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Abstract

Despite the success of contextualized language
models on various NLP tasks, it is still unclear
what these models really learn. In this paper,
we contribute to the current efforts of explain-
ing such models by exploring the continuum
between function and content words with re-
spect to contextualization in BERT, based on
linguistically-informed insights. In particular,
we utilize scoring and visual analytics tech-
niques: we use an existing similarity-based
score to measure contextualization and inte-
grate it into a novel visual analytics tech-
nique, presenting the model’s layers simulta-
neously and highlighting intra-layer properties
and inter-layer differences. We show that con-
textualization is neither driven by polysemy
nor by pure context variation. We also provide
insights on why BERT fails to model words in
the middle of the functionality continuum.

1 Introduction

The rise of contextualized language models (LM),
i.e., contextualized word and sentence represen-
tations, such as ELMO (Peters et al., 2018) and
BERT (Devlin et al., 2019), has brought many well-
known NLP tasks to a tremendous breakthrough.
Contextualized embeddings have replaced earlier
static embeddings (Mikolov et al., 2013; Penning-
ton et al., 2014; Conneau et al., 2017), creating
new standards for the state-of-the-art. LMs have
learned highly transferable and task-agnostic prop-
erties of language (e.g., Belinkov, 2018; Conneau
et al., 2018; Peters et al., 2018), even to a degree
of imitating the classical NLP pipeline (Tenney
et al., 2019a). Despite these research efforts, it
remains yet unclear as to what extent LMs like
BERT capture complex linguistic phenomena and
whether different linguistic properties are learned

∗Contribution to the visualization part.
† Equal contribution to the computational linguistics part.

across the different layers of the model’s archi-
tecture: the existing evidence is conflicting and
in some cases even contradictory (Rogers et al.,
2020). One recent line of work (Ethayarajh, 2019)
explores the actual contextualization captured in
these models, i.e., the degree to which a word is
modeled as context-specific. This sheds light on the
context-specificity of individual words and the de-
gree of contextualization of different word groups.

This paper contributes to this line of work by ex-
amining the degree of contextualization of function
vs. content words. We treat functionality as a con-
tinuum, comparing and contrasting BERT’s (De-
vlin et al., 2019) modeling of categories of words
within this continuum with the expected modeling
according to the theoretical linguistic literature. It
has been repeatedly shown that LMs fail to gener-
alize and capture the compositionality of language
because they struggle with words of high function-
ality, e.g., quantifiers, prepositions, modals, con-
junctions (Dasgupta et al., 2018; Naik et al., 2018;
McCoy et al., 2019, to name only a few). Thus, our
linguistically-informed analysis sheds light on the
peculiarities of these phenomena and contributes
to our better understanding of BERT.

This paper utilizes the self-similarity contextual-
ization score of Ethayarajh (2019) for better compa-
rability. The exploration of the scores and phenom-
ena is enabled by LMExplorer, a visual analytics
(VA) technique for the layer-wise explanation of
contextualized word embeddings. LMExplorer con-
tributes a new perspective on the learned patterns
of the model, and shows clusters and score devel-
opments in the model’s layers simultaneously.

Overall, the contribution of this paper is two-
fold: (1) we generate insights as to how BERT cap-
tures function vs. content words (Sections 4 and 5),
and (2) present a novel visual analytics technique
that facilitates such insights by explaining LMs
through contextualization scoring (Section 3).
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2 Interpretability of Language Models

Research on the interpretability of LMs has been
pursued in two main directions, mainly focusing
on BERT. For one, probing tasks are used to in-
vestigate the linguistic properties learned by the
LM by training a linear model on the basis of the
corresponding contextualized embeddings for the
prediction of specific linguistic properties. For an-
other, the interpretability of LMs has been explored
via adversarial datasets to assess the performance
of an LM with respect to challenging linguistic phe-
nomena. To further explore the interpretablity of
LMs, we see work coming from the field of VA as
promising. VA techniques have been used exten-
sively for exploring and interpreting different deep
learning models (Hohman et al., 2019), incl. LMs.

Probing – Probing experiments have shown that
BERT’s transformer architecture encodes seman-
tic information such as word senses and seman-
tic roles (Reif et al., 2019; Tenney et al., 2019b;
Ettinger, 2020; Zhao et al., 2020), syntactic in-
formation in the form of constituents and hier-
archical structure (Goldberg, 2019; Hewitt and
Manning, 2019; Warstadt and Bowman, 2020; Chi
et al., 2020), morphosyntactic and morphological
features (Edmiston, 2020; Tenney et al., 2019b),
and discourse-related information necessary for
tasks such as coreference resolution (Tenney et al.,
2019b). Moreover, the traditional NLP pipeline
sequence of POS tagging, syntactic parsing, named
entity recognition, semantic role labeling and coref-
erence resolution can be mapped onto BERT’s
transformer layers from lower to higher (Tenney
et al., 2019a). Accordingly, several probing studies
have shown that BERT captures a hierarchy of lin-
guistic information (e.g., Jawahar et al., 2019; Lin
et al., 2019; Edmiston, 2020): surface features are
represented best in the lower layers, while syntactic
features are captured best in the middle layers. The
middle to higher layers represent morphological
features best, and semantic information is captured
best in the higher layers.

Adversarial Testing – Adversarial testing has
shown that LMs struggle in making generalizations
on basic lexical relations (Glockner et al., 2018),
identifying ungrammaticality (Marvin and Linzen,
2018), efficiently capturing challenging linguis-
tic phenomena, such as negation (Dasgupta et al.,
2018; Richardson et al., 2020), modals, quantifiers
and monotonicity (Richardson et al., 2020), pas-
sives (Zhu et al., 2018), conditionals (Richardson

et al., 2020), conjunctions (McCoy et al., 2019),
implicatives and factives (McCoy et al., 2019), and
modeling human reasoning patterns, such as nu-
merical or common-sense reasoning (Naik et al.,
2018). Overall, the evidence from adversarial test-
ing contradicts the results of the probing studies:
if the LM indeed is able to acquire ‘deep’ linguis-
tic knowledge (e.g., about syntactic hierarchies), it
should be able to deal with the phenomena present
in the adversarial test sets.

Contextualization – Despite the conflicting ev-
idence about the linguistic capacities of LMs like
BERT, it is widely acknowledged that the word
embeddings generated by such models are contex-
tualized, i.e., there is no finite number of word
sense representations and a word has different vec-
tor representations across different contexts. Par-
ticularly, by assessing a word’s contextualization
on the basis of self-similarity scores, Ethayarajh
(2019) shows that the embeddings become more
contextualized, i.e., more context-specific, in the
upper layers of BERT. Moreover, it has been shown
that contextualized embeddings generally cluster
with one another with respect to word senses (Reif
et al., 2019; Wiedemann et al., 2019).

Visual LM Explanations – Approaches for vi-
sual LM explanations can be grouped into two
main categories. One strand of research focuses
on transformer-based LMs and explains how they
learn through visualizing attentions (e.g., NL-
IZE (Liu et al., 2018), Seq2Seq-Vis (Strobelt et al.,
2018), BertViz (Vig, 2019), exBERT (Hoover et al.,
2020), SANVis (Park et al., 2019), and Attention
Flows (DeRose et al., 2021)). Another strand of
research explains what the model learns by visual-
izing word embeddings. Although most existing
work on embedding explanation is based on prob-
ing tasks, visualization of embedding characteris-
tics has emerged as an active research topic. The
first tools were related to the exploration of static
embeddings, e.g., by Liu et al. (2017), who visual-
ize word2vec and Glove embeddings, focusing on
analogy exploration. Heimerl and Gleicher (2018)
explain the same models and present visualizations
that support analysis of multiple tasks, among oth-
ers, the analysis of local word neighborhoods. Also,
Boggust et al. (2019) explain static embeddings
of word2vec, Glove, and fastText. Their expla-
nations focus on local neighborhoods visualized
using small multiples by applying a dimensionality
reduction. Berger (2020) has recently presented a
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Figure 1: The main visualization of our technique uses layer-wise interlinked-projections that show embeddings
from the layers of an LM in a 2D space; here, BERT’s 12 layers. The words in each layer are depicted as points
and connected to their corresponding position throughout layers. By selectively mapping the colors of the links to
computed scores or identified clusters, this visualization provides a global overview of the analyzed corpus.

visual approach for exploring correlations between
embedding clusters in BERT for a single model’s
layer at a time. The novelty of our approach is the
explanation of contextualized word embeddings
through contextualization scores that are visualized
for all of the model’s layers simultaneously.

3 LMExplorer: Visual Analytics Technique

To support the analysis of word contextualization
within the functionality continuum, we have devel-
oped a VA technique called LMExplorer. This tech-
nique discloses layer-wise spatial and score-based
patterns in the learned embedding representations.
Using interlinked embedding projections, we show
the spatial relations of the high-dimensional em-
bedding space. To provide further insights into the
word contextualization, the technique utilizes scor-
ing functions (i.e., word self-similarity) as a con-
textualization explanation. The scores are used to
explore and navigate the embedding space, which
is facilitated by supporting views and interactions.
The technique is integrated into the lingvis.io frame-
work (El-Assady et al., 2019a).

Task Analysis – The technique is designed to
support model analysts in gaining insights into
the word contextualization. The proposed design
is informed by a set of tasks that were obtained
through investigating the analysts in their typical
analysis workflow. These are: (T1) Analyze spa-
tial structure of the embedding space; (T2) Gain a
global overview of the corpus; (T3) Conduct interac-
tive pattern analysis; (T4) Create user-defined word
groupings for detailed inspection; and (T5) Conduct
a focused analysis of contextualization.

3.1 Layer-wise Interlinked Projections

The main visual components of our technique are
layer-wise interlinked projections (Figure 1) – a
novel visualization displaying layers of the LM si-
multaneously for effective spatial pattern analysis.

Motivation – The design of this visualization
was informed by T1 and T2, i.e., corpus level ex-
ploration of embedding spatial patterns in differ-
ent layers of the LM. Projection-based visualiza-
tions are the most common methods to visualize
word embeddings (e.g., Smilkov et al., 2016; Liu
et al., 2017; van Aken et al., 2019; Aken et al.,
2020) and although some approaches have enabled
the exploration of embeddings in different layers
(e.g., Smilkov et al., 2016; van Aken et al., 2019;
Aken et al., 2020), they typically visualize only
one layer of the LM at a time. However, changes
in embedding positions and their neighborhoods
across layers can be an indicator of the model cap-
turing new context information. To support such
analyses, our technique displays the embeddings
for all layers of the LM simultaneously and visually
highlights changes in their neighborhoods.

Design Rationale – To implement the explo-
ration of such spatial patterns, we use a dimension-
ality reduction technique on the computed embed-
ding vectors from each layer of the LM. In partic-
ular, we reduce the 768-dimensional embedding
vectors to two dimensions, used as x and y coordi-
nates to visualize words in one layer. Using this
technique, words with similar embeddings are rep-
resented by similar coordinates in the 2D space. In
total, 12 projections are created, each representing
one layer of the BERT-base model. The projections

https://lingvis.io/
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are ordered vertically underneath each other, start-
ing from layer one at the very top and ending with
the last layer at the bottom. The words in the pro-
jection are visualized as shapes. By default, they
are displayed as circles and colored according to
the word’s position in the 2D space, cf., El-Assady
et al. (2019b). After displaying the projections, we
add connecting lines between layers to support the
analysis of word position changes in the visualized
space. To reduce the number of crossing edges, we
additionally apply an edge-bundling technique that
combines neighboring edges in a more coherent
representation. An example of the visualization
is shown in Figure 1. In our approach, both con-
textualized word embeddings and aggregated word
embeddings (i.e., average or median embedding of
all contexts of a word) can be visualized.

The words in each projection (i.e., layer) are rep-
resented by different embedding vectors. Hence,
although we visualize the same words, the consec-
utive projections differ and may even get rotated
or flipped due to artefacts that are common for
most of the dimensionality reduction techniques
(e.g., UMAP (McInnes et al., 2018), t-SNE (Van der
Maaten and Hinton, 2008)). Even if words main-
tained their neighborhoods, the rotation of the
projections would prevent the users from easily
comprehending on embedding positional changes.
Thus, to prevent such artifacts, we apply an exten-
sion of UMAP called AlignedUMAP. It reduces
the rotation artifacts by using the already projected
data as an anchoring. Hence, we project the em-
beddings from layer 2 by specifying relations to the
projection of embeddings from layer 1, and iterate
this alignment process up to the last layer.

This spatialization concept enables an effective
layer comparison as well as the detection of word
groups with similar spatial patterns (T1, T2). The
interlinked projections benefit the analysis of word
functionality across layers, especially in the ex-
ploratory phase of the analysis. The user can brush
neighboring words in the projection to gain an
overview of word groups that are relevant to ob-
serve in detail. To support hypothesis generation
and testing, we provide multiple interaction tech-
niques that help explore the analyzed corpus. When
hovering over a word in the projection, the word
and its path through the different layers gets high-
lighted (T3) and its contexts are displayed for close-
reading. To ease the analysis of words with com-
mon spatial patterns, the user can brush a group of

neighboring words in the projection and drag them
aside. This reduces the displayed information and
supports a more detailed pattern analysis (T4).

3.2 Explaining Contextualization
We employ common approaches in explaining con-
textualization and compute multiple word-level
contextualization scores. These are integrated into
the interlinked-projection view as an overlay (T5).

Scoring Functions – To explain the contextu-
alization of a word’s representation, Ethayarajh
(2019) introduces three metrics: self-similarity,
maximum explainable variance, and intra-sentence
similarity. In this paper, we focus on the word self-
similarity, which Ethayarajh describes as “the aver-
age cosine similarity of a word with itself across all
the contexts in which it appears, where representa-
tions of the word are drawn from the same layer of
a given model.” Although the analysis in this paper
is solely based on the self-similarity score, the tech-
nique can be effortlessly extended to further expla-
nation scores. For instance, we have explored the
word’s contextualization also by defining a base-
line embedding and obtaining its similarity to the
contextualized one. It is possible to create multiple
baselines by either reducing the context size (e.g.,
extracting embedding from a word without a sur-
rounding context) or selecting a specific layer of the
LM for reference. Ethayarajh (2019) describes the
0th layer as an appropriate baseline. However, for
specific hypothesis testing, one could even select
one of the upper layers as a reference layer.

Score Overlay – The scores are mapped to the
words in the interlinked-projection view to provide
further insights into the embedding contextualiza-
tion. In particular, we use three visual design ele-
ments: (a) color, (b) shape, and (c) size. First, we
use a diverging color scale that maps the scores
from brown (min value) to green (max value)
colors. Second, we highlight words having ex-
treme values (i.e., one standard deviation above the
min value and below the max value of the score’s
distribution in the particular layer) by displaying
them as rectangles instead of the default circles.
Third, we map the score’s range across all layers
of the model to the shape’s size, supporting layer
comparison (shown in Figure 4).

3.3 Supporting Visualizations & Interactions

To support the exploration of words with common
characteristics (e.g., spatial patterns), we provide
supporting visualizations and interactions.
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(a) The range of contextualization scores for all words in different layers are
displayed in distribution plots, supporting layer comparison.

(b) Words can be filtered and highlighted in
the projection by specifying a score’s range.

Figure 2: The distribution plots show that the average self-similarity of words decreases and, hence, word contex-
tualization increases with increasing layers of BERT, which replicates the findings by Ethayarajh (2019).

The distribution plots provide an overview of
the embedding contextualization scores (i.e., self-
similarity) and are placed next to the corresponding
layer projection. They enable the analysis of score
changes through the model’s layers. As shown
in Figure 2a, the self-similarity score decreases in
upper layers, and the standard deviation increases
accordingly. The distribution plots can be further
used for filtering words by specifying a range in
the contextualization score (shown in Figure 2b).
Words that fit within the range are highlighted in
the interlinked-projection view.

For tailored score-pattern analysis, we display
the score changes in an additional, more compact
matrix plot visualization (shown in Figure 3). The
columns of the matrix represent words in the cor-
pus, and rows show the layer-wise contextualiza-
tion scores. The user can define a query by select-
ing a word in the matrix plot and the words with
similar patterns (i.e., the response of the query)
are highlighted in the interlinked-projection view.
To obtain similar patterns, we first represent each
word by a vector of 12 score values corresponding
to each layer for BERT-base. We then compute the
cosine similarity on these vectors to retrieve words
with similar score patterns.

Figure 3: The matrix plot gives an overview of the self-
similarity score changing over layers. By clicking on a
column, the matrix is queried for similar score-patterns.

4 Exploring Contextualization in BERT
While Ethayarajh (2019) initially found that the
increase in contextualization across the different
BERT layers (i.e., the decreasing self-similarity)
seems to be driven by polysemy, ‘stopwords’ such
as and, of, the and to seem to contradict this con-
clusion. Stopwords, which in essence are function
words, also become increasingly contextualized in
the upper layers. Thus, contextualization seems not
to be entirely driven by polysemy, but rather the
variety of contexts a word appears in (Ethayarajh,
2019). However, function words are not a homoge-
neous class, and some function words indeed have
semantic content in addition to having a grammati-
cal function. Thus, we decided to investigate func-
tion and content words in more detail, using the
LMExplorer to explore contextualization in BERT
with respect to the functionality continuum.

4.1 Functional and Content Words

In theoretical linguistics, there is a traditional dis-
tinction between function and content words. Sev-
eral criteria have been proposed to distinguish be-
tween the two groups, e.g., semantic content, mem-
bership openness, flexibility of syntactic attach-
ment, separability from complements (Corver and
van Riemsdijk, 2001). While content words com-
prise a specific semantic content and contribute
to the principal meaning of a sentence, function
words are rather ‘non-conceptual’ and mainly ful-
fill some grammatical function (e.g., expressing
modality or definiteness), gluing content words
together. Furthermore, content words are open-
class because new members can freely be added.
In contrast, function words are closed-class, i.e.,
they are members of a fixed set. Additionally, con-
tent words are flexible with respect to the syntactic
phrase they attach to, e.g., the verb think can be
complemented by an NP or a clause, while function
words typically only combine with a specific syn-
tactic phrase, e.g., a determiner with an NP. Also,
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Figure 4: Exploring BERT’s layer 10 allows us to draw insights about function and content words (Section 5).

in contrast to content words, function words are
generally inseparable from their content word com-
plements, i.e., they cannot be detached from their
lexical heads, e.g., in in the house, the functional in
cannot be separated from the content word house.
Despite these ‘hard’ criteria, the two categories are
not rigid. Function and content words form a quasi-
continuum (‘squishiness’), a gradience between the
two categories (Ross, 1972; Emonds, 1985). This
continuum is based on the fact that some words
share properties of both categories. Such words
can be placed on a sliding scale of functionality.
For example, prepositions are less functional than
articles, e.g., some prepositions are associated with
a locative or directional meaning, but they are also
more functional than nouns or verbs, e.g., because
they are inseparable from their content words.

Within computational linguistics and especially
NLP, this functionality continuum has not received
much attention. Prototypically functional words
are mostly treated as stopwords and often re-
moved from the analysis. Nevertheless, a more
linguistically-motivated look in this continuum can
contribute to the explainability of LMs like BERT.

4.2 Visual Analysis

Utilizing the LMExplorer, we visualize a random
subset of 800 unique sentences of the RTE-1 (Da-
gan et al., 2005), RTE-2 (Bar-Haim et al., 2006)
and RTE-3 (Giampiccolo et al., 2007) corpora.
These corpora contain sentence pairs originally in-
tended for Natural Language Inference. They stem
from the news domain and thus contain variable
content. The pairs are split into single sentences
and mapped to their POS tags based on the Stanford
POS tagger (Toutanova et al., 2003). We visualize
the BERT-base embeddings and self-similarity of

496 unique words with a frequency greater than 5
and lower than 50, following Ethayarajh (2019).

The distribution plots show at-a-glance that each
of the distributions roughly follows that of a nor-
mal distribution and that the mean self-similarity
decreases across layers while the standard devia-
tion increases, see Figure 2a. This observation is in
line with the finding by Ethayarajh (2019) that con-
textualized word representations are more context-
specific in higher layers, i.e., the self-similarity de-
creases overall. Moreover, we find specific spatial
patterns in the interlinked-projection view, see Fig-
ure 1, i.e., specific groups of content words, e.g.,
named entities, and specific groups of function
words, e.g., prepositions, seem to cluster together
across the layers. By filtering for different score
ranges based on self-similarity via the distribution
plots, we first investigate the three groups min, max
and mid (one standard deviation around the mean
standard deviation; grey area) in more detail. In
addition, we explore the self-similarity patterns in
these areas in the matrix plots.

Score Areas – Across the layers, mostly named
entities, e.g., place names (Israel, Korea, Haiti),
monosemous words (rabies), and polysemous
words1, whose senses are closely related (e.g., re-
search, currency, Marijuana), occupy the max area
across all layers, see, e.g., layer 10 in Figure 4. In
the min area, highly polysemous words, e.g. field,

1The distinction between polysemy and homonymy is con-
troversial. We take polysemous words to have multiple senses
which exhibit some kind of semantic relation, e.g., home as
a building/location vs. as a social institution. Homonymous
words comprise unrelated senses, e.g., bank as financial in-
stitution vs. as natural object (Utt and Padó, 2011) – of-
ten of different syntactic categories, e.g., present as a gift
(noun) and as the verb to present. We base our decisions on
homonymy/polysemy on WordNet 3.1 (Fellbaum, 1998).
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Figure 5: Layer-wise self-similarity scores for word
samples/groups across the functionality continuum.

home, and homonymous words, e.g., set, occupy
the space in the upper layers (e.g., layer 10, see Fig-
ure 4), and can also be found across the preced-
ing layers. Prepositions (e.g., of, for) occur in the
min range from the middle layers onwards. More-
over, the determiner the occurs in the min range at
layer 11 and generally shows a low self-similarity
(see Figure 3). In the mid range, we find temporal
adverbials, e.g., today and now, modal verbs (must,
should) as well as polysemous and monosemous
words; see Figure 4. To shed light on these contex-
tualization patterns, we explore the functionality
continuum in more detail by looking at different
groups of words across the layers.

Word-based Selection – We discern the follow-
ing groups of words for our further explorations:
1) articles, 2) prepositions, 3) quantifiers, 4) modal
verbs, 5) temporal adverbials, 6) monosemous
words, 7) polysemous words and 8) homonymous
words. Each group demonstrates a different pattern
of self-similarity across layers, as shown in Fig-
ure 5. First, we observe that, before (almost) end-
ing up in the min range, the determiners the and a
start off in the mid range of the distribution with a
decreasing self-similarity across the layers. Prepo-
sitions such as of, in, on, for, at are found in the
mid-min area until layer 6 but from then on, they
are grouped under min. Quantifiers like some, all,
every remain in the mid range across all layers.
Modal verbs such as must, should, may follow an
inconsistent pattern: while must and should start
off in the upper ends of the mid area (max-mid)
and end up in the mid range from layer 9 on, may
is at first in the min area and after layer 5 in the
mid range. Temporal adverbials such as yesterday,
never, now are also inconsistent. Some of them
(e.g., yesterday) belong to the max group in the
lower layers, but slowly move towards the mid
area as the layers increase – without ever enter-
ing the exact mid area. Others (e.g., now, never)
are constantly within the mid range, starting at the

higher end of mid and moving towards the middle.
Monosemous words like attorney, river, tsunami
are mostly found in the max range, with a decreas-
ing tendency across layers, but remain in the upper
ends of the max area. Polysemous words whose
senses are very closely related, e.g., universe, state-
ment, are also mostly found in the max area, while
highly polysemous words whose senses are loosely
related, e.g., field, are located in the min area in
the lower layers and although their self-similarity
increases, they remain in the min-mid area across
layers. Finally, homonymous words, e.g., set, are
in the min area across layers. These observations
lead to new insights into how BERT captures con-
textualization, see Section 5.

5 Insights: The Functionality Continuum
During our exploration, we came across patterns
that fit to the theory of the functionality continuum
and others that were contrary to our expectations.
Above all, we observed that contextualization is
neither triggered merely by polysemy nor by vari-
ation in context. To explain the observed patterns,
a) we positioned the defined categories within the
functionality continuum2 based on the inherent lin-
guistic properties of the words and on insights from
lexical semantics, and b) we identified three criteria
as potential triggers of contextualization, as shown
in Table 1. The first criterion refers to the sense vari-
ation (Sense Var.), i.e., whether a word has multiple
senses (high variation), or only one or multiple but
very closely related senses (low variation). The sec-
ond criterion captures syntactic context variation
(SynCtx. Var.), i.e., whether a word needs to be part
of a specific syntactic structure (low) or is flexible
in terms of attachment and can be found in differ-
ent kinds of syntactic structures (high). Another
potential trigger we identified is that of variation
of semantic context (SemCtx. Var.). This captures
whether the contexts in which a word can occur
are semantically similar (low) or different (high)
to one another. Based on these triggers and pre-
vious findings on contextualization by Ethayarajh
(2019), we derive the expected contextualization
(Exp. Contextual.) of each of the predefined cate-
gories. We can then compare this to BERT’s actual
behavior (BERT) and shed light on BERT’s abili-
ties to capture the functionality continuum. Note
that here the expected contextualization coincides
with the SemCtx.Var. for the categories investi-

2See also semantic proximity continuum by Blank (1997).
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Functionality Continuum Sense Var. SynCtx. Var. SemCtx. Var. Exp. Contextual. BERT
homonymous high high high high high 3
polysemous low/high high low/high low/high low/high 3
monosemous low high low low low 3

temp. adverbials low low high high low 7
modals high low high high low 7

quantifiers high low high high low 7
prepositions high low high high high 3

articles none low high high high 3

Table 1: Expected contextualization (Exp. Contextual.) and contextualization in BERT (BERT) on the basis of
sense variation (Sense Var.), syntactic context variation (SynCtx. Var.) and semantic context variation (SemCtx.
Var.), ordered based on the functionality continuum, from content (blue, top) to function words (yellow, bottom).

gated, but might deviate for others. Additionally,
differences between the expected contextualization
and the SemCtx.Var. might currently be absorbed
by our binary encoding (low/high). We envision
a more fine-grained Exp. Contextual. measure,
accounting in detail for the relative positioning of
words in the middle of the continuum.

Homonymy – Homonymous words, being on
the ‘more content-like’ end of the continuum, have
a high sense variation due to their multiple (unre-
lated) senses, a high syntactic variation (flexible
attachment as content words) and a high semantic
context variation as, due to their multiple senses,
they can occur in semantically very different con-
texts. This means that we expect a high contex-
tualization, i.e., the embeddings of homonymous
words are highly context-specific. This is indeed
confirmed with our findings since these words gen-
erally occur in the min area.

Polysemy – Polysemous words, mostly with
‘content-like’ properties, exhibit a low/high sense
variation, depending on whether they are highly
polysemous, i.e., have loosely related senses, or
not, i.e., have semantically related senses. As it is
typical of content words, polysemous words show
high syntactic variation. Concerning their semantic
context variation, they are again in a ‘grey’ area
depending on the degree of polysemy: highly pol-
ysemous words mostly appear in semantically dif-
ferent contexts, while plain polysemy is mostly
found in semantically similar contexts since the
senses are closely related. With this, the expected
contextualization is respective to the degree of the
polysemy. Indeed, BERT meets these expectations:
highly polysemous words like field, home are in
the min area across layers (high contextualization),
while plain polysemous words are rather found in
the max area (low contextualization).

Monosemy – Monosemous words also seem to
be correctly captured by BERT. Such words have
low sense variation, high syntactic variation (as

content words) and low semantic context variation
(due to their low sense variation). According to
this, they are also expected to have low contex-
tualization. We find this low contextualization in
BERT as well, where monosemous words have max
self-similarity across layers.

Temporal Adverbials – At the middle of the
functionality continuum, temporal adverbials have
a low sense variation, e.g., yesterday has only one
meaning,3 as well as low syntactic variation. On
the other hand, their semantic context variation is
high because they can occur in semantically very
different contexts. Thus, the expected contextual-
ization is high, i.e., their embeddings should be
context-specific to match the semantically different
contexts they can appear in. BERT fails to learn
this: temporal adverbials are either found within
the mid area across all layers or end up in this range
in the upper layers, contrary to the expected min.

Modals & Quantifiers – BERT also struggles in
capturing the functionality continuum with modals
and quantifiers. These are comparable to words
with high ‘sense’ variation: modals can not only
have a deontic or an epistemic flavor, but also ex-
press variation through their variable quantifica-
tional force; similarly, quantifiers exhibit variation
via their variable scope interpretation (wide or nar-
row). Both modals and quantifiers have low syn-
tactic variation; they can only attach with specific
syntactic phrases. The contexts they appear in can
be semantically very different and thus they have a
high semantic context variation. Based on this half-
functional-half-content nature, modals and quanti-
fiers are expected to have high contextualization,
i.e., have context-specific embeddings based on the
modal flavor they express, the quantificational force
they capture, the scope resolution, etc. However,
we can see that BERT fails to meet this expectation.

3It should be noted that such adverbials have one meaning,
even if their extension is always a different one due to different
reference points.
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Modals and quantifiers mostly occur in the mid
range – instead of the expected min.

Prepositions – At the functional end of the con-
tinuum, we find prepositions and articles. Preposi-
tions are comparable to words with a high ‘sense’
variation, capturing the fact that the same prepo-
sition can, for example, be locative or temporal,
depending on the context. Prepositions have low
syntactic variation, as most functional words. Still,
their semantic context variation matches their mul-
tiple ‘senses.’ Therefore, we expect the preposition
embeddings to be highly context-specific: this is
indeed the case in BERT, where prepositions are
mostly found in the min area.

Articles – Last, we investigate articles and par-
ticularly the determiners the and a. We take them
to have no sense,4 low syntactic variation and high
semantic context variation – the contexts they ap-
pear in do not have any semantic similarity in most
cases. Thus, we expect them to demonstrate high
contextualization with highly context-specific em-
beddings. BERT is able to model this through low
self-similarity, which is more prominent for the
than for a, nonetheless consistent for both.

Discussion – Summing up, we see that BERT
struggles to efficiently capture the functionality
continuum. While BERT manages to model the
ends of the continuum, i.e., the mostly content
and mostly functional words, it fails to create ex-
pressive embeddings for categories with content
as well as functional properties. This finding is
in line with previous literature that has shown that
current LMs cannot efficiently capture hard linguis-
tic phenomena (e.g., Dasgupta et al. (2018); Mc-
Coy et al. (2019); Richardson et al. (2020)), with
modals, quantifiers and temporal reasoning belong-
ing to these phenomena. Our work suggests that the
BERT embeddings are not specific enough to cap-
ture the inherent functionality of certain word types,
i.e., BERT does not learn the relevant generaliza-
tions. Additionally, we show that contextualiza-
tion is neither entirely driven by polysemy nor con-
text variation. Rather, contextualization can be ex-
plained via the harmonical combination of function-
ality, sense variation, syntactic variation and seman-
tic context variation: BERT can efficiently model
polysemy, homonymy and mononymy, i.e., it can
efficiently capture words that appear in semantic
contexts of high variation and low variation and

4We treat determiners as definiteness markers, rather than
as quantifiers or discourse markers, to be in-line with their
treatment in popular NLP tasks such as NLI.

independently of their polysemy. What it cannot
model are words that have a semi-functional/semi-
content nature (models, quantifiers, temporal ad-
verbials), see Table 1. Concerning models and
quantifiers, BERT cannot learn the inherent func-
tionality from the context alone and thus treats the
words as simple monosemous words. Concern-
ing temporal adverbials, BERT cannot deal with
the combination of low sense variation and high
semantic context variation – a rather unusual com-
bination – and is unable to conclude a single word
meaning. Although prepositions have the same trig-
gers as modals and quantifiers, BERT follows our
expectations with respect to contextualization. This
could be due to their higher syntactic flexibility or
their close semantic relatedness with their content
complements, but this needs to be explored as part
of future work. Overall, BERT seems to follow
findings of psycholinguistics and language acqui-
sition: children learn content words easier and ear-
lier than function words (Bates et al., 1994; Caselli
et al., 1995). Drawing from language acquisition re-
search, we see an opportunity for explainable meth-
ods to inspect BERT’s inner-workings and improve
its linguistic understanding, raising LMs from their
infantile state to a more linguistically-mature one.

6 Conclusion and Future Work
This paper presented new insights on the contex-
tualization of the functionality continuum, show-
ing that BERT fails to capture the nature of semi-
functional-semi-content words. These insights
were generated through a novel visual analytics
technique for contextualized word embedding ex-
ploration and analysis. For a deeper understanding
of the weaknesses of BERT, our technique can be
extended with scores that model common linguis-
tic properties of words and their nearest neighbors,
e.g., WordNet semantic similarity or POS similarity
scores. Hence, they could serve as means of expla-
nation and bring added value to the eXplainable
Artificial Intelligence (XAI) research field. More
information about the project can be found under:
https://embeddings-explained.lingvis.io.

Acknowledgments
We thank the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) for funding
within project BU 1806/10-2 “Questions Visual-
ized” of the FOR2111 and project D02 “Evalua-
tion Metrics for Visual Analytics in Linguistics”
(Project ID: 251654672 – TRR 161).

https://embeddings-explained.lingvis.io


473

Broader Impact Statement

In the following, we describe the two main points
with respect to the broader impact statement.

Impact

With regard to the broader impact of our work, we
are going beyond just measuring scores by reveal-
ing and explaining the inner-workings of language
models. We put the measured scores in context
through visual analytics, in combination with prob-
ing and adversarial testing methods, for the explo-
ration, explanation, and analysis. With our work,
we aim to open new perspectives on measuring and
obtaining the model performance, which go beyond
typically used performance metrics.

Reproducibility

With regard to reproducibility concerns, we would
like to note that the contextualization scores calcu-
lated in this paper rely on the word frequencies and,
thus, may differ depending on the analyzed corpus.
Future work should investigate the exact effect of
word frequency and account for its impact.
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