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Abstract

The uniform information density (UID) hy-
pothesis, which posits that speakers behaving
optimally tend to distribute information uni-
formly across a linguistic signal, has gained
traction in psycholinguistics as an explanation
for certain syntactic, morphological, and
prosodic choices. In this work, we explore
whether the UID hypothesis can be opera-
tionalized as an inductive bias for statistical
language modeling. Specifically, we augment
the canonical MLE objective for training lan-
guage models with a regularizer that encodes
UID. In experiments on ten languages span-
ning five language families, we find that using
UID regularization consistently improves
perplexity in language models, having a larger
effect when training data is limited. Moreover,
via an analysis of generated sequences, we
find that UID-regularized language models
have other desirable properties, e.g., they gen-
erate text that is more lexically diverse. Our
results not only suggest that UID is a reason-
able inductive bias for language modeling, but
also provide an alternative validation of the
UID hypothesis using modern-day NLP tools.

1 Introduction

Language has been hypothesized to follow certain
information-theoretic constraints. One of the most
famous of these constraints is the uniform infor-
mation density (UID) hypothesis (Fenk and Fenk,
1980; Jaeger, 2010), which states that, subject to
the rules of the grammar, speakers aim to distribute
information density across a linguistic signal as
uniformly as possible. That is, speakers behav-
ing optimally should structure their utterances such
that the differences between the peaks and troughs
in information are minimized.

In the psycholinguistics literature, the UID hy-
pothesis has been used to explain a variety of lin-
guistic phenomena ranging from how we shorten
the phonetic duration of more-predictable linguistic

(a)

(b)

Figure 1: Graphical illustration of two examples regard-
ing UID. In (a), many speakers will prefer the version
with the relativizer that (dotted blue line). The UID
hypothesis posits that this is because, without the rela-
tivizer, the first word of the relative clause, we, has high
information density; and so including the relativizer
distributes the per-word information density more uni-
formly. In (b), the relativizer that is often omitted be-
cause, at the onset of the relative clause, the informa-
tion density of I is lower and therefore the distribution
of information density is already relatively uniform. Il-
lustration based on Jaeger (2010).

units (Aylett and Turk, 2004) to when we decide to
use optional syntactic relativizers (Levy and Jaeger,
2007), among other phenomena (Bell et al., 2003;
Frank and Jaeger, 2008). These studies often use
language models to estimate the information den-
sity of linguistic units, taking observations of low
variation of information density in well-formed ut-
terances as evidence for the UID hypothesis.
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In this paper, we propose a new experimental
paradigm that uses modern-day NLP models to test
the UID hypothesis. Whereas prior work has used
language modeling as a tool for observing UID,1

we explore the converse—can UID be used as a
tool to train better language models? Specifically,
if the UID hypothesis is true, then we should be
able to operationalize UID as a regularizer to help
train language models. Moreover, observing lower
perplexity in language models trained with this
regularization would imply that the concept of UID
is a good inductive bias for language modeling,
thereby providing a new type of evidence for the
UID hypothesis at scale.

In experiments, we indeed find such evidence:
across a variety of languages and dataset sizes,
UID regularization consistently improves perfor-
mance, having a larger effect when training data
is limited. Moreover, we observe that—in compar-
ison with their unregularized counterparts—UID-
regularized language models are (1) higher entropy
while achieving the same (or better) test set perplex-
ity and (2) generate text that is longer and more
lexically diverse. Our work is the first to explore
the interaction between UID and training modern-
day neural language models, and our findings—that
a cognitively motivated objective can improve lan-
guage model performance—open up new avenues
for testing other psycholinguistic hypotheses in a
similar framework.

2 Preliminaries: Language Modeling

The task of language modeling aims to estimate a
model of the probability of observing any given
string in (a subset of) natural language. For-
mally, a language model p is an (unconditional)
probability distribution over sequences of words
w = 〈w1, w2, . . . 〉, where w consists of tokens
from some vocabulary and begins and ends with
special tokens BOS and EOS, respectively.

Today’s language models are typically param-
eterized by neural networks (e.g., transformers
(Vaswani et al., 2017)), that follow a local-
normalization scheme. Specifically, the model pro-
vides a conditional distribution over the vocabulary
at each time step; we can then compute the proba-

1On its own, the term ‘UID’ is formally an attribute of a
linguistic signal. We also use it throughout this work to refer
to the concept that UID is a desirable property.

bility of an entire sequence w as:

pθ(w) =

|w|∏
t=1

pθ(wt | w<t) (1)

where θ are the parameters of the model and we
use w<t to represent the first t − 1 tokens of w.
Parameters are estimated by optimizing over some
objective L(θ). The standard objective for lan-
guage modeling is the negative log-likelihood of a
datasetW under the model:

L(θ) = −
∑
w∈W

log pθ(w) (2)

Subsequently, we drop explicit dependence on θ
when it is obvious from context.

To assess the goodness of fit of a model p, we
typically evaluate its perplexity on some held-out
datasetWtest, where perplexity (PPL) is defined as

PPL(p) = exp

(
−

∑
w∈Wtest

1

|w|
log p(w)

)
(3)

Note that under this definition of perplexity, our
evaluation metric is slightly different than the train-
ing objective; the former computes an average
over each sequence while the later treats all tokens
equally, regardless of the length of the sequence in
which they are present.

3 Uniform Information Density

Communication via natural language is a compli-
cated and nuanced process that takes place under
a host of cognitive and environmental constraints.
As a result, speakers have to make (perhaps subcon-
scious) choices to best navigate this communicative
dance. A rational speaker would use these choices
to optimize the communicative properties of their
utterances. One such locus of optimization is out-
lined by the Uniform Information Density (UID)
hypothesis.

3.1 The UID Hypothesis
At its core, the UID hypothesis aims to explain
certain phenomena in human language processing
using an information-theoretic approach: we can
view language as a transfer of information, which
is transmitted with a certain density through a com-
munication channel. The UID hypothesis posits
that speakers that behave optimally will structure
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their utterances to avoid peaks and troughs in this
information density (Aylett and Turk, 2004; Levy
and Jaeger, 2007; Jaeger, 2010). More formally
stated: “Within the bounds defined by grammar,
speakers prefer utterances that distribute informa-
tion uniformly across the signal (information den-
sity). Where speakers have a choice between sev-
eral variants to encode their message, they prefer
the variant with more-uniform information density
(ceteris paribus)” (Jaeger, 2010).

3.2 Example: UID in syntactic reduction
To better understand the UID hypothesis, consider
the concrete example of syntactic reduction (that-
mentioning) from Jaeger (2010), which we show
graphically in Figure 1 and also describe below.

Ex. A. My boss confirmed [that] we are crazy.

Ex. B. My boss thinks [that] I am crazy.

In both these sentences, the use of the relativizer
that is syntactically optional—at the onset of a rel-
ative clause (RC), speakers can, but do not have
to, include the relativizer. Many speakers, how-
ever, would argue that the sentence flows better
with the relativizer included in Example A and the
relativizer omitted in Example B.

The UID hypothesis provides a potential expla-
nation for this phenomenon. When a RC is used
without a relativizer, the first word of the RC con-
veys two pieces of information: both the onset of
the RC, as well as part of the RC’s internal con-
tents. In Example A, many speakers would find
that the information density of the first word in the
RC, we, is high, and so adding in the relative clause
distributes the information over two words, making
it easier to parse. In Example B, the information
density of the first word in the RC, I, is lower rel-
atively, and so we do not need to (or it is not as
beneficial to) include the relativizer.

3.3 Measuring UID
Now that we better understand what the UID hy-
pothesis attempts to explain, how might we opera-
tionalize UID and find quantitative evidence of the
pressure for it in language? First, to quantify the
amount of information conveyed by a word, we turn
to the most basic information-theoretic definition:
the information conveyed by a word w in context is
its Shannon information content (Shannon, 1948),
also called surprisal. Ideally, this surprisal would
be measured using the “true” distribution over hu-
man language. Because we do not have access to

such a distribution, we often estimate it using a sta-
tistical language model. That is, given a statistical
language model p, which estimates the probability
of a word given its context, the surprisal u(wt) of
word wt is defined as the following:

u(wt) = − log p(wt | w<t) (4)

This setup provides a natural approach to exploring
how UID might manifest—if the UID hypothesis
is true, then we should observe that variation in
surprisal, as estimated by a language model, is
minimized in natural language.

Using this approach, prior work has accumulated
evidence for UID across various levels of linguistic
representation (Pluymaekers et al., 2005; Bell et al.,
2009, inter alia). As some of the earliest exam-
ples, Aylett and Turk (2004) showed that linguistic
units that had high surprisal according to a tri-gram
language model were uttered with longer syllable
durations, and Levy and Jaeger (2007) found that
for RCs in which the first word had higher surprisal,
relativizers were more likely to be used in the RC
during actual speech. Further examples are given
in our related work section (§7).

4 UID-Regularized Language Modeling

While prior work has shown evidence that UID can
help explain many of the choices we make when
generating language, to the best of our knowledge,
operationalizations of UID have not been explic-
itly employed as part of the training objective in
modern-day NLP models. This raises the simple
question that is central to our paper:

Can UID serve as an inductive
bias for training statistical lan-
guage models?

In an effort to answer this question, we present
a scheme for incorporating operationalizations of
UID into the language model training objective.
Formally, we augment the canonical maximum like-
lihood estimation objective2 in eq. (2) with UID

2Note that the maximum likelihood estimation objective
minimizes (over w ∈ W) − log p(wt | w<t), i.e., surprisal.
Although such an objective may indirectly minimize peaks
and dips in surprisal across a sequence simply by pushing
them towards 0, it does not explicitly include any sequence
level penalty for even surprisal distribution.
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operationalizations as regularizers R. Under this
new objective, we minimize

LR(θ) = L(θ) + β · R(θ) (5)

where β > 0 is the strength coefficient of the regu-
larizer. We consider two natural operationalizations
of UID—inspired by Collins (2014)—as regulariz-
ers for training language models:

Variance Regularizer. UID concerns the distri-
bution of information in language production, and
so a natural measure of this behavior is the variance
of surprisals. Thus, we first consider a regularizer
that penalizes high variance among the surprisals
of words in a given sequence:

R(θ) = 1

|w|

|w|∑
t=1

(u(wt)− µ)2 (6)

where µ = 1
|w|
∑|w|

t=1 u(wt). Note that here, and in
our subsequent regularizers, we estimate u(·) via
eq. (4) using our model pθ.

Local Consistency. Next, we consider a local
consistency regularizer that encourages the sur-
prisals of adjacent words to have similar magnitude:

R(θ) = 1

|w|−1

|w|−1∑
t=1

(
u(wt)− u(wt+1)

)2
(7)

This regularizer is also a reasonable operational-
ization of UID—if every surprisal is similar to its
neighbor, then the density of information in the
sequence will be close to uniform.

Though we focus on these two regularizers, other
operationalizations of UID certainly exist. For ex-
ample, a similar variant of the above regularizers is
the max regularizer (Meister et al., 2020a), which
penalizes the highest surprisal in a sentence.3 Fur-
thermore, UID may also be defined in terms of
parse steps (Hale, 2001) or structural integrations
(Gibson, 2000), as well as in spoken language in
the form of filler words like uh and um or word
repetition during challenging lexical retrieval. We
consider these operationalizations (as well as the
broader discussion of how to operationalize UID)
as future work.

3We also tried this operationalization in preliminary exper-
iments, but results were not as strong as the variance or local
consistency regularizers.

5 Experimental Setup

To empirically evaluate UID regularization, we
train various language models with the UID-
regularized objective (eq. (5)) using the following
experimental setup.

Datasets. We employ datasets from multiple lan-
guages and of varying sizes. We use the EuroParl
corpus (Koehn, 2005)—a multi-lingual dataset of
discussions from the European Parliament that has
been commonly used for language modeling (Cot-
terell et al., 2018; Mielke et al., 2019)—since it
is roughly semantically controlled in that all utter-
ances are presumably about the same topics. We
use EuroParl v7 download from the ACL 2014
SMT Workshop4 and perform a 80–10–10 train-
dev-test split on all five languages—Czech, En-
glish, French, German, and Spanish—which yields
46.7, 42.2, 47.2, 51.3, and 12.4 million training
tokens for each language respectively.

Moreover, we experiment on languages from
several language families; the five languages in
Europarl that we consider are all Indo-European,
and so we look to Wiki-40B (Guo et al., 2020),
which contains Wikipedia dumps of a wide range
of languages. We choose a set of diverse languages
with training set sizes relatively similar to that of
EuroParl: Finnish (a Uralic language; 59.3M train-
ing tokens), Indonesian (an Austronesian language;
45.7M training tokens), and Turkish (a Turkic lan-
guage; 38.1M training tokens). To explore per-
formance on lower-resource languages, we addi-
tionally experiment with Swahili5 (a Niger-Congo
language; 6.3M training tokens) and Tagalog (an
Austronesian language; 4.2M training tokens). For
all languages, we performed tokenization using the
MosesTokenizer.6 Train, dev, and test set splits are
shown in Table 5 in the Appendix.

Model Framework and Architecture. For our
experiments, we use the fairseq library (Ott
et al., 2019), a standard sequence modeling toolkit
in PyTorch. As our model, we use fairseq’s de-
fault transformer (with six decoder layers and eight

4http://statmt.org/wmt14/
translation-task.html

5Since there are no Niger-Congo languages in Wiki-40B,
we perform a 80-10-10 split on Swahili Wikidumps (see
https://github.com/google-research/bert/
blob/master/multilingual.md).

6https://pypi.org/project/
mosestokenizer/

http://statmt.org/wmt14/translation-task.html
http://statmt.org/wmt14/translation-task.html
https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
https://pypi.org/project/mosestokenizer/
https://pypi.org/project/mosestokenizer/
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attention heads), which achieves competitive7 lan-
guage modeling performance (although the purpose
of our paper is not to achieve or compare with the
state of the art). For all experiments, we followed
the data-preprocessing scripts and recommended
hyperparameters provided in fairseq’s language
modeling module; more detailed information can
be found on the Github page.8

UID Regularizers. For UID regularization, we
experiment with the variance (eq. (6)) and local
consistency regularizers (eq. (7)). We found in pre-
liminary experiments that effective regularization
strengths were often near β = 0.01, and so we
performed a grid search over values within an or-
der of magnitude around β = 0.01: β ∈ {0.006,
0.008, 0.01, 0.02, 0.03, 0.04, 0.05}. We choose
the model with the lowest dev loss to evaluate on
the test set.

6 Results

In this section, we report results for models trained
under the UID-regularized objective. We find
that UID regularization consistently improves
perplexity for models trained on various languages
(§6.1) and dataset sizes (§6.2). Additionally,
we examine properties of text generated by
UID-regularized models (§6.3) and analyze the
relationship between our operationalization of UID
and perplexity (§6.4).

6.1 Languages

Table 1 shows the results of UID-regularized lan-
guage models trained on various languages from
EuroParl and Wiki-40B, and includes statistical
significance of changes in perplexity, as compared
with baselines, computed using permutation tests9

(Efron and Tibshirani, 1994). For all languages,
UID regularization significantly improves perplex-
ity for at least one of the two regularizers. Further-

7On Wikitext-103, the largest dataset we train on (103
million tokens), we achieve a competitive perplexity of 29.89
(c.f. Merity et al. (2018)). For smaller datasets, we tried a
smaller transformer architecture of four decoder layers and
four attention heads, but it did not perform better than the six
decoder layer and eight attention heads version, suggesting
that this architecture was not too large for the datasets we use
in this paper (even the Tagalog dataset we use is larger than
the commonly used Penn Treebank and WikiText-2).

8https://github.com/pytorch/fairseq/
tree/master/examples/language_model

9http://www2.stat.duke.edu/~ar182/rr/
examples-gallery/PermutationTest.html

LANGUAGE (# train tokens) Perplexity

CZECH (12.4M)
Baseline (no UID) 47.47
+ UID: variance 47.24 (↓0.5%)
+ UID: local consistency 47.08 (↓0.8%)†

ENGLISH (46.7M)
Baseline (no UID) 21.34
+ UID: variance 21.08 (↓1.2%)†

+ UID: local consistency 21.19 (↓0.7%)†

FINNISH (59.3M)
Baseline (no UID) 51.58
+ UID: variance 51.30 (↓0.5%)†

+ UID: local consistency 51.49 (↓0.2%)

FRENCH (51.3M)
Baseline (no UID) 17.08
+ UID: variance 17.02 (↓0.4%)†

+ UID: local consistency 17.03 (↓0.3%)†

GERMAN (42.3M)
Baseline (no UID) 26.62
+ UID: variance 26.50 (↓0.4%)†

+ UID: local consistency 26.45 (↓0.6%)†

INDONESIAN (45.7M)
Baseline (no UID) 53.96
+ UID: variance 53.66 (↓0.6%)†

+ UID: local consistency 53.70 (↓0.5%)

SPANISH (47.2M)
Baseline (no UID) 22.54
+ UID: variance 22.37 (↓0.8%)†

+ UID: local consistency 22.44 (↓0.4%)†

SWAHILI (6.3M)
Baseline (no UID) 40.45
+ UID: variance 39.79 (↓1.6%)†

+ UID: local consistency 39.44 (↓2.5%)†

TAGALOG (4.2M)
Baseline (no UID) 80.48
+ UID: variance 78.40 (↓2.5%)†

+ UID: local consistency 78.12 (↓2.9%)†

TURKISH (38.1M)
Baseline (no UID) 66.13
+ UID: variance 65.70 (↓0.7%)†

+ UID: local consistency 66.06 (↓0.1%)

Table 1: UID regularizers improve perplexity for mul-
tiple languages. † indicates statistical significance com-
pared with the baseline (p < 0.05).

more, UID regularization (under the best perform-
ing β) never leads to worse perplexity. These re-
sults suggest that incorporating UID operational-
izations into a model’s training objective leads to
a better model of language, substantiating uniform
information density as a valid inductive bias. More-
over, the improvement for many languages corrob-
orates the expectation that UID should, due to its
information theoretic nature, hold across languages
(Jaeger and Tily, 2011).

https://github.com/pytorch/fairseq/tree/master/examples/language_model
https://github.com/pytorch/fairseq/tree/master/examples/language_model
http://www2.stat.duke.edu/~ar182/rr/examples-gallery/PermutationTest.html
http://www2.stat.duke.edu/~ar182/rr/examples-gallery/PermutationTest.html
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WMT’06 EuroParl WT-103

# training tokens 16.0M 47.0M 103.2M

Baseline (no UID) 49.70 21.34 29.89
+ UID: variance 48.25† 21.08† 29.58
+ UID: local consistency 48.79 21.19 29.73

Table 2: UID regularizers improve perplexity on lan-
guage models trained on English datasets of vary-
ing size. Improvements tend to be larger on smaller
datasets. † indicates statistical significance compared
with the baseline (p < 0.05).

6.2 Dataset Size

Notably, we observe the largest improvements
(1.6–2.9%) in perplexity in Table 1 for the low-
est resource languages, Tagalog and Swahili (with
4.2 and 6.3 million training tokens respectively).
Conversely, improvement was most marginal (0.2–
0.5%) on the highest-resource languages, French
and Finnish (51.3 and 59.3 million training tokens
respectively). To remove language as a confound-
ing factor from this observation, we perform a con-
trolled analysis of the effects of UID regularization
as a function of dataset size.

We focus on English; in addition to the result on
English EuroParl 2014 from Table 1, which con-
tains 47.0 million training tokens, we experiment
with the smaller monolingual English dataset from
the 2006 NAACL Workshop on Statistical Machine
Translation (WMT’06),10 which has 17.0M tokens
in its training set, as well as the larger Wikitext-103
benchmark (Merity et al., 2017), which contains
103 million tokens in its training set.

Table 2 shows the perplexities for models with
and without UID regulariztion for these three
datasets. As suggested by earlier results, improve-
ments were strongest for the WMT’06 dataset, with
an improvement of 1.4 perplexity points for the
variance regularizer and 0.9 PPL points for local
consistency. For the larger EuroParl and WT-103
datasets, on the other hand, improvement was more
modest, ranging from 0.1 to 0.3 perplexity points.

As further confirmation that UID regularization
has a greater impact on smaller datasets, we per-
form an ablation study that roughly controls for
language content by training models on the subsets
of the same dataset. For this ablation, we take sub-
sets of 2, 4, 8, 12, 16, 24, and 32 million sentences
from the 47 million sentences in English EuroParl,

10We downloaded the given train-dev-test splits from
https://www.statmt.org/wmt06/.
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Figure 2: Improvement in perplexity for UID regular-
ized models trained on subsets of varying size sampled
from the EuroParl English dataset (full dataset size 47.0
million tokens). UID regularization helped more when
training data was more limited.

and observe how much the UID regularizers im-
prove perplexity for each training dataset size. As
shown in Figure 2, the results tell the same story as
Table 2—UID regularization improves perplexity
more for smaller datasets.

These results are consistent with the expectation
that models trained on smaller datasets are more
likely to overfit and could therefore benefit more
from regularization (Melis et al., 2018). As it is
possible that the models trained on smaller datasets
could benefit from any kind of regularization,
we experiment with label smoothing (Szegedy
et al., 2016), another regularization technique
that similarly augments the training objective
with a penalty. Table 4 shows these results for
models trained on WMT’06 and EuroParl with
label smoothing—our experiments indicate that,
across the board, label smoothing leads to worse
perplexity compared with baseline models.11

We take this result as further evidence that the
improvement from UID regularization stems from
the UID hypothesis as a valid inductive bias, rather
than simply a need for any kind of regularization
when training on smaller datasets.

11This negative result for applying label smoothing to lan-
guage modeling is consistent with prior empirical findings
(Müller et al., 2019; Gao et al., 2020; Meister et al., 2020b).

https://www.statmt.org/wmt06/
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Sequence Model % unique n-grams
length entropy n = 2 n = 3 n = 4

Baseline (no UID) 22.9 69.6 37.7 73.5 90.9
+ UID: variance 24.0 79.4 40.7 77.8 93.3
+ UID: local consistency 23.3 73.9 39.1 75.7 92.1

Table 3: Text generated by UID-regularized language models is longer (higher average sequence length), higher
entropy (computed via monte-carlo estimation), and more lexically diverse (a higher ratio of unique n-grams).

WMT’06 EuroParl

# training tokens 16.0M 47.0M

Baseline 35.75 23.22
+ label smoothing, α = 0.01 36.15 26.26
+ label smoothing, α = 0.05 55.56 40.79
+ label smoothing, α = 0.1 90.57 68.26

Table 4: Label smoothing, another form of regulariza-
tion that similarly augments the cross-entropy objective
with a penalty, does not improve perplexity. (Results
shown on dev set).

6.3 Evaluating Generated Text
Unconditional models of language have been ob-
served to produce generic text that can be short,
bland, or repetitive (Fan et al., 2018; Kulikov
et al., 2019; Holtzman et al., 2020), and so in this
subsection we investigate how UID regularization
might affect these characteristics in generated text.
For these experiments, we consider the baseline
model, the variance-regularized model, and the lo-
cal consistency-regularized model trained on En-
glish EuroParl. To obtain text samples, we generate
samples by sequentially sampling tokens according
to the model’s predicted distribution until the end-
of-sequence (EOS) token is sampled, i.e., ancestral
sampling. Note that for language model p, this
sampling scheme is equivalent to directly sampling
y ∼ p. We obtain 10,000 samples for each model
and report statistics in Table 3.

We analyze each set of generated sentences for
several metrics. First, we compute the average
length of generated sentences. Next, we evaluate
the lexical diversity of generated texts by comput-
ing the percent of unique n-grams for n ∈ {2, 3, 4}.
Finally, sampling from a model also gives us a
means for estimating the language model’s entropy:

H(p) = −
∑

y∈supp(p)

p(y) log p(y) (8)

= −Ey∼p (log p(y)) (9)

In the case of language models, supp(p) is the set
of all strings that can be generated from the model’s

vocabulary V . As this is exponentially large in |V|,
directly computing H(p) is intractable. We can use
its equivalence to eq. (9), however, to estimate H(p)
with a simple Monte-Carlo estimator:

Ĥ(p) = − 1

K

K∑
k=1

log p(y(k)) (10)

where we sample y(k) ∼ p for k = 1, . . . ,K.
Table 3 shows results from UID-regularized

models compared with the baseline. The models
trained with the variance and local consistency reg-
ularizers exhibit a preference for longer sequence
length and higher lexical diversity. Additionally,
the entropy estimates of these models are notably
higher, which, following the principle of maximum
entropy (Jaynes, 1957),12 can be seen as an addi-
tional advantage of UID-regularized models over
their unregularized counterparts.

6.4 UID Behavior

To take a closer look at how UID regularization
affects language models, we examine the relation-
ship between minimizing perplexity and UID be-
havior, where we quantify UID behavior as the
variance of models’ surprisals. We consider mod-
els trained on the English EuroParl dataset with the
variance regularizer at strengths β ∈ {0.01, 0.03,
0.05, 0.07, 0.09} and our baseline (which is equiv-
alent to β = 0), For further comparison, we also
train a model with β = −0.01 to observe the ef-
fects of penalizing UID behavior. We report results
on the EuroParl test set in Figure 3.

We observe that the model trained with a UID
penalty (negative β) indeed exhibits worse perplex-
ity and UID behavior (variance of surprisals) on the
test set. And as we might expect, models trained
with higher β exhibit UID behavior more strongly,
as our quantification is part of their training objec-
tive. Overall, from β = 0.01 to β = 0.05, both

12The principle of maximum entropy states that the proba-
bility distribution that best represents the current knowledge
state is the one with the largest entropy.
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Figure 3: A trade-off between perplexity (x-axis) and
variance of surprisals (a measure of UID behavior; y-
axis). The black pentagon indicates the β that yielded
the best perplexity (β = 0.03).

perplexity and UID behavior are positively corre-
lated with β, but when we optimize too much for
UID (β ≥ 0.07), there is a trade-off in which model
perplexity begins to increase.

We also observe an intriguing phenomenon in
Figure 3. Models that achieve similar perplexity
can have substantially different UID behavior val-
ues on the test set. Specifically, the β = 0 and
β = 0.07 models, which have almost the same
perplexity, have variance of surprisals of 17.8 and
15.8—a difference of more than ten percent! If such
models with similar perplexity can have varying
definitions of what constitutes good UID behav-
ior, then prior work, which has drawn conclusions
on UID based on surprisals computed by a single
model (Aylett and Turk, 2004; Levy and Jaeger,
2007; Jain et al., 2018), may need revisiting. As
this direction is outside the scope of the present
paper, we leave it as future work.

7 Discussion and Related Work

We discussed how operationalizing UID for lan-
guage modeling leads to better models in a wide
variety of settings. These results both provide a
new form of evidence for the UID hypothesis and
build on prior work exploring UID in modern-day
NLP models.

Evidence for the UID hypothesis. Our work ex-
tends the body of psycholinguistic research on uni-
form information density, which has largely corrob-
orated the UID hypothesis by providing evidence
that variation in surprisal, as estimated by a lan-

guage model, is minimized in natural language. In
addition to early studies that used this approach to
find evidence for UID in syntactic reduction (Levy
and Jaeger, 2007), morphosyntactic contractions
(Frank and Jaeger, 2008), and prosodic structure
(Aylett and Turk, 2004), the same line of reasoning
has been used by more recent work exploring a
variety of other linguistic properties. These studies
have found that word duration can be predicted by
syntactic surprisal (Demberg et al., 2012; Moore-
Cantwell, 2013), construction probability (Kuper-
man and Bresnan, 2012), informativity (Seyfarth,
2014), and contextual predictability (Jurafsky et al.,
2001; Bell et al., 2003; Gahl and Garnsey, 2004).
They have also observed that word length is re-
flected by conceptual complexity (Lewis and Frank,
2016); word order choice can be predicted by pro-
cessing cost (Bloem, 2016; Sikos et al., 2017);
phonological patterns can be shaped by word pre-
dictability (Hall et al., 2018); and UID computed
at the sequence level predicts human preferences
for syntactic alternatives of the same sentence.

Whereas the above prior work has used language
modeling as a tool for measuring UID, our paper
has explored the exact converse—we have asked
whether UID, operationalized as a regularizer, can
be used as a tool for training better language mod-
els. We argue that if the UID hypothesis holds
as a general principle, then we should be able to
exploit it as a training criterion that improves lan-
guage modeling. And accordingly, our results show
that—across a variety of languages and dataset
sizes—regularization for UID did indeed improve
perplexity, which we view as an alternative kind of
evidence for the UID hypothesis at scale.

Notably, Figure 3 at first could appear to contra-
dict the UID hypothesis, since models with better
UID behavior did not always achieve better perplex-
ity. We do not consider this as evidence against
the UID hypothesis, however. Rather, we posit
that when β is too large, we may be optimizing
for UID to the point of tending towards unnatu-
ral language—a perfectly uniform dispersion of
information across an utterance may come at the
cost of strange lexical choices. In this light, such a
trade-off should be somewhat expected.

UID in modern NLP. In addition to the tradi-
tional line of psycholinguistic work, there have
also been more-recent studies on UID in the con-
text of modern NLP, although this work is rela-
tively sparse. Rubino et al. (2016) leverage infor-
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mation density encoded as surprisal at the word,
part of speech, and syntax levels to help build a
state-of-the-art model for mixed-domain transla-
tionese detection. Jain et al. (2018) incorporate
UID measures across sentences into models de-
signed to detect natural versus manipulated text.
Perhaps the work that is most related to ours, Meis-
ter et al. (2020a), leverages UID to explain why
beam search is an effective decoding algorithm
and uses operationalizations of UID during beam
search to alleviate problems with decoding poorly
calibrated machine translation models. Whereas
Meister et al. (2020a) focuses on decoding, our
work shows the first evidence that UID can be op-
erationalized to aid training.

8 Conclusions

In closing, we have proposed encoding uniform
information density as a regularizer for training lan-
guage models—a novel manner of incorporating
an established psycholinguistic theory into modern
statistical language modeling. In experiments on
a range of languages and dataset sizes, UID reg-
ularization consistently improves perplexity over
baselines. Our results suggest that UID is a valid
inductive bias for improving the canonical maxi-
mum likelihood objective in language modeling,
providing a new, alternative type of evidence that
supports the UID hypothesis at scale. Our work
opens the door to future research directions such
as using similar techniques to validate other psy-
cholinguistic phenomena, applying UID regulariza-
tion in conditional language generation tasks, and
exploring how UID regularized models perform in
downstream NLP applications.

Ethical Concerns

Language models have various ethical, environmen-
tal, and financial concerns. We cannot do justice
to them here, but do see Bender et al. (2021) for a
pointer. We do not foresee any additional ethical
concerns with the contributions made in our work
beyond those discussed in Bender et al. (2021).
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A Appendix

Datasets. Table 5 shows the train, dev, and test set splits for the language modeling datasets we use.

Vocab Train Dev Test
Language Family Source Split size Sentences Tokens Sentences Tokens Sentences Tokens

English Indo-European EuroParl 80–10–10 64k 1.6M 46.7M 201k 5.8M 201k 5.8M
WMT’06 80–10–10 62k 751k 17.0M 2.0k 61k 3.1k 90k
WT-103 provided 268k 1.8M 103.2M 3.8k 217k 4.4k 246k

Czech Indo-European EuroParl 80–10–10 64k 517k 12.4M 65k 1.6M 65k 1.6M
French Indo-European EuroParl 80–10–10 64k 1.6M 51.3M 201k 6.4M 201k 6.3M
German Indo-European EuroParl 80–10–10 64k 1.5M 42.3M 192k 5.4M 192k 5.2M
Spanish Indo-European EuroParl 80–10–10 64k 1.6M 47.2M 197k 6.0M 197k 5.9M
Finnish Uralic Wiki-40B provided 128k 256k 59.3M 14.1k 3.9M 14.0k 3.2M
Indonesian Austronesian Wiki-40B provided 128k 156k 45.7M 8.7k 3.1M 8.6k 2.5M
Tagalog Austronesian Wiki-40B provided 128k 26k 4.2M 1.5k 270k 1.4k 220k
Turkish Turkic Wiki-40B provided 128k 143k 38.1M 7.8k 2.5M 7.7k 1.9M
Swahili Niger-Congo Wikipedia 80–10–10 128k 406k 6.3M 51k 800k 51k 803k

Table 5: Train, dev, and test splits, as well as vocab size, for the language modeling datasets that we use in this paper.
If train-dev-test splits were provided, then we used them. Otherwise, we performed a 80–10–10 train-dev-test split.
We found a vocab size of 64k to cover more than 98% of the training set for the Indo-European languages, and a
vocab size of 62k allowed us to cover 100% in the training set of English WMT’06. For the remaining languages,
which had larger vocabularies, we followed Wiki-40B (Guo et al., 2020) and increased the vocab size to 128k.

Hyperparameters. Table 6 shows the optimized β hyperparameter from a grid-search over β ∈ {0.006,
0.008, 0.01, 0.02, 0.03, 0.04, 0.05} for both regularizers on all datasets we use. Notably, the best β for
variance ranged from 1×10−2 to 5×10−2, and the best β for local consistency ranged from 6×10−3 to
2×10−2. For use on a new dataset, we recommend starting with 1×10−2, which we found almost always
improved perplexity for both regularizers (on these datasets, at least).

UID Regularizer
Variance Local Consistency

Language Source Best β Dev Loss Best β Dev Loss

English EuroParl (full dataset) 2×10−2 4.519 8×10−3 4.529
EuroParl (2M subset) 2×10−2 6.497 1×10−2 6.497
EuroParl (4M subset) 2×10−2 5.940 1×10−2 5.948
EuroParl (8M subset) 2×10−2 5.500 8×10−3 5.511
EuroParl (12M subset) 2×10−2 5.236 8×10−3 5.230
EuroParl (16M subset) 5×10−2 5.084 2×10−2 5.089
EuroParl (24M subset) 4×10−2 4.841 2×10−2 4.843
EuroParl (32M subset) 1×10−2 4.747 1×10−2 4.742
WMT’06 3×10−2 4.974 1×10−2 4.991
WT-103 1×10−2 4.933 8×10−3 4.939

Czech EuroParl 3×10−2 5.388 1×10−2 5.391
French EuroParl 1×10−2 4.161 6×10−3 4.162
German EuroParl 2×10−2 4.782 8×10−3 4.779
Spanish EuroParl 3×10−2 4.539 1×10−2 4.550
Finnish Wiki-40B 1×10−2 5.811 6×10−3 5.819
Indonesian Wiki-40B 3×10−2 5.808 8×10−3 5.809
Tagalog Wiki-40B 4×10−2 6.319 8×10−3 6.319
Turkish Wiki-40B 3×10−2 6.119 8×10−3 6.121
Swahili Wikipedia 2×10−2 5.555 6×10−3 5.546

Table 6: Best β hyperparameters and dev losses for all experiments.


