2wang.yinglin@shufe.edu.cn 
 
 
 



5219

context sentences of an ambiguous word in 
the neural architecture by selecting important 
sentences from the same document according 
to sentence relatedness. 

3. With experiments on corresponding datasets, 
the proposed architecture is proved to have an 
overwhelming advantage of few-shot and 
zero-shot WSD learning ability compared 
with other strong baselines. 

4. We show that the proposed architecture is 
portable to multilingual scenarios when 
trained merely on an English dataset with a 
multilingual pre-trained model, achieving 
new state-of-the-art on most tested 
benchmarks and the combined one. 

2 Related Work 

There are mainly two alternatives for solving WSD, 
namely knowledge-based and supervised 
approaches. While the former mainly relies on a 
sense inventory for disambiguation, the latter is 
dependent on sense-annotated corpora to train a 
sense classifier, either for each word or the whole 
vocabulary. However, many recently proposed 
systems combine the above two strategies, 
injecting sense knowledge into their supervised 
models while somehow inadequately modeling the 
provided context in a document from both word 
and sense perspectives. 

2.1 Supervised Method 

Early supervised approaches model the relational 
pattern between an ambiguous word’s local 
features and its gold sense from sense-annotated 
data. IMS (Zhong and Ng, 2010) was one of the 
most prevalent systems that trained a sense 
classifier for each lemma in training data. In 
comparison, Raganato et al. (2017b) unified the 
disambiguation of words into a single sequence 
labeling architecture, relieving the efficiency issue. 
Many following systems improved this 
architecture by incorporating sense knowledge. 

For unseen lemmas, these systems require most 
frequent sense (MFS) fallback (select the most 
frequent candidate sense in the training data). To 
tackle this problem, LMMS (Loureiro and Jorge 
2019) implements the disambiguation in a 
similarity-based manner. It learns a sense 
embedding for each labeled sense in SemCor 
(Miller et al., 1994) and maps them to full 
coverage of WordNet (Miller, 1995) senses using 

sense relations. BERT (Devlin et al., 2019) is used 
as a feature-extraction module for both gloss and 
context encoding. Further, BEM (Blevins and 
Zettlemoyer, 2020) utilizes two encoders for the 
above approach in a fine-tuning manner. Although 
the model is more effective even without 
exploiting sense knowledge other than glosses, it 
takes around 2.5 days for training.  

The employment of sense relations in previous 
supervised systems is mostly limited to explicitly 
defined sense relations including hypernymy and 
hyponymy relation, severely neglecting how 
senses in context contribute to the selection of a 
word’s sense. 

2.2 Context Exploitation 

For supervised WSD approaches, it is typical to use 
a small fraction of the whole context to carry out 
disambiguation, such as a sentence, or a sliding 
window of text. In contrast, knowledge-based 
WSD approaches tend to more sufficiently exploit 
a word’s context, ranging from a sentence (Lesk, 
1986; Wang and Wang, 2020), a few sentences 
(Agirre et al., 2018, Wang et al., 2020) to even the 
whole document (Chaplot and Salakhutdinov, 
2018). Some studies draw in out-of-dataset context 
(Ponzetto and Navigli, 2010; Scarlini et al., 2020a) 
for disambiguation, including Wikipedia 
documents. Therefore, it is worth exploring 
whether the disambiguation of words within the 
same document can benefit from each other in a 
supervised system. 

The utilization of senses in context is far less 
investigated compared with words in context. 
UKB (Agirre et al., 2014, a knowledge-based 
system) is one of the related systems that model 
sense relations in context. It first connects senses 
in context via WordNet sense relations and 
operates personalized PageRank on the 
constructed sense graph to decide sense 
importance. For each word, the most important 
potential sense is considered as the correct sense. 
SyntagNet (Maru et al., 2019) improves the idea 
by introducing manually disambiguated sense 
pairs in context during sense graph construction. 
Although the system was able to challenge 
supervised systems at the time, it relied on human 
labor to obtain sense pairs in context. There was no 
attempt on integrating the utilization of senses in 
context into a supervised architecture. 
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3 Preliminary 

WSD is to select the correct sense �̃�𝑠𝑗𝑗 of a word 𝑤𝑤𝑖𝑖𝑗𝑗 
given its context. 𝑤𝑤𝑖𝑖𝑗𝑗  is the 𝑗𝑗𝑡𝑡ℎ  word in the 
𝑖𝑖𝑡𝑡ℎ sentence 𝑆𝑆𝑖𝑖 = {𝑤𝑤𝑖𝑖1,𝑤𝑤𝑖𝑖2, … ,𝑤𝑤𝑖𝑖𝑗𝑗 , … ,𝑤𝑤𝑖𝑖𝑖𝑖}  of a 
document 𝐷𝐷 = {𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑖𝑖 , … , 𝑆𝑆𝑚𝑚}.  The 
candidate senses 𝑠𝑠�𝑤𝑤𝑖𝑖𝑗𝑗� = {𝑠𝑠𝑗𝑗1, 𝑠𝑠𝑗𝑗2, … , 𝑠𝑠𝑗𝑗𝑗𝑗, … , 𝑠𝑠𝑗𝑗𝑗𝑗} 
are from a sense inventory such as WordNet. Here, 
𝑖𝑖, 𝑗𝑗, and 𝑗𝑗 denote the index of sentence, word, and 
sense respectively. 

In a similarity-based WSD approach, the 
disambiguation of a word is determined by the 
similarity between its context representation 𝑣𝑣𝑤𝑤𝑖𝑖𝑗𝑗 
and each candidate sense representation 𝑣𝑣𝑠𝑠𝑗𝑗𝑗𝑗 . In 
many cases, both representations are vectors and 
the similarity is measured by their dot product after 
normalization. Then, the sense with the highest 
similarity is selected as the correct sense. 

Typically, a word’s context representation is 
learned using the sentence 𝑆𝑆𝑖𝑖  where the word 
appears (Loureiro and Jorge, 2019; Scarlini et al., 
2020a; Scarlini et al., 2020b). The representation 
of a candidate sense is obtained using its 
gloss/definition 𝐺𝐺𝑠𝑠𝑗𝑗𝑗𝑗 defined in WordNet (Blevins 
and Zettlemoyer, 2020). A common approach of 
encoding these two sequences in recent research is 
to utilize pre-trained models such as BERT, 
RoBERTa (Liu et al., 2019), and so on, taking the 
sum of the outputs of the last four layers as encoded 
features (Loureiro and Jorge, 2019; Scarlini et al., 
2020a), as in (1) and (2). Before feeding 𝑆𝑆𝑖𝑖  and 
𝐺𝐺𝑠𝑠𝑗𝑗𝑗𝑗 to the models, a special token [CLS]/[SEP] is 
added to the beginning/end of the sequence, 
modifying them into 𝑆𝑆�̅�𝑖 and �̅�𝐺𝑠𝑠𝑗𝑗𝑗𝑗 , respectively.  

 𝑣𝑣𝑤𝑤𝑖𝑖𝑗𝑗 = ∑ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑧𝑧
𝑗𝑗(−4,−1)

𝑧𝑧 (𝑆𝑆�̅�𝑖)  (1) 

For each 𝑤𝑤𝑖𝑖𝑗𝑗’s context representation, a normal 
choice is to utilize the model’s output at the 
position of the word (𝑗𝑗), using 𝑆𝑆�̅�𝑖 as input, shown 
in equation (1). If the word is tokenized into several 
pieces, their mean is taken. In contrast, for each 
sense representation, when it is fine-tuning a pre-
trained model, the sense embedding is the output at 
the position of [CLS] (Blevins and Zettlemoyer, 
2020), with the modified gloss as input, as in (2). 

 𝑣𝑣𝑠𝑠𝑗𝑗𝑗𝑗
[𝐶𝐶𝐶𝐶𝐶𝐶] = ∑ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑧𝑧

[𝐶𝐶𝐶𝐶𝐶𝐶](−4,−1)
𝑧𝑧 (�̅�𝐺𝑠𝑠𝑗𝑗𝑗𝑗)  (2) 

To utilize the supervision from a training corpus, 
a cross-entropy loss is implemented against the 
similarity distribution of candidate senses (the 
SoftMax product without index 𝑗𝑗  in (3)) and the 
one-hot ground-truth distribution, shown in 
equation (4). 𝑉𝑉𝑠𝑠�𝑤𝑤𝑖𝑖𝑗𝑗� ∈ ℝ

�𝑠𝑠�𝑤𝑤𝑖𝑖𝑗𝑗��×ℎ  is a matrix of 
concatenated sense embeddings arranged in rows. 
ℎ  is the dimension of the pre-trained model’s 
hidden states (768 or 1024 of BERT). 𝑦𝑦𝑗𝑗𝑗𝑗 is equal 
to 1 when 𝑠𝑠𝑗𝑗𝑗𝑗 (the 𝑗𝑗𝑡𝑡ℎ sense of 𝑤𝑤𝑖𝑖𝑗𝑗) is the correct 
sense, otherwise 0, representing each element in 
the ground-truth one-hot vector. For prediction, the 
model selects the sense with the largest dot product 
for each word.  

 𝑠𝑠𝑖𝑖𝑠𝑠 �𝑣𝑣𝑤𝑤𝑖𝑖𝑗𝑗 ∙ 𝑣𝑣𝑠𝑠𝑗𝑗𝑗𝑗
[𝐶𝐶𝐶𝐶𝐶𝐶]� = 𝑠𝑠𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑉𝑉𝑠𝑠�𝑤𝑤𝑖𝑖𝑗𝑗�𝑣𝑣𝑤𝑤𝑖𝑖𝑗𝑗)

𝑗𝑗   (3) 

ℒ�𝑤𝑤𝑖𝑖𝑗𝑗 , 𝑠𝑠𝑗𝑗� = −∑ 𝑦𝑦𝑗𝑗𝑗𝑗𝑙𝑙𝑗𝑗𝑙𝑙(𝑠𝑠𝑖𝑖𝑠𝑠(𝑣𝑣𝑤𝑤𝑖𝑖𝑗𝑗 ∙ 𝑣𝑣𝑠𝑠𝑗𝑗𝑗𝑗
[𝐶𝐶𝐶𝐶𝐶𝐶]))�𝑠𝑠(𝑤𝑤𝑖𝑖𝑗𝑗)�

𝑗𝑗=1  (4) 

In the above approach (from BEM, Blevins and 
Zettlemoyer, 2020), the embedding learning 
process of different senses is independent of each 
other, relying merely on sense gloss. Besides, the 

 

Figure 1: SACE Framework. 
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interaction between different words’ 
disambiguation is limited to the utilization of a 
sentence, leading to inadequate exploitation of the 
words in context. Therefore, we transform the 
above almost isolated decisions into interrelated 
ones by learning the sense and context embeddings 
interactively. 

4 SACE: Sense Aware Context 
Exploitation in Supervised WSD 

4.1 Sense-level Context (SlC) 

The interactive sense embedding learning mainly 
involves a selective attention layer upon the 
original sense embeddings from the pre-trained 
model. The goal of this interaction is to assist the 
learning of one sense’s embedding to be aware of 
the others in the same context. It is supported by 
the fact that many sense pairs are more commonly 
used than the others. 

In practice, each of the ambiguous words in the 
document has several candidate senses, which 
poses questions about which senses should be 
attended in the selective attention layer. To address 
this problem, we make use of the iterative 
characteristic of the model training. In other words, 
the system’s predicted senses of each word within 
a particular context from the former iteration are 
attended. For the first iteration, the first sense of 
each word in context is attended. In such a strategy, 
the senses of monosemous words (has a single 
sense) can be exploited at all iterations. 

For convenient demonstration, we use the 
embedding of predicted senses �̂�𝑠𝑝𝑝  of the context 
words in 𝑆𝑆𝑖𝑖  to enhance that of each sense 𝑠𝑠𝑗𝑗𝑗𝑗  of 
word 𝑤𝑤𝑖𝑖𝑗𝑗. We note that, 𝑆𝑆𝑖𝑖 can be a larger context. 
In equation (5), 𝑛𝑛 is the number of words in 𝑆𝑆𝑖𝑖. In 
(6), 𝑊𝑊 ∈ ℝℎ×ℎ is a learnable weight matrix. 

 �̅�𝑣𝑠𝑠𝑗𝑗𝑗𝑗 = 𝑣𝑣𝑠𝑠𝑗𝑗𝑗𝑗
[𝐶𝐶𝐶𝐶𝐶𝐶] + ∑ 𝛼𝛼(𝑠𝑠𝑗𝑗𝑗𝑗, �̂�𝑠𝑝𝑝)𝑖𝑖

𝑝𝑝=1(𝑝𝑝≠𝑗𝑗) 𝑣𝑣�̂�𝑠𝑝𝑝
[𝐶𝐶𝐶𝐶𝐶𝐶]  (5) 

 𝛼𝛼(𝑠𝑠𝑗𝑗𝑗𝑗, �̂�𝑠𝑝𝑝) = 𝑊𝑊𝑣𝑣𝑠𝑠𝑗𝑗𝑗𝑗
[𝐶𝐶𝐶𝐶𝐶𝐶] ∙ 𝑊𝑊𝑣𝑣�̂�𝑠𝑝𝑝

[𝐶𝐶𝐶𝐶𝐶𝐶]  (6) 

The attention score in (6) only takes into 
consideration the representation at [CLS] position 
(sentence level representation) for each gloss, 
neglecting the relatedness between each gloss 
word of two senses. To tackle this, we devise a 
combined attention score by considering both 
[CLS] and gloss word relevance, in equation (7). 𝑙𝑙 
is a predefined gloss length of all senses for 
normalization. 𝑣𝑣𝑠𝑠𝑗𝑗𝑗𝑗

𝑎𝑎 ∈ ℝℎ×1  is obtained with 

equation (2) by changing the output position to 𝑠𝑠. 
If the length (e.g., 𝑙𝑙) of a sense gloss is smaller than 
𝑙𝑙, 𝑣𝑣𝑠𝑠𝑗𝑗𝑗𝑗

𝑎𝑎  is a zero vector where 𝑠𝑠 is larger than 𝑙𝑙. 

𝛼𝛼�𝑠𝑠𝑗𝑗𝑗𝑗, �̂�𝑠𝑝𝑝� = 𝑊𝑊𝑣𝑣𝑠𝑠𝑗𝑗𝑗𝑗
[𝐶𝐶𝐶𝐶𝐶𝐶] ∙ 𝑊𝑊𝑣𝑣�̂�𝑠𝑝𝑝

[𝐶𝐶𝐶𝐶𝐶𝐶] + 

1
𝑔𝑔2
∑ ∑ (𝑊𝑊𝑣𝑣𝑠𝑠𝑗𝑗𝑗𝑗

𝑎𝑎 ∙ 𝑊𝑊𝑣𝑣�̂�𝑠𝑝𝑝
𝑏𝑏 )𝑔𝑔

𝑏𝑏=1
𝑔𝑔
𝑎𝑎=1        (7) 

4.2 Word-level Context (WlC) 

In many previous supervised systems, the 
disambiguation of one word in a sentence is 
isolated from the words in the other sentences of 
the same document. We convert the isolated 
disambiguation into interactive ones by utilizing 
several highly related sentences within the same 
document for context embedding learning. 

For each sentence 𝑆𝑆𝑖𝑖 , we select its related 
sentences under two criteria, with one being the 
distance to 𝑆𝑆𝑖𝑖 , and the other being the semantic 
relatedness to 𝑆𝑆𝑖𝑖. The first criterion can be regarded 
as local features and the second one is aimed at 
injecting global features while maintaining a low 
noise level. 

From the perspective of local features, directly 
surrounding sentences within a window are used as 
related sentences. For global features, we score 
context sentences and utilize the top related 
sentences for context embedding learning. 
Precisely, in a document 𝐷𝐷 , we regard each 
sentence as a document 𝑑𝑑  and calculate the TF-
IDF score of each word in the vocabulary 𝑣𝑣 of 𝐷𝐷 
for all sentences. The intuition behind modeling 
sentences with TF-IDF is that we find the average 
length of SemCor sentences is 22, which is 
reasonably long. This represents the original 
document as a matrix 𝑉𝑉𝐷𝐷 ∈ ℝ𝑚𝑚×|𝑣𝑣| , where each 
row and column indicate sentence and word 
dimension respectively. For instance, 𝑉𝑉𝐷𝐷(𝑆𝑆𝑖𝑖 ,𝑤𝑤𝑖𝑖𝑗𝑗) 
is the TF-IDF score of 𝑤𝑤𝑖𝑖𝑗𝑗  in 𝑆𝑆𝑖𝑖 . The score of 𝑆𝑆𝑗𝑗 
concerning 𝑆𝑆𝑖𝑖 is shown as follows: 

 𝑠𝑠𝑠𝑠𝑗𝑗𝑠𝑠𝑠𝑠𝐶𝐶𝑖𝑖�𝑆𝑆𝑗𝑗� = 𝑉𝑉𝐷𝐷(𝑆𝑆𝑖𝑖) ∙ 𝑉𝑉𝐷𝐷(𝑆𝑆𝑗𝑗)  (8) 

After scoring all context sentences for each 
sentence 𝑆𝑆𝑖𝑖, we concatenate related sentences with 
𝑆𝑆𝑖𝑖 and utilize them as an input to BERT for context 
embedding learning. As an example, {𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖+1} 
are related sentences from local features, and if 
{𝑆𝑆𝑖𝑖−12, 𝑆𝑆𝑖𝑖+7} are top-scored sentences from global 
features, we use 𝐶𝐶𝑖𝑖 = {𝑆𝑆� 𝑖𝑖−12, 𝑆𝑆�̅�𝑖−1, 𝑆𝑆�̅�𝑖 , 𝑆𝑆�̅�𝑖+1, 𝑆𝑆�̅�𝑖+7} 
as an input to equation (1) and retrieve the 
enhanced context embedding �̅�𝑣𝑤𝑤𝑖𝑖𝑗𝑗  of each word 
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𝑤𝑤𝑖𝑖𝑗𝑗 in 𝑆𝑆𝑖𝑖. In such a way, different 𝐶𝐶𝑖𝑖 is retrieved for 
each sentence in the document. We note that, when 
the total sequence length is longer than 512, we 
remove the furthest sentences away from 𝑆𝑆�̅�𝑖 . For 
instance, 𝑆𝑆�̅�𝑖−12 , 𝑆𝑆�̅�𝑖+7  and so on in the above 
example will be removed in order. 

Finally, 𝑣𝑣𝑤𝑤𝑖𝑖𝑗𝑗  and 𝑣𝑣𝑠𝑠𝑗𝑗𝑗𝑗
[𝐶𝐶𝐶𝐶𝐶𝐶]  in equation (4) are 

replaced with �̅�𝑣𝑤𝑤𝑖𝑖𝑗𝑗  and �̅�𝑣𝑠𝑠𝑗𝑗𝑗𝑗  respectively to 
calculate the loss, with which to update the weights 
of the pre-trained model and the selective attention 
layer. 

4.3 Try-again Mechanism (TaM) 

In a previous similarity-based WSD approach, 
Wang and Wang (2020) proposed a Try-again 
Mechanism (TaM) that takes into account not only 
the similarity of 𝑤𝑤𝑖𝑖𝑗𝑗 ’s context embedding to the 
sense embedding of 𝑠𝑠𝑗𝑗𝑗𝑗 , but also to the sense 
embedding of 𝑠𝑠𝑟𝑟 ∈ 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝑡𝑡𝑟𝑟𝑟𝑟  during evaluation. 
Here, 𝑠𝑠𝑟𝑟 and 𝑠𝑠𝑗𝑗𝑗𝑗 are connected by either WordNet 
relations or the super-sense relation (i.e., senses 
that belong to the same super-sense category in 
WordNet). This mechanism in (9) manages to 
boost the performance of its knowledge-based 
system by a relatively large margin. 

𝑠𝑠𝑖𝑖𝑠𝑠�𝑤𝑤𝑖𝑖𝑗𝑗 , 𝑠𝑠𝑗𝑗𝑗𝑗� = 𝑣𝑣𝑤𝑤𝑖𝑖𝑗𝑗 ∙ 𝑣𝑣𝑠𝑠𝑗𝑗𝑗𝑗 + max
𝑠𝑠𝑟𝑟∈𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 (𝑣𝑣𝑤𝑤𝑖𝑖𝑗𝑗 ∙ 𝑣𝑣𝑠𝑠𝑟𝑟) (9) 

In this subsection, we reconstruct TaM so that it 
becomes effective in our model. This process helps 
the disambiguation of words to be even more 
interactive since it considers an increased number 
of senses by utilizing sense relation knowledge. 

In our implementation, we replace the above 
relations with only those derived from Coarse 
Sense Inventory (CSI, Lacerra et al., 2020). 
Similar to the utilization of super-sense categories, 
we connect senses that belong to the same label in 
CSI as related senses. Also, we change the direct 
sum of the above two similarities into a weighted 
sum using a hyperparameter 𝛽𝛽. 

𝑠𝑠𝑖𝑖𝑠𝑠�𝑤𝑤𝑖𝑖𝑗𝑗 , 𝑠𝑠𝑗𝑗𝑗𝑗� = (1 − 𝛽𝛽) ∗ �̅�𝑣𝑤𝑤𝑖𝑖𝑗𝑗 ∙ �̅�𝑣𝑠𝑠𝑗𝑗𝑗𝑗 + 𝛽𝛽 ∗
                                 max

𝑠𝑠𝑟𝑟∈𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
 (�̅�𝑣𝑤𝑤𝑖𝑖𝑗𝑗 ∙ �̅�𝑣𝑠𝑠𝑟𝑟)                  (10) 

In addition, our approach only learns a sense 
embedding for the candidate senses whose lemma 
is annotated in training data. Therefore, in TaM, we 
save sense embeddings from training for each 

 
† http://lcl.uniroma1.it/wsdeval/home 

epoch and use them to implement TaM during 
evaluation. It is worth mentioning that for senses 
that do not have a sense embedding in 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝑡𝑡𝑟𝑟𝑟𝑟, we 
neglect their calculation in equation (10). 

5 Experiment Settings 

5.1 Datasets 

To validate the effectiveness of our approach, we 
use SemCor and an evaluation framework† to train 
and evaluate our model, SACEbase, respectively. 
The evaluation framework contains 5 English all-
words WSD benchmarks. We report the 
experimental results on each dataset including 
SensEval-2 (SE2, Palmer et al., 2001), SensEval-
3 (SE3, Snyder and Palmer, 2004), SemEval-2007 
Task-17 (SE07, Pradhan et al., 2007), SemEval-
2013 (SE13, Navigli et al., 2013) and SemEval-
2015 (SE15, Moro and Navigli, 2015). Also, the 
results from Part-Of-Speech (POS) perspectives on 
their combined dataset (ALL) are reported. 
Following previous works, we train large models, 
SACElarge on SemCor and SACElarge+ on SemCor, 
WordNet Gloss Tagged (WNGT), and WordNet 
examples (WNE) for fair comparisons. Here, WNE 
is regarded as an extra sense gloss and is 
concatenated after the original sense gloss for 
sense embedding learning, which is similar to the 
implementation in SREF (Wang and Wang, 2020). 

For few-shot WSD, we partition ALL according 
to the gold label of each annotation into ALLWN_1st 
and ALLWN_others. Besides, according to whether 
senses and lemmas of ALL instances appear in 
SemCor, we extract two subsets, ALLZSS and 
ALLZSL, to evaluate the zero-shot learning ability 
of our model. 

For cross-lingual datasets, we use the WordNet 
version of the latest evaluation framework‡ which 
contains test datasets for Spanish, Italian, French, 
and German. These datasets are preprocessed data 
from SemEval-2013 (Navigli et al., 2013) and 
SemEval-2015 (Moro and Navigli, 2015). The 
former only disambiguates nouns while the latter 
covers words in four POS (noun-N, verb-V, 
adjective-A, adverb-R). 

We note that the performance in each table is 
reported with F1 in percentage. 

5.2 Model Design 

‡ https://github.com/SapienzaNLP/mwsd-datasets 
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Our base and large model utilize RoBERTabase and 
RoBERTalarge respectively, which perform 
relatively better than BERT models. For cross-
lingual evaluation, we fine-tune XLM-RoBERTa-
base (SACEmul, Conneau et al., 2020) with the 
same training data as SACElarge+, following the 
setting in EWISER. In each system, two encoders 
are adopted, with one being a context encoder and 
the other being a sense gloss encoder. This is 
identical to the setting in BEM. We note that a 
major difference is that the pre-trained model 
adopted in the above papers is BERT. 

The hyperparameters of our model are selected 
using SE07. They include the number of 
surrounding sentences (2) on both sides of 𝑆𝑆𝑖𝑖, the 
number of top related sentences (2) of 𝑆𝑆𝑖𝑖  and 𝛽𝛽 
(0.1) in TaM. The learning rate for SACEbase, 
SACElarge, SACElarge+, and SACEmul is 1e-5, 1e-6, 
1e-6, and 5e-6 respectively.  

To accelerate the model training, we organize 
the sentences in a document into batches according 
to the total number of candidate senses (400 for 
SACEbase and SACEmul, 150 for SACElarge and 
SACElarge+), i.e., if the total number of candidate 
senses exceeds 400 or 150 when adding a sentence, 
then the sentence belongs to the next batch. For 
each batch, the gloss and context encoders are only 
called once. The context and gloss length is 
normalized to the maximal sequence length within 
each batch to reduce unnecessary padding and 
computation. Also, apex is employed for mixed-
precision computing. More details are shown in 
Appendix A. 

5.3 Baselines 

We compare the proposed model with previous 
supervised state-of-the-art from different 
perspectives. These systems include Sense 
Vocabulary Compression (SVC, Vial et al., 2019), 
EWISE (Kumar et al., 2019), LMMS (Loureiro 
and Jorge, 2019), GLU (Hadiwinoto et al., 2019), 
GlossBERT (Huang et al., 2019), EWISER 
(Bevilacqua and Navigli, 2020), BEM (Blevins 
and Zettlemoyer, 2020), ARES (Scarlini et al., 
2020b) and SREF (Wang and Wang, 2020). BEM 
is our direct baseline, which utilizes two encoders 
to learn context and sense embedding separately 
and achieves state-of-the-art with only SemCor.  

For cross-lingual evaluation, we compare our 
results with those reported in SyntagNet, EWISER, 
ARES, MuLaN (Barba et al., 2020). These systems 
are all recently proposed systems with state-of-the-

art performance. 

6 Results 

6.1 Ablation Analysis 

In this subsection, we demonstrate how each 
component of our model benefits WSD 
performance. In table 1, the system’s performance 
on ALL has illustrated that enhancing the 
interaction between different words’ 
disambiguation in the same document (WlC) can 
raise the system’s performance by the largest 
margin, 1.5 F1. This promotion is slightly larger 
than that (1.2 F1) provided by the interactive sense 
embedding learning (SlC). The gloss word 
attention in SlC is also proved effective, which 
helps increase the system’s performance by 0.5 F1, 
similar to the contribution of TaM, 0.6 F1. Most 
importantly, when all components are removed, the 
performance on ALL decreases to 78.4 F1. We note 
that the baseline here is different from BEM since 
we remove unnecessary padding and utilize 
RoBERTa. This has dramatically accelerated the 
training process from 3.5 hours to 0.5 hour per 
epoch while achieved similar performance. We 
also note that the experimental results reported in 
this paper are obtained using the same random seed 
as BEM. With different random seeds, the 
performance gap on ALL between SACEbase and its 
baseline (-w/o all) ranges from 1.7 F1 to 2.7 F1. 

6.2 All-words WSD 

 Table 2 demonstrates how our systems and lately 
proposed baselines perform on different partitions 
of ALL. When it is trained on SemCor, SACEbase 
has already outperformed all its competitors by at 
least 1.9 F1, on ALL. This is obtained without 
utilizing prior sense relation knowledge. It is the 
first system that surpasses the estimated upper 
bound (80 F1) of the task using only SemCor. 

Except GlossBERT and BEM, the other systems 
adopt BERTlarge as their pre-trained model. When 

 Ablation Study ALL ∆ 
SACEbase 80.9 0 
-w/o WlC 79.4 -1.5 
-w/o SlC([CLS]+word) 79.7 -1.2 
-w/o TaM 80.3 -0.6 
-w/o SlC(word) 80.4 -0.5 
-w/o all 78.4 -2.5 

Table 1: Ablation study of SACEbase on ALL 
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we use RoBERTalarge, SACElarge can further reach 
81.9 F1 on ALL, surpassing the previous state-of-
the-art by 2.9 (3.7% of 79.0) F1. This is a large 
margin given that BEM and EWISER are strong 
baselines. When extra training data and WNE are 
employed, a similar margin, 2.8 F1, is attained on 
ALL. 

Our systems also obtain state-of-the-art 
performance on each dataset, with the margin 
ranging from 0.2 to 2.9 F1 for SACEbase and 1.8 to 
3.0 F1 for SACElarge, in the first category. As for 
SACElarge+, the margin above the previous best 
system for each dataset is even larger, varying from 
1.7 to 5.5 F1. It is noteworthy that SACEbase 
outperforms SACElarge by 0.9 F1 on SE15 and they 
obtain similar performance on SE13. These two 
datasets are less ambiguous since each lemma has 
fewer candidate senses on average. This illustrates 
the competitive disambiguation capability of 
SACEbase on easier instances. We also note that the 
development set in two categories is different, with 
the first being SE07 and the second being SE15. 
This is because we follow most systems’ setting in 
the first category and follow EWISER’s setting in 
the second category for better comparison. 

For the performance on different POS, our 
systems set new lines for all of them in ALL. The 
largest advancement comes from the higher 
disambiguation ability of verbs, making our system 
the first to reach the line of 70 F1. The systems also 
obtain unprecedented performance on noun 
disambiguation, surpassing the previous best 
system by 1.5, 2.4, and 2.4 for SACEbase, SACElarge, 
and SACElarge+ respectively. SACElarge+ is the only 
system that exceeds 85 F1 on noun disambiguation. 

6.3 Rare and Unseen Sense Disambiguation 

Rare Sense Disambiguation Table 3 reports 
different systems’ performance on ALLWN_1st and 
ALLWN_others, which has 4278 and 2525 annotations 
respectively. Compared with previous well-
performing systems including LMMS and SREF, 
our systems achieve much better performance on 
both datasets, with the major contribution coming 
from WordNet 1st sense disambiguation. On the 
contrary, SACE and BEM obtain similar 
performance on ALLWN_1st while SACE can 
disambiguate rare senses with higher accuracy. 
This shows a better few-shot learning ability of 
SACE in comparison to BEM because the 
ALLWN_others dataset only contains the words whose 
correct sense appears infrequently in SemCor.  

Here, sense disambiguation is defined as 
whether a system can select the sense as the correct 
sense, which is viewed from a sense perspective. In 
comparison, word or lemma disambiguation is to 
determine the correct sense of a word or lemma, 
which is viewed from a word perspective. 

Unseen Sense Disambiguation In the second 
column of table 4, different system’s performance 
on ALLZSS (691 polysemous instances) is provided. 
This dataset only contains polysemous words 
whose gold label is not in SemCor, which evaluate 
the zero-shot sense disambiguation ability of 
different systems. It is shown that lately proposed 
systems have an overwhelming advantage of zero-
shot sense disambiguation over ordinary baselines 
including WordNet S1 and BERT-base, with the 
margin ranging from about 12 F1 to about 42 F1.  
Specifically, although BEM outperforms its 

Training data Systems Datasets Concatenation of all Datasets 
SE2 SE3 SE07 SE13 SE15 ALL N V A R 

SemCor 

SVC (GWNC2019) 77.5 77.4 69.5 76.0 78.3 76.7 79.6 65.9 79.5 85.5 
EWISE (ACL2019) 73.8 71.1 67.3* 69.4 74.5 71.8* 74.0 60.2 78.0 82.1 
LMMS (ACL2019) 76.3 75.6 68.1 75.1 77.0 75.4 78.0 64.0 80.5 83.5 

GlossBERT (EMNLP2019) 77.7 75.2 72.5* 76.1 80.4 76.8* - - - - 
GLU (EMNLP2019) 75.5 73.6 68.1* 71.1 76.2 73.7* - - - - 

ARES (EMNLP2020) 78.0 77.1 71.0 77.3 83.2 77.9 80.6 68.3 80.5 83.5 
SREF (EMNLP2020) 78.6 76.6 72.1 78.0 80.5 77.8 80.6 66.5 82.6 84.4 
EWISER (ACL2020) 78.9 78.4 71.0 78.9 79.3* 78.3* 81.7 66.3 81.2 85.8 

BEM (ACL2020) 79.4 77.4 74.5* 79.7 81.7 79.0* 81.4 68.5 83.0 87.9 
SACEbase 80.9 79.1 74.7* 82.4 84.6 80.9* 83.2 71.1 85.4 87.9 
SACElarge 82.4 81.1 76.3* 82.5 83.7 81.9* 84.1 72.2 86.4 89.0 

SemCor 
+WNGT 
+WNE 

SVC (GWNC2019) 79.7 77.8 73.4 78.7 82.6 79.0 81.4 68.7 83.7 85.5 
EWISER (ACL2020) 80.8 79.0 75.2 80.7 81.8* 80.1* 82.9 69.4 83.6 87.3 

SACElarge+ 83.6 81.4 77.8 82.4 87.3* 82.9* 85.3 74.2 85.9 87.3 

Table 2: English all-words WSD performance on different partitions of ALL utilizing two sets of training 
data. Following SREF, those marked with * are (partially) obtained as a validation set. SOTA is in bold. 



5225

baselines by around 25 F1, our base and large 
system still beat BEM by almost 12 and 18 F1 
respectively.  

In the third column, we follow previous works 
and show how different systems perform on 
ALLZSS* (1139 instances including monosemous 
ones). The aforementioned gaps become narrower 
since each system can correctly disambiguate 
monosemous instances.  

Unseen Lemma Disambiguation In the last two 
columns of table 4, the systems’ performance on 
zero-shot lemmas is presented. The difference 
between these two datasets is whether 
monosemous lemmas are included. We believe it is 
more reasonable to focus on ALLZSL (222 
polysemous instances) since monosemous lemmas 
do not require disambiguation and thus the 
statistics on ALLZSL* cannot fully reveal the 
systems’ zero-shot disambiguation ability of words. 

Similarly, it shows that lately proposed systems 
tend to outperform the baselines by large margins, 
varying from 19 to almost 36 F1. Among them, 
BEM performs the worst on this dataset, 2.2 F1 
lower than a similar system, GlossBERT. In 
contrast, after incorporating both word and sense 
level context, our system obtains an unprecedented 
performance on this dataset, being the first system 
to reach the line of 90 F1 and beating BEM by 
almost 16 F1. Also, different from SREF and 
ARES, our systems do not rely on WordNet or 
SyntagNet sense relation knowledge. 

6.4 Cross-lingual All-words WSD 

We utilize two multilingual datasets (including 
French-FR, German-DE, Italian-IT, and Spanish-
ES subsets) to evaluate the multilingual 
transferability of our method. Table 5 presents the 
performance of some lately proposed systems and 
ours. For our system, the baseline is trained with 
the same training data as SACElarge+ using XLM-
RoBERTa-base, while removing all the proposed 

components including SlC, WlC, and TaM. For the 
systems under comparison, all but UKB+Syn utilizes 
English training data. Also, EWISER and MuLaN 
further employ SemCor and WNGT as their 
training data, being the same as SACEmul. 

It shows that SACEmul has obtained a new state-
of-the-art on both the combined dataset and most 
individual datasets, surpassing its direct baseline 
by 2.4 F1. In detail, the largest margin, about 5.5 
F1 on its Spanish and Italian subset, above the 
previous best system is acquired on SE15, which 
covers instances in all POS. This has revealed the 
overwhelming advantage of SACEmul on 
disambiguating instances of other POS. In contrast, 
SACEmul performs 6.5 F1 lower than MuLaN on 
the Spanish subset of SE13, which only covers 
noun instances. In a word, SACEmul is more 
compatible with real cross-lingual scenarios since 
it has a strong disambiguation ability of words in 
different POS. 

6.5 Analysis 

Error Analysis By comparing the disambiguation 
results of SACEbase and its baseline (all factors 
removed), it is revealed that both systems have 
correctly disambiguated 5346 instances in ALL 
while 525 and 339 instances are only correctly 
disambiguated by SACEbase and its baseline 
respectively. In other words, SACEbase has falsely 

Models ALLZSS 
(n=691) 

ALLZSS* 
(1139) 

ALLZSL 
(222) 

ALLZSL* 
(670)  

WordNet 1st  24.0 53.9 54.4 84.9  
BERT-base 23.5 53.6 54.4 84.9  

LMMS 36.7 61.6 74.8 91.7  
GlossBERT 37.4 62.0 75.6 91.9  

ARES 42.6 65.2 81.1 93.7  
SREF 46.1 67.3 82.4 94.2  
BEM 48.7 68.9 73.4 91.2  

SACEbase 60.4 76.0 90.0 96.7  
SACElarge 66.2 79.5 90.0 96.7  

Table 4: Zero-shot lemma and sense disambiguation. 
The datasets marked with * include monosemous 
instances. 

  SE13 SE15   
  DE ES FR IT ES IT Average 
UKB+Syn 76.4 74.1 70.3 72.1 63.4 69.0 71.1 
EWISER 80.9 78.8 83.6 77.7 69.5 71.8 77.5 
MuLaN 82.3 81.1 81.6 77.9 69.4 71.8 77.8 
ARES 79.6 75.3 81.2 77.0 70.1 71.4 76.2 
Baseline 80.5 74.9 80.7 73.6 72.7 74.9 76.3 
SACEmul 82.6 74.6 83.0 78.1 75.6 77.3 78.7 

Table 5: Multilingual all-words WSD 

 Models ALLWN_1st 
(n=4728) 

ALLWN_other 
(n=2525)  

WordNet 1st 100 0  
LMMS 87.6 52.6  
SREF 91.0 53.2  
BEM 93.6 51.7  

SACEbase 94.2 56.1  
SACElarge 94.1 59.0  
SACElarge+ 94.7 60.8  

Table 3: Rare sense disambiguation on ALL 
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predicted 339 examples that are correctly predicted 
by its baseline. This indicates the proposed 
methods might have injected excessive noise for 
the disambiguation of these instances. Therefore, 
selective exploitation of context for different 
instances might be beneficial. 

The bottom half of table 6 shows an example 
(country) that SACEbase falsely predicted. It is 
shown that the WlC does not manage to retrieve 
valuable information for disambiguating the word 
while injecting some irrelevant context. 

Case Study Table 6 gives an example of top 
related sentences (#47 and #19) of a particular 
sentence (#10) under disambiguation. Here, church 
is falsely predicted when WlC is disabled. It shows 
that WlC has detected similar sentences in the same 
document and incorporated valuable context for 
context embedding learning.  

Table 7 provides some examples regarding 
synsets that are connected by the selective attention 
layer, indicating its ability of detecting some 
syntagmatic sense relations and senses of close 
meaning. The connection is established by using 
the largest attention score 𝛼𝛼�𝑠𝑠𝑗𝑗𝑗𝑗 , �̂�𝑠𝑝𝑝�  in a batch 
after filtering self-connection. 

7 Conclusion 

In this paper, we propose an interactive context 

exploitation method from both word and sense 
perspectives in a supervised similarity-based WSD 
architecture. Experiments on English and cross-
lingual all-words WSD datasets verify the 
effectiveness of our approach, surpassing previous 
state-of-the-art by large margins. It also shows that 
the proposed method has an overwhelming 
advantage of learning few-shot and zero-shot WSD 
ability. For future work, we intend to utilize 
reinforcement learning to enhance current 
interactive WSD by customizing the context 
exploitation for different instances. The source 
code is available at: 
https://github.com/lwmlyy/SACE.  
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Appendix 

A Experimental Setting 

Computing Infrastructure We use Pytorch deep 
learning infrastructure along with Transformers 
and Apex to implement our model. Other required 
packages can be found in readme.md file in the 
source code. 

Runtime The average training time for SACEbase, 
SACElarge, SACElarge+ and SACEmul is 10 hours, 
20 hours, 59 hours and 17 hours, respectively. 

Parameters The parameters include those from 
the pre-trained models such as RoBERTa-base, 
RoBERTa-large and XLM-RoBERTa-base, and 
those from the selective attention layer (6 heads * 
768/1024 * 768/1024). 

Evaluation Metrics We use F1-measure to report 
the evaluation results. For systems that can 
provide sense predictions for each lemma, F1-
measure is equal to accuracy, which is the number 
of instances that are correctly predicted by the 
model. See Navigli, 2009 for details.  

β in TaM 0.1, 0.2, 0.3, 0.4, 0.5 

WiC local sentences 1, 2, 3, 4, 5 

WiC global 
sentences 

1, 2, 3, 4, 5 

lr 1e-5, 5e-5, 1e-6, 5e-6 

gloss_batch-size 150, 200, 250, 300, 350, 
400 

Table 1: Hyperparameter bounds and optimal setting 
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Hyperparameter Search The bounds for each 
hyperparameter are listed in table 1, with 
configurations for best performing models 
underlined. We use the F1-measure on SE07 to 
select the values. All the details are shown in the 
source code. For those that have two underlined 
numbers, they are the best setting for base and 
large models.  

B Experimental Results 

In figure 1, we show how SACEbase and SACElarge 
perform on SE07 at each epoch during training. It 
is shown that both systems reach their optimal 
performance on SE07 at early epoch, 3rd or 4th 
epoch. This indicates if we utilize the method of 
early stopping during training, its time efficiency 
can further be enlarged.  

 

Figure 1: F1 on SE07 of SACEbase and SACElarge 
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