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Abstract

Text-to-image retrieval is an essential task in
cross-modal information retrieval, i.e., retriev-
ing relevant images from a large and unla-
belled dataset given textual queries. In this pa-
per, we propose VisualSparta, a novel (Visual-
text Sparse Transformer Matching) model
that shows significant improvement in terms
of both accuracy and efficiency. VisualSparta
is capable of outperforming previous state-
of-the-art scalable methods in MSCOCO and
Flickr30K. We also show that it achieves sub-
stantial retrieving speed advantages, i.e., for
a 1 million image index, VisualSparta using
CPU gets ~391X speedup compared to CPU
vector search and ~5.4X speedup compared
to vector search with GPU acceleration. Ex-
periments show that this speed advantage even
gets bigger for larger datasets because Visu-
alSparta can be efficiently implemented as an
inverted index. To the best of our knowledge,
VisualSparta is the first transformer-based text-
to-image retrieval model that can achieve real-
time searching for large-scale datasets, with
significant accuracy improvement compared to
previous state-of-the-art methods.

1 Introduction

Text-to-image retrieval is the task of retrieving a list
of relevant images from a corpus given text queries.
This task is challenging because in order to find the
most relevant images given text query, the model
needs to not only have good representations for
both textual and visual modalities, but also capture
the fine-grained interaction between them.
Existing text-to-image retrieval models can be
broadly divided into two categories: query-agnostic
and query-dependent models. The dual-encoder
architecture is a common query-agnostic model,
which uses two encoders to encode the query
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Figure 1: Inference Time vs. Model Accuracy.

Each dot represents Recall@1 for different models on
MSCOCO 1K split. By setting top n-terms to 500,
our model significantly outperforms the previous best
query-agnostic retrieval models, with ~2.8X speedup.
See section 5.1 for details.

and images separately and then compute the rel-
evancy via inner product (Faghri et al., 2017,
Lee et al, 2018; Wang et al., 2019a). The
transformer architecture is a well-known query-
dependent model (Devlin et al., 2018; Yang et al.,
2019). In this case, each pair of text and image
is encoded by concatenating and passing into one
single network, instead of being encoded by two
separate encoders (Lu et al., 2020; Li et al., 2020b).
This method borrows the knowledge from large pre-
trained transformer models and shows much better
accuracy compared to dual-encoder methods (Li et
al., 2020b).

Besides improving the accuracy, retrieval speed
has also been a long-existing subject of study in
the information retrieval (IR) community (Man-
ning et al., 2008). Query-dependent models are
prohibitively slow to apply to the entire image cor-
pus because it needs to recompute for every dif-
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ferent query. On the other hand, query-agnostic
model is able to scale by pre-computing an im-
age data index. For dual-encoder systems, further
speed improvement can be obtained via Approxi-
mate Nearest Neighbors (ANN) Search and GPU
acceleration (Johnson et al., 2019).

In this work, we propose VisualSparta, a sim-
ple yet effective text-to-image retrieval model that
outperforms all existing query-agnostic retrieval
models in both accuracy and speed. By model-
ing fine-grained interaction between visual regions
with query text tokens, our model is able to harness
the power of large pre-trained visual-text models
and scale to very large datasets with real-time re-
sponse. To our best knowledge, this is the first
model that integrates the power of transformer mod-
els with real-time searching, showing that large
pre-trained models can be used in a way with sig-
nificantly less amount of memory and computing
time. Lastly, our method is embarrassingly simple
because its image representation is essentially a
weighted bag-of-words, and can be indexed in a
standard Inverted Index for fast retrieval. Compar-
ing to other sophisticated models with distributed
vector representations, our method does not depend
on ANN or GPU acceleration to scale up to very
large datasets.

Contributions of this paper can be concluded
as the following: (1) A novel retrieval model that
achieves new state-of-the-art results on two bench-
mark datasets, i.e., MSCOCO and Flickr 30K. (2)
Weighted bag-of-words is shown to be an effective
representation for cross-modal retrieval that can
be efficiently indexed in an Inverted Index for fast
retrieval. (3) Detailed analysis and ablation study
that show advantages of the proposed method and
interesting properties that shine light for future re-
search directions.

2 Related Work

Large amounts of work have been done on learn-
ing a joint representation between texts and im-
ages (Karpathy and Fei-Fei, 2015; Huang et al.,
2018; Lee et al., 2018; Wehrmann et al., 2019;
Li et al., 2020b; Lu et al., 2020). In this section,
we revisit dual-encoder based retrieval model and
transformer-based retrieval model.

2.1 Dual-encoder Matching Network

Most of the work in text-to-image retrieval task
choose to use the dual-encoder network to en-

code information from text and image modalities.
In Karpathy and Fei-Fei (2015), the author used a
Bi-directional Recurrent Neural Network (BRNN)
to encode the textual information and used a Re-
gion Convolutional Neural Network (RCNN) to
encode the image information, and the final similar-
ity score is computed via the interaction of features
from two encoders. Lee et al. (2018) proposed
stacked cross-attention network, where the text fea-
tures are passed through two attention layers to
learn interactions with the image region. Wang
et al. (2019a) encoded the location information
as yet another feature and used both deep RCNN
features (Ren et al., 2016) and the fine-grained lo-
cation features for the Region of Interest (ROI) as
image representation. In Wang et al. (2020), the
author utilized the information from Wikipedia as
an external corpus to construct a Graph Neural Net-
work (GNN) to help model the relationships across
objects.

2.2 Pre-trained Language Models (PLM)

Large pre-trained language models (PLM) show
great success over multiple tasks in NLP areas in
recent years (Devlin ef al., 2018; Yang et al., 2019;
Dai et al., 2019). After that, research has also been
done on cross-modal transformer-based models
and proves that the self-attention mechanism also
helps jointly capture visual-text relationships (Li
et al., 2019; Lu et al., 2020; Qi et al., 2020; Li
et al., 2020b). By first pretraining model under
large-scale visual-text dataset, these transformer-
based models capture rich semantic information
from both texts and images. Models are then fine-
tuned for the text-to-image retrieval task and show
improvements by a large margin. However, the
problem of using transformer-based models is that
it is prohibitively slow in the retrieval context: the
model needs to compute pair-wise similarity scores
between all queries and answers, making it almost
impossible to use the model in any real-world sce-
narios. Our proposed method borrows the power
of large pre-trained models while reducing the in-
ference time by orders of magnitude.

PLM has shown promising results in Informa-
tion Retrieval (IR), despite its slow speed due
to the complex model structure. The IR com-
munity recently started working on empower-
ing the classical full-text retrieval methods with
contextualized information from PLMs (Dai and
Callan, 2019; MacAvaney et al., 2020; Zhao et al.,
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2020). Dai and Callan (2019) proposed DeepCT,
a model that learns to generate the query impor-
tance score from the contextualized representa-
tion of large transformer-based models. Zhao et
al. (2020) proposed sparse transformer matching
model (SPARTA), where the model learns term-
level interaction between query and text answers
and generates weighted term representations for
answers during index time. Our work is motivated
by works in this direction and extends the scope to
the cross-modal understanding and retrieval.

3 VisualSparta Retriever

In this section, we present VisualSparta retriever,
a fragment-level transformer-based model for effi-
cient text-image matching. The focus of our pro-
posed model is two-fold:

* Recall performance: fine-grained relationship
between queries and image regions are learned
to enrich the cross-modal understanding.

* Speed performance: query embeddings are
non-contextualized, which allows the model
to put most of the computation offline.

3.1 Model Architecture

3.1.1 Query representation

As query processing is an online operation during
retrieval, the efficiency of encoding query needs
to be well considered. Previous methods pass the
query sentence into a bi-RNN to give token repre-
sentation provided surrounding tokens (Lee et al.,
2018; Wang et al., 2019a, 2020).

Instead of encoding the query in a sequential
manner, we drop the order information of the query
and only use the pretrained token embeddings
to represent each token. In other words, we do
not encode the local contextual information for
the query and purely rely on independent word
embedding FE;,; of each token. Let a query be
q = [wy, ..., wy,] after tokenization, we have:

W; = Eyop (w;) )

where w; is the i-th token of the query. Therefore,
a query is represented as W = {W1, ..., Wy }, W; €
R%#  In this way, each token is represented inde-
pendently and agnostic to its local context. This is
essential for the efficient indexing and inference,
as described next in section 3.3.

3.1.2 Visual Representation

Compared with query information which needs to
be processed in real-time, answer processing can
be rich and complex, as answer corpus can be in-
dexed offline before the query comes. Therefore,
we follow the recent works in Vision-Language
Transformers (Li et al., 2019, 2020b) and use the
contextualized representation for the answer cor-
pus.

Specifically, for an image, we represent it using
information from three sources: regional visual fea-
tures, regional location features, and label features
with attributes, as shown in Figure 2.

Regional visual features and location features
Given an image v, we pass it through Faster-
RCNN (Ren et al., 2016) to get n regional visual
features v; and their corresponding location fea-
tures [;:

Vlyeooy Up = RCNN(U% v; € Rdv‘cnn (2)

and the location features are the normalized top left
and bottom right positions of the region proposed
from Faster-RCNN, together with the region width
and height:

li - [l;rmin7 la:maacv lyminv lymaa:; lwidth7 lheight}
3)
Therefore, we represent one region by the concate-
nation of two features:

E; = [v3; 1] )
Eimage = [El, ceny En], EZ c Rdrcnn"rdloc (5)

where Fj;,q4¢ 18 the representation for a single im-
age.

Label features with attributes Additional to the
deep representations from the proposed image re-
gion, previous work by Li et al. (2020b) shows that
the object label information is also useful as an
additional representation for the image. We also
encode the predicted objects and corresponding at-
tributes obtained from Faster-RCNN model with
pretrained word embeddings:

6; = Eiok(0i) + Epos(0;) + Eseg(0;)  (6)
Eigpet = [01, ..., Ok], 6; € R (7

where k represents the number of tokens after the
tokenization of attributes and object labels for n
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Figure 2: VisualSparta Model. It first computes contextualized image region representation and non-contextualized
query token representation. Then it computes a matching score between every query token and image region that

can be stored in an inverted index for efficient searching.

image regions. Fik, Fpos, and Eg., represent to-
ken embeddings, position embeddings, and seg-
mentation embeddings respectively, similar to the
embedding structure in Devlin et al. (2018).

Therefore, one image can be represented by the
linear transformed image features concatenated
with label features:

a = [(EimageW + b); Elabel] ®)

where W € R{renntdioc)xdn and b € R are the
trainable linear combination weights and bias. The
concatenated embeddings a are then passed into a
Transformer encoder 7,44, and the final image
feature is the hidden output of it:

)

where Hjpage € R +k)xdn ig the final contextu-
alized representation for one image.

H’image = T’image (CL)

3.1.3 Scoring Function

Given the visual and query representations, the
matching score can now be computed between a
query and an image. Different from other dual-
encoder based interaction model, we adopt the fine-
grained interaction model proposed by Zhao et al.
(2020) to compute the relevance score by:

Yi = max;e(1 4 (0] Hj) (10)

¢(y:) = ReLU(y; + b) (11)

flg.v) = log((y:) + 1) (12)
i=1

where Eq.10 captures the fragment-level interaction
between every image region and every query word
token; Eq.11 produces sparse embedding outputs
via a combination of ReLU and trainable bias, and
Eq.12 sums up the score and prevents an overly
large score using log operation.

3.2 Retriever training

Following the training method presented in Zhao
et al. (2020), we use cross entropy loss to train
VisualSparta. Concretely, we maximize the objec-
tive in Eq. 13, which tries to decide between the
ground truth image v and irrelevant/random im-
ages V'~ for each text query g. The parameters to
learn include both the query encoder F,; and the
image transformer encoder 7, 4c. Parameters are
optimized using Adam (Kingma and Ba, 2014).

= flgvt) —log 3 /@)
kevV—

(13)

In order to achieve efficient training, we use other
image samples from the same batch as nega-
tive examples for each training data, an effective
technique that is widely used in response selec-
tion (Zhang et al., 2018; Henderson et al., 2019).
Preliminary experiments found that as long as the
batch size is large enough (we choose to use batch
size of 160), this simple approach performs equally
well compared to other more sophisticated meth-
ods, for example, sample similar images that have
nearby labels.
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3.3 Efficient Indexing and Inference

VisualSparta model structure is suitable for real-
time inference. As discussed in section 3.1.1, since
query embeddings are non-contextualized, we are
able to compute the relationship between each
query term w; and every image v offline.
Concretely, during offline indexing, for each im-
age v, we first compute fragment-level interaction
between its regions and every query term in the
vocabulary, same as in Eq. 10. Then, we cache the
computed ranking score:
CACHE(w,v) = Eq. 11 (14)
During test time, given a query ¢ = [wq, ..., Wy,
the ranking score between ¢ and an image v is:

f(g,v) = log(CACHE(w;,v) +1)  (I5)
=1

As shown in Eq. 15, the final ranking score dur-
ing inference time is an O(1) look-up operation
followed by summation. Also, the query-time com-
putation can be fit into an Inverted Index architec-
ture (Manning et al., 2008), which enables us to
use VisualSparta index with off-the-shelf search
engines, for example, Elasticsearch (Gheorghe et
al., 2015).

4 Experiments

4.1 Datasets

In this paper, we use MSCOCO (Lin et al., 2014)!
and Flickr30K (Plummer et al., 2015)? datasets
for the training and evaluation of text-to-image
retrieval tasks. MSCOCO is a large-scale multi-
task dataset including object detection, semantic
segmentation, and image captioning data. In this
experiment, we follow the previous work and use
the image captioning data split for text-to-image
model training and evaluation. Following the exper-
imental settings from Karpathy and Fei-Fei (2015),
we split the data into 113,287 images for training,
5,000 images for validation, and 5,000 images for
testing. Each image is paired with 5 different cap-
tions. The performance of 1,000 (1K) and 5,000
(5K) test splits are reported and compared with
previous results.

"https://cocodataset.org
nttp://bryanplummer.com/
Flickr30kEntities

Flickr30K (Plummer ef al., 2015) is another pub-
licly available image captioning dataset, which con-
tains 31,783 images in total. Following the split
from Karpathy and Fei-Fei (2015), 29,783 images
are used for training, and 1,000 images are used
for validation. Scores are reported based on results
from 1,000 test images.

For speed experiments, in addition to MSCOCO
1K and 5K splits, we create 113K split and 1M split,
two new data splits to test the performance in the
large-scale retrieval setting. Since these splits are
only used for speed experiments, we directly reuse
the training data from the existing dataset without
the concern of data leaking between training and
testing phases. Specifically, the 113K split refers to
the MSCOCO training set, which contains 113,287
images, ~23 times larger than the MSCOCO 5K
test set. The 1M split consists of one million im-
ages randomly sampled from the MSCOCO train-
ing set. Speed experiments are done on these four
splits to give comprehensive comparisons under
different sizes of image index.

4.2 Evaluation Metrics

Following previous works, we use recall rate as our
accuracy evaluation metrics. In both MSCOCO
and Flikr30K datasets, we report Recall@t, 1=[1, 5,
10] and compare with previous works.

For speed performance evaluation, we choose
query per second and latency(ms) as the evaluation
metric to test how each model performs in terms of
speed under different sizes of image index.

4.3 Implementation Details

All experiments are done using the PyTorch li-
brary. During training, one NVIDIA Titan X GPU
is used. During speed performance evaluation, one
NVIDIA Titan X GPU is used for models that need
GPU acceleration. One 10-core Intel 9820X CPU
is used for models that needs CPU acceleration. For
the image encoder, we initialize the model weights
from Oscar-base model (Li et al., 2020b) with 12
layers, 768 hidden dimensions, and 110M param-
eters. For the query embedding, we initialize it
from the Oscar-base token embedding. The Adam
optimizer (Kingma and Ba, 2014) is used with the
learning rate set to 5e-5. The number of training
epochs is set to 20. The input sequence length is set
to 120, with 70 for labels with attributes features
and 50 for deep visual features. We search on batch
sizes (96, 128, 160) with Recall@1 validation ac-
curacy, and set the batch size to 160.
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MSCOCO-1K MSCOCO-5K Flickr 30K
R@l R@5 R@10 R@I R@5 R@10 R@I R@5 R@10
Query- | Unicoder-VL (Li et al, 2020a) 69.7 935 972 46,7 760 853 715 909 949
dependent | Oscar (Li et al., 2020b) 757 952 983 540 80.8 885 - - -
SM-LSTM (Huang ef al., 2017) 40.7 758 874 - - - 302 604 723
DAN (Nam et al., 2017) . . . - - - 394 692 79.1
VSE++ (Faghri ef al., 2017) 520 - 920 303 - 724 396 - 79.5
Query- | CAMP (Wang et al., 2019b) 585 879 950 39.0 689 802 515 77.1 853
agnostic | SCAN (Lee et al., 2018) 588 884 948 386 693 804 486 777 852
PFAN (Wang et al., 2019a) 616 89.6 952 - - - 504 787 86.1
CVSE (Wang et al., 2020) 599 894 952 353 664 784 529 804 87.8
VisualSparta (ours) 687 912 962 451 730 825 571 826 882

Table 1: Detailed comparisons of text-to-image retrieval results in MSCOCO (1K/5K) and Flickr30K datasets

4.4 Experimental Results

We compare both recall and speed performance
with the current state-of-the-art retrieval model
in text-to-image search. Query-dependent model
refers to models in which image information cannot
be encoded offline, because each image encoding is
dependent on the query information. These models
usually achieve promising performance in recall
but suffer from prohibitively slow inference speed.
Query-agnostic model refers to models in which
image information can be encoded offline and is
independent of query information. In section 4.4.1
and 4.4.2, we evaluate accuracy and speed perfor-
mance respectively for both lines of methods.

4.4.1 Recall Performance

As shown in Table 1, the results reveal that our
model is competitive compared with previous meth-
ods. Among query-agnostic methods, our model is
significantly superior to the state-of-the-art results
in all evaluation metrics over both MSCOCO and
Flickr30K datasets and outperforms previous meth-
ods by a large margin. Specifically, in MSCOCO
1K test set, our model outperforms the previously
best query-agnostic method (Wang et al., 2019a)
by 7.1%, 1.6%, 1.0% for Recall@1, 5, 10 respec-
tively. In Flickr30K dataset, VisualSparta also
shows strong improvement compared with the pre-
vious best method: in Recall@1,5,10, our model
gets 4.2%, 2.2%, 0.4% improvement respectively.
We also observe that VisualSparta reduces the
gap by a large margin between query-agnostic
and query-dependent methods. In MSCOCO-1K
split, the performance of VisualSparta is only 1.0%,
2.3%, 1.0% lower than Unicoder-VL method (Li et
al., 2020a) for Recall@1,5,10 respectively. Com-
pared to Oscar (Li et al., 2020b), the current state-
of-the-art query-dependent model, our model is 7%
lower than the Oscar model in MSCOCO-1K Re-

call@1. This shows that there is still room for im-
provement in terms of accuracy for query-agnostic
model.

4.4.2 Speed Performance

GPU CPU
Index Size vs. Oscar CVSE CVSE Visual
Query/s Sparta
1K 0.4 195.1 1774 4514
5K 0.06 191.0 162.0 390.5
113K 0.003 1012 54 275.5
M 0.0003 21.7 0.3 117.3

Table 2: Model Speed vs. Index Size: VisualSparta
experiments are done under setting top-n term scores
to 1000. Detailed settings are reported in section 4.4.2.

To show the efficiency of VisualSparta model
in both small-scale and large-scale settings, we
create 113K dataset and 1M dataset in addition
to the original 1K and 5K test split, as discussed
in section 4.2. Speed experiments are done using
these four splits as testbeds.

To make a fair comparison, we benchmark
each method with its preferred hardware and soft-
ware for speed acceleration. Specifically, For
CVSE model (Wang et al., 2020), both CPU and
GPU inference time are recorded. For CPU set-
ting, the Maximum Inner Product Search (MIPS)
is performed using their original code based on
Numpy (Harris et al., 2020). For GPU setting, we
adopt the model and use FAISS (Johnson et al.,
2019), an optimized MIPS library, to test the speed
performance. For Oscar model (Li ef al., 2020Db),
since the query-dependent method cannot be formu-
lated as a MIPS problem, we run the original model
using GPU acceleration and record the speed. For
VisualSparta, we use the top-1000 term scores set-
tings for the experiment. Since VisualSparta can
be fit into an inverted-index architecture, GPU ac-
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MSCOCO-1k MSCOCO-5k

n  Inf. time (ms)] _query/s] _R@IT R@57 R@I0] R@IT R@57 R@I0T
50 9 537.0 546 828 907 330 600 711
100 1.9 5147 60.1 862 928 371 646 753
500 2.1 4777 655 903 95.1 425 706 804
1000 2.4 4145 675 909 958 437 717 81.5
2000 39 256.3 68.5  91.1 96.0 444 725 82.1
all 6.9 144.1 687 912 962 451 730 825

Table 3: Effect of top-n term scores in terms of speed and accuracy tested in MSCOCO dataset; 1 means higher

the better, and | means lower the better.

celeration is not required. For all experiments, we
use 5000 queries from MSCOCO-1K split as query
input to test the speed performance.

As we can see from Table 2, in all four data splits
(1K, 5K, 113K, 1M), VisualSparta significantly
outperforms both the best query-agnostic model
(CVSE (Wang et al., 2020)) and the best query-
dependent model (Oscar (Li ef al., 2020b)). Under
CPU comparison, the speed of VisualSparta is 2.5,
2.4, 51, and 391 times faster than that of the CVSE
model in 1K, 5K, 113K, and 1M splits respectively.

This speed advantage also holds even if previous
models are accelerated with GPU acceleration. To
apply the latest MIPS progress to the comparison,
we adopt the CVSE model to use FAISS (Johnson
et al., 2019) for better speed acceleration. Results
in the table reveal that the speed of VisualSparta
can also beat that of CVSE by 2.5X in the 1K
setting, and this speed advantage increases to 5.4X
when the index size increases to 1M.

Our model holds an absolute advantage when
comparing speed to query-dependent models such
as Oscar (Li et al., 2020b). Since the image encod-
ing is dependent on the query information, no of-
fline indexing can be done for the query-dependent
model. As shown in Table 2, even with GPU ac-
celeration, Oscar model is prohibitively slow: In
the 1K setting, Oscar is ~1128 times slower than
VisualSparta. The number increases to 391,000
when index size increases to 1M.

5 Model Analysis

5.1 Speed-Accuracy Flexibility

As described in section 3.3, each image can be well
represented by a list of weighted tokens indepen-
dently. This feature makes VisualSparta flexible
during indexing time: users can choose to index
using top-n term scores based on their memory
constraint or speed requirement.

Table 3 compares recall and speed in both
MSCOCO 1K and 5K split under different choices

of n. From the comparison between using all term
scores and using top-2000 term scores, we found
that VisualSparta can get ~1.8X speedup with al-
most no performance drop. if higher speed is
needed, n can always be set to a lower number
with a sacrifice of accuracy, as shown in Table 3.

Figure 1 visualizes the trade-off between model
accuracy and inference speed. The x-axis repre-
sents the average inference time of a single query
in millisecond, and the y-axis denotes the Recall@1
on MSCOCO 1K test set. For VisualSparta, each
dot represents the model performance under cer-
tain top-n term score settings. For other methods,
each dot represents their speed and accuracy per-
formance. The curve reveals that with larger n, the
recall becomes higher and the speed gets slower.
From the comparison between VisualSparta and
other methods, we observe that by setting top-n
term scores to 500, VisualSparta can already beat
the accuracy performance of both PFAN (Wang
et al., 2019a) and CVSE (Wang et al., 2020) with
~2.8X speedup.

5.2 Ablation Study on Image Encoder

As shown in Figure 2, the image encoder takes
a concatenation of object label features with at-
tributes and deep visual features as input. In this
section, we do an ablation study and analyze the
contributions of each part of the image features to
the final score.

In Table 4, different components are removed
from the image encoder for performance compar-
ison. From the table, we observe that removing
either attributes features (row 1) or label features
with attributes (row 2) only hurts the performance
by a small margin. However, when dropping visual
features and only using label with attributes fea-
tures for image representation (row 3), it appears
that the model performance drops by a large mar-
gin, where the Recall@1 score drops from 68.7%
t0 49.1%(—19.6%).

From this ablation study, we can conclude that
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MSCOCO-1k MSCOCO-5k
# R@1 R@5 R@10 R@1 R@5 R@10
1 VisualSparta 68.7 91.2 96.2 45.1 73.0 82.5
2 — attributes features 68.2(-0.5) 91.8(+0.6)  96.3(+0.1) 44.4(-0.7) 72.8(-0.2) 82.4(-0.1)
3 — labels w. attributes features  66.7(-2.0) 91.2(+0.0)  95.9(-0.3)  43.4(-1.7) 71.6(-1.4) 81.6(-0.9)
4 — visual features 49.1(-19.6)  80.3(-10.9) 89.4(-6.8)  26.5(-18.6) 54.1(-18.9) 66.8(-15.7)

Table 4: Ablation study with using different features in the image answer encoding

Query: “A baby giraffe bending over to graze on the grass”

Visual |-
features

Label

. - grass
bl grass (3.55) ##fe (3.03) ##raf (3.07) gi (3.06)

-
(3.44) over
##fe (2.96) ##raf (3.04) gi (3.01)

(1.56) ben:

grass (3.56) ##raf (3.07) gi (3.06) ##fe (3.05)

Visual
features |

Label baseball (3.86) stadium (2.81) player (2.52)
features

baseball (3.87) stadium (2.41) player (2.65)

baseball (3.84) stadium (2.8) player (1.92)

Figure 3: Example retrieved images with features attended given query terms; term scores are in parentheses.

deep visual features make the most contribution to
the VisualSparta model structure, which shows that
deep visual features are significantly more expres-
sive compared to textual features, i.e., label with
attributes features. More importantly, it shows that
VisualSparta is capable of learning cross-modal
knowledge, and the biggest gain indeed comes
from learning to match query term embeddings
with deep visual representations.

5.3 Cross-domain Generalization

Models R@1 R@5 R@10
VSE++(Faghri et al., 2017) 284 554  66.6
LVSE(Engilberge et al., 2018) | 349 624 735
SCAN(Lee et al., 2018) 384 650 744
CVSE(Wang et al., 2020) 389 673 76.1
VisualSparta (ours) 454 71.0 79.2

Table 5: Cross-dataset performance; models are trained
on MSCOCO dataset and tested on Flickr30K dataset.

Table 5 shows the cross-domain performance
for different models. All models are trained on
MSCOCO and tested on Flickr30K. We can see
from the table that VisualSparta consistently outper-
forms other models in this setting. This indicates
that the performance of VisualSparta is consistent

across different data distributions, and the perfor-
mance gain compared to other models is also con-
sistent when testing in this cross-dataset settings.

5.4 Qualitative Examples

We query VisualSparta on the MSOCO 113K split
and check the results. As shown in Figure 3, vi-
sual and label features together represent the max
attended features for given query tokens. Interest-
ingly, we observe that VisualSparta model is capa-
ble of grounding adjectives and verbs to the rele-
vant image regions. For example, “graz” grounds
to the head of giraffe in the first example. This fur-
ther confirms the hypothesis that weighted bag-of-
words is a valid and rich representation for images.

6 Conclusion

In conclusion, this paper presents VisualSparta, an
accurate and efficient text-to-image retrieval model
that shows the state-of-the-art scalable performance
in both MSCOCO and Flickr30K. Its main nov-
elty lies in the combination of powerful pre-trained
image encoder with fragment-level scoring. De-
tailed analysis also demonstrates that our approach
has substantial scalability advantages compared to
previous best methods when indexing large image
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datasets for real-time searching, making it suitable
for real-world deployment.
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