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Abstract

Medical report generation is one of the most
challenging tasks in medical image analysis.
Although existing approaches have achieved
promising results, they either require a prede-
fined template database in order to retrieve sen-
tences or ignore the hierarchical nature of med-
ical report generation. To address these issues,
we propose MedWriter that incorporates a
novel hierarchical retrieval mechanism to au-
tomatically extract both report and sentence-
level templates for clinically accurate report
generation. MedWriter first employs the
Visual-Language Retrieval (VLR) module to
retrieve the most relevant reports for the given
images. To guarantee the logical coherence be-
tween sentences, the Language-Language Re-
trieval (LLR) module is introduced to retrieve
relevant sentences based on the previous gen-
erated description. At last, a language de-
coder fuses image features and features from
retrieved reports and sentences to generate
meaningful medical reports. We verified the
effectiveness of our model by automatic eval-
uation and human evaluation on two datasets,
i.e., Open-I and MIMIC-CXR.

1 Introduction

Medical report generation is the task of generating
reports based on medical images, such as radiology
and pathology images. Given that this task is time-
consuming and cumbersome, researchers endeavor
to relieve the burden of physicians by automati-
cally generating the findings and descriptions from
medical images with machine learning techniques.

Existing studies can be roughly divided into
two categories, i.e., generation-based and retrieval-
based approaches. Generation-based methods, in-
cluding LRCN (Donahue et al., 2015), CoAtt (Jing
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Figure 1: Overview of the proposed MedWriter.

et al., 2018), and MvH+AttL (Yuan et al., 2019),
focus on generating image captions with a encoder-
decoder model that leverage image features. How-
ever, they are unable to produce linguistically di-
verse descriptions and depict rare but prominent
medical findings. On the other hand, Retrieval-
based methods such as HRGR-Agent (Li et al.,
2018) and KEPP (Li et al., 2019), pay attention
to memorizing templates to generate standardized
reports from a predefined retrieval database. How-
ever, the quality of generated reports significantly
depends on the manually curated template database.
Besides, they only use sentence-level templates for
the generation but ignore to learn the report-level
templates, which prevent them from generating
more accurate reports.

To address the aforementioned issues, we pro-
pose a new framework called MedWriter as
shown in Figure 1. MedWriter introduces a
novel hierarchical retrieval mechanism working
with a hierarchical language decoder to automat-
ically learn the dynamic report and sentence
templates from the data for generating accurate
and professional medical reports. MedWriter is
inspired by the process of how physicians write
medical reports in real life. They keep report tem-
plates in mind and then generate reports for new
images by using the key information that they find
in the medical images to update the templates sen-
tence by sentence.
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In particular, we use three modules to mimic
this process. First, MedWriter generates report-
level templates from the Visual-Language Re-
trieval (VLR) module using the visual features
as the queries. To generate accurate reports,
MedWriter also predicts disease labels based on
the visual features and extracts medical keywords
from the retrieved reports. We propose a multi-
query attention mechanism to learn the report-
level template representations. Second, to make
the generated reports more coherent and fluent,
we propose a Language-Language Retrieval (LLR)
module, which aims to learn sentence-level tem-
plates for the next sentence generation by analyz-
ing between-sentence correlation in the retrieved
reports. Finally, a hierarchical language decoder
is adopted to generate the full report using visual
features, report-level and sentence-level template
representations. The designed two-level retrieval
mechanism for memorization is helpful in generat-
ing accurate and diverse medical reports. To sum
up, our contributions are:

• To the best of our knowledge, we are the first
to model the memory retrieval mechanism in
both report and sentence levels. By imitating
the standardized medical report generation in
real life, our memory retrieval mechanism ef-
fectively utilizes existing templates in the two-
layer hierarchy in medical texts. This design
allows MedWriter to generate more clini-
cally accurate and standardized reports.
• On top of the retrieval modules, we design

a new multi-query attention mechanism to
fuse the retrieved information for medical re-
port generation. The fused information can be
well incorporated with the existing image and
report-level information, which can improve
the quality of generated report .
• Experiments conducted on two large-scale

medical report generation datasets, i.e., Open-
i and MIMIC-CXR show that MedWriter
achieves better performance compared with
state-of-the-art baselines measured by CIDEr,
ROUGE-L, and BLEUs. Besides, case stud-
ies show that MedWriter provides more ac-
curate and natural descriptions for medical
images through domain expert evaluation.

2 Related work

Generation-based report generation Visual
captioning is the process of generating a textual de-

scription given an image or a video. The dominant
neural network architecture of the captioning task
is based on the encoder-decoder framework (Bah-
danau et al., 2014; Vinyals et al., 2015; Mao et al.,
2014), with attention mechanism (Xu et al., 2015;
You et al., 2016; Lu et al., 2017; Anderson et al.,
2018; Wang et al., 2019). As a sub-task in the medi-
cal domain, early studies directly apply state-of-the-
art encoder-decoder models as CNN-RNN (Vinyals
et al., 2015), LRCN (Donahue et al., 2015) and
AdaAtt (Lu et al., 2017) to medical report genera-
tion task. To further improve long text generation
with domain-specific knowledge, later generation-
based methods introduce hierarchical LSTM with
co-attention (Jing et al., 2018) or use the medical
concept features (Yuan et al., 2019) to attentively
guide the report generation. On the other hand, the
concept of reinforcement learning (Liu et al., 2019)
is utilized to ensure the generated radiology reports
correctly describe the clinical findings.

To avoid generating clinically non-informative
reports, external domain knowledge like knowl-
edge graphs (Zhang et al., 2020; Li et al., 2019)
and anchor words (Biswal et al., 2020) are utilized
to promote the medical values of diagnostic re-
ports. CLARA (Biswal et al., 2020) also provides
an interactive solution that integrates the doctors’
judgment into the generation process.

Retrieval-based report generation Retrieval-
based approaches are usually hybridized with
generation-based ones to improve the readability of
generated medical reports. For example, KERP (Li
et al., 2019) uses abnormality graphs to retrieve
most related sentence templates during the genera-
tion. HRGR-Agent(Li et al., 2018) incorporates re-
trieved sentences in a reinforcement learning frame-
work for medical report generation. However, they
all require a template database as the model in-
put. Different from these models, MedWriter is
able to automatically learn both report-level and
sentence-level templates from the data, which sig-
nificantly enhances the model applicability.

3 Method

As shown in Figure 2, we propose a new frame-
work called MedWriter, which consists of three
modules. The Visual-Language Retrieval (VLR)
module works on the report level and uses vi-
sual features to find the most relevant template
reports based on a multi-view image query. The
Language-Language Retrieval (LLR) module
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Figure 2: Details of the proposed MedWriter model for medical report generation. The left part is used to learn
report template representations via the visual-language retrieval (VLR) module, which is further used to generate
the first sentence via the hierarchical language decoder. The right part shows the details of the language-language
(LLR) module used for generating the remaining sentences.

works on the sentence level and retrieves a series of
candidates that are most likely to be the next sen-
tence from the retrieval pool given the generated
language context. Finally, MedWriter generates
accurate, diverse, and disease-specified medical
reports by a hierarchical language decoder that
fuses the visual, linguistics and pathological infor-
mation obtained by VLR and LLR modules. To im-
prove the effectiveness and efficiency of retrieval,
we first pretrain VLR and LLR modules to build
up a retrieval pool for medical report generation as
follows.

3.1 VLR module pretraining

The VLR module aims to retrieve the most relevant
medical reports from the training report corpus for
the given medical images. The retrieved reports are
further used to learn an abstract template for gener-
ating new high-quality reports. Towards this goal,
we introduce a self-supervised pretraining task by
judging whether an image-report pair come from
the same subject, i.e., image-report matching. It
is based on an intuitive assumption that an image-
report pair from the same subject shares certain
common semantics. More importantly, the disease
types associated with images and the report should
be similar. Thus, in the pretraining task, we also
take disease categories into consideration.

3.1.1 Disease classification
The input of the VLR module is a series of
multi-modal images and the corresponding report
({Ii}bi=1, r) where the set {Ii}bi=1 consists of b
images, and r denotes the report. We employ a
Convolutional Neural Network (CNN) fv(·) as the
image encoder to obtain the feature of a given im-

age Ii, i.e., vi = fv(Ii), where vi ∈ Rk×k×d is the
visual feature for the i-th image Ii.

With all the extracted features {vi}bi=1, we add
them together as the inputs of the disease classifica-
tion task, which is further used to learn the disease
type representation as follows,

cpred = Wcls(
b∑

i=1

AvgPool(vi)) + bcls, (1)

where Wcls ∈ Rc×d and bcls ∈ Rc are the weight
and bias terms of a linear model, AvgPool is the
operation of average pooling, c is the number
of disease classes, and cpred ∈ Rc can be used
to compute disease probabilities as a multi-label
classification task with a sigmoid function, i.e.,
pdc = sigmoid(cpred).

3.1.2 Image-report matching
The next training task for VLR is to predict whether
an image-report pair belongs to the same subject.
In this subtask, after obtaining the image features
{vi}bi=1 and the disease type representation cpred,
we extract a context visual vector v by the patho-
logical attention.

First, for each image feature vi, we use the dis-
ease type representation cpred to learn the spatial
attention score through a linear transformation,

av = Watanh(Wvvi +Wccpred) (2)

where av ∈ Rk×k, Wa, Wv and Wc are the linear
transformation matrices. After that, we use the nor-
malized spatial attention score αv = softmax(av)
to add visual features over all locations (x, y)
across the feature map,

v′i =
∑
∀x,y

αv(x, y)vi(x, y). (3)
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Then, we compute the context vector v of the
input image set {Ii}bi=1 using a linear layer on
the concatenation of all the representation v′i, v =
concat(v′1, · · · ,v′b)Wf , where Wf ∈ Rbd×d is
the learnable parameter.

For the image-report matching task, we also need
a language representation, which is extracted by a
BERT (Devlin et al., 2018) model fl(·) as the lan-
guage encoder. fl(·) converts the medical report r
into a semantic vector r = fl(r) ∈ Rd. Finally, the
probability of the input pair ({Ii}bi=1, r) coming
from the same subject can be computed as

pvl = sigmoid(rTv). (4)

Given these two sub-tasks, we simultaneously
optimize the cross-entropy losses for both disease
classification and image-report matching to train
the VLR module.

3.2 LLR module pretraining
A medical report usually has some logical charac-
teristics such as describing the patient’s medical
images in a from-top-to-bottom order. Besides,
the preceding and following sentences in a medi-
cal report may provide explanations for the same
object or concept, or they may have certain juxta-
position, transition and progressive relations. Au-
tomatically learning such characteristics should be
helpful for MedWriter to generate high-quality
medical reports. Towards this end, we propose to
pretrain a language-language retrieval (LLR) mod-
ule to search for the most relevant sentences for the
next sentence generation. In particular, we intro-
duce a self-supervised pretraining task for LLR to
determine if two sentences {si, sj} come from the
same report, i.e., sentence-sentence matching.

Similar to the VLR module, we use a BERT
model fs(·) as the sentence encoder to embed the
sentence inputs {si, sj} into feature vectors si =
fs(si), sj = fs(sj). Then the probability that two
sentences {si, sj} come from the same medical
report is measure by

pll = sigmoid(sTi sj). (5)

Again, the cross-entropy loss is used to optimize
the learning objective given probability pll and the
ground-truth label of whether s1 and s2 belong to
the same medical report or not.

3.3 Retrieval-based report generation
Using the pretrained VLR and LLR modules,
MedWriter generates a medical report given a

sequence of input images {Ii}bi=1 using a novel hi-
erarchical retrieval mechanism with a hierarchical
language decoder.

3.3.1 VLR module for report-level retrieval

Report retrieval Let D(tr)
r = {rj}Ntr

j=1 denote
the set of all the training reports, where Ntr is the
number of reports in the training dataset. For each
report rj , MedWriter first obtain its vector repre-
sentation using fr(·) in the VLR module, which is
denoted as rj = fr(rj). Let Pr = {rj}Ntr

j=1 denote
the set of training report representations. Given the
multi-modal medical images {Ii}bi=1 of a subject,
the VLR module aims to return the top kr medi-
cal reports {r′j}

kr
j=1 as well as medical keywords

within in the retrieved reports.
Specifically, MedWriter extracts the image

feature v for {Ii}bi=1 using the pathological atten-
tion mechanism as described in Section 3.1. Ac-
cording to Eq. (4), MedWriter then computes
a image-report matching sore pvl between v and
each r ∈ Pr. The top kr reports {r′j}

kr
j=1 with

the largest scores pvl are considered as the most
relevant medical reports corresponding to the im-
ages, and they are selected as the template descrip-
tions. From these templates, we identify n medical
keywords {wi}ni=1 using a dictionary as a summa-
rization of the template information. The medical
keyword dictionary includes disease phenotype, hu-
man organ, and tissue, which consists of 36 medical
keywords extracted from the training data with the
highest frequency.

Report template representation learning The
retrieved reports are highly related to the given
images, which should be helpful for the report gen-
eration. To make full use of them, we need to
learn a report template representation using the
image feature v, the features of retrieved reports
{r′j}

kr
j=1, medical keywords embeddings {wi}ni=1

for {wi}ni=1 learned from the pretrained word em-
beddings, and the disease embeddings {ck}mk=1

from predicted disease labels {ck}mk=1 using Dis-
ease Classification in Section 3.1.1.

We propose a new multi-query attention mech-
anism to learn the report template representation.
To specify, we use the image features v as the key
vector K, the retrieved report features {r′j}

kr
j=1

as the value matrix V , and the embeddings of
both medical keywords {wi}ni=1 and disease labels
{ck}mk=1 as the query vectors Q. We modify the
original self-attention (Vaswani et al., 2017) into
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a multi-query attention. For each query vectorQi

inQ, we first get a corresponding attended feature
and then transform them into the report template
vector rs after concatenation,

rs = MultiQuery({Qi}ni=1,K,V )

= concat(attn1, · · · , attnn)WO,
(6)

where attni = Attention(Qi,KW
K ,VW V ),

and WK , W V and WO are the transformation
matrices. Generally, the Attention function is cal-
culated by

Attention(Qg,Kg,Vg) = softmax(
QgKg

T√
dg

)Vg,

where Q,K,V are queries, keys and values in
general case, and dg is the dimension of the query
vector.

3.3.2 LLR module for sentence-level retrieval
Since retrieved reports {rtj}

kr
j=1 are highly associ-

ated with the input images, the sentence within
those reports must contain some instructive patho-
logical information that is helpful for sentence-
level generation. Towards this end, we first select
sentences from the retrieved reports and then learn
sentence-level template representation.

Sentence retrieval We first divide the retrieved
reports into L candidate sentences {sj}Lj=1 as the
retrieval pool in the LLR module. Given the
pretrained LLR language encoder fs(·), we can
obtain the sentence-level feature pool, which is
Ps = {fs(sj)}Lj=1 = {sj}Lj=1. Assume that the
generated sentence at time t is denoted as ot, and
its embedding is ot = fs(ot), which is used to find
ks sentences {s′j}

ks
j=1 with the highest probabilities

pll from the candidate sentence pool using Eq. (5)
in Section 3.2.

Sentence template representation learning
Similar to the report template representation, we
still use the multi-query attention mechanism.
From the retrieved ks sentences, we extract the
medical keywords {w′i}ni=1. Besides, we have
the predicted disease labels {ck}mk=1. Their
embeddings are considered as the query vectors.
The embeddings of the extracted sentence, i.e.,
{fs(s′j)}

ks
j=1 = {s′j}

ks
j=1, are treated as the

value vectors. The key vector is the current
sentence (word) hidden state hs

t (hw
i ), which

will be introduced in Section 3.3.3. According
to Eq. (6), we can obtain the sentence template
representation at time t, which is denoted as ut

(uw
i used for word-level generation).

3.3.3 Hierarchical language decoder
With the extracted features by the retrieval mech-
anism described above, we apply a hierarchical
decoder to generate radiology reports according to
the hierarchical linguistics structure of the medi-
cal reports. The decoder contains two layers, i.e.,
a sentence LSTM decoder that outputs sentence
hidden states, and a word LSTM decoder which
decodes the sentence hidden states into natural lan-
guages. In this way, reports are generated sentence
by sentence.

Sentence-level LSTM For generating the t-th
sentence, MedWriter first uses the previous t− 1
sentences to learn the sentence-level hidden state
hs
t . Specifically, MedWriter learns the image

feature vs based on Eq. (3). When calculating the
attention score with Eq. (2), we consider both the
information obtained from the previous t− 1 sen-
tences (the hidden state hs

t−1) and the predicted
disease representation from Eq. (1), i.e., replacing
cpred with concat(ht−1, cpred). Then the concate-
nation of the image feature vs, the report template
representation rs from Eq. (6), and the sentence
template representation us

t−1 is used as the input
of the sentence LSTM to learn the hidden state hs

t

hs
t = LSTMs(concat(vs,us

t−1, rs),h
s
t−1), (7)

where us
t−1 is obtained using the multi-query at-

tention, the key vector is the hidden state hs
t−1, the

value vectors are the representations of the retrieved
sentences according to the (t− 1)-th sentence, and
the query vectors are the embeddings of both medi-
cal keywords extracted from the retrieved sentences
and the predicted disease labels.

Word-level LSTM Based on the learned hs
t ,

MedWriter conducts the word-by-word gener-
ation using a word-level LSTM. For generating the
(i+1)-th word, MedWriter first learns the image
feature vw using Eq. (2) by replacing cpred with
hw
i in Eq. (2), where hw

i is the hidden state of the
i-th word. MedWriter then learns the sentence
template representation uw

i using the multi-query
attention, where the key vector is the hidden state
hw
i , value and query vectors are the same as those

used for calculating us
t−1. Finally, the concatena-

tion of hs
t , u

w
i , vw, and rs is taken as the input

of the word-level LSTM to generate the (i+ 1)-th
word as follows:

hw
i = LSTMw(concat(hs

t ,u
w
i ,v

w, rs),h
w
i−1),

wi+1 = argmax(softmax(FFN(hw
i ))),

(8)
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where FFN(·) is the feed-forward network.
Note that for the first sentence generation, we set

u0 as 0, and h0 is the randomly initialized vector,
to learn the sentence-level hidden state hs

1. When
generating the words of the first sentence, we set
uw
i as the 0 vector.

4 Experiments

4.1 Datasets and baselines
Datasets Open-i1 (Demner-Fushman et al.,
2016) (a.k.a IU X-Ray) provides 7,470 chest X-
rays with 3,955 radiology reports. In our experi-
ments, we only utilize samples with both frontal
and lateral views, and with complete findings and
impression sections in the reports. This results in
totally 2,902 cases and 5,804 images. MIMIC-
CXR2 (Johnson et al., 2019) contains 377,110
chest X-rays associated with 227,827 radiology
reports, divided into subsets. We use the same cri-
terion to select samples, which results in 71,386
reports and 142,772 images.

For both datasets, we tokenize all words with
more than 3 occurrences and obtain 1,252 tokens
on the Open-i dataset and 4,073 tokens on the
MIMIC-CXR dataset, including four special to-
kens 〈PAD〉, 〈START〉, 〈END〉, and 〈UNK〉. The find-
ings and impression sections are concatenated as
the ground-truth reports. We randomly divide the
whole datasets into train/validation/test sets with a
ratio of 0.7/0.1/0.2. To conduct the disease classi-
fication task, we include 20 most frequent finding
keywords extracted from MeSH tags as disease
categories on the Open-i dataset and 14 CheXpert
categories on the MIMIC-CXR dataset.

Baselines On both datasets, we compare with
four state-of-the-art image captioning models:
CNN-RNN (Vinyals et al., 2015), CoAttn (Jing
et al., 2018), MvH+AttL (Yuan et al., 2019), and
V-L Retrieval. V-L Retrieval only uses the retrieved
report templates with the highest probability as pre-
diction without the generation part based on our
pretrained VLR module. Due to the lack of the
opensource code for (Wang et al., 2018; Li et al.,
2019, 2018; Donahue et al., 2015) and the template
databases for (Li et al., 2019, 2018), we only in-
clude the reported results on the Open-i dataset in
our experiments.

1https://openi.nlm.nih.gov/faq#
collection

2https://physionet.org/content/
mimic-cxr/2.0.0/

4.2 Experimental setup
All input images are resized to 512 × 512, and
the feature map from DenseNet-121 (Huang et al.,
2017) is 1024× 16× 16. During training, we use
random cropping and color histogram equalization
for data augmentation.

To pretrain the VLR module, the maximum
length of the report is restricted to 128 words.
We train VLR module for 100 epochs with an
Adam (Kingma and Ba, 2014) optimizer with 1e-5
as the initial learning rate, 1e-5 for L2 regulariza-
tion, and 16 as the mini-batch size. To pretrain
the LLR module, the maximum length of each sen-
tence is set to 32 words. We optimize the LLR
module for 100 epochs with an Adam (Kingma and
Ba, 2014) optimizer with the initial learning rate of
1e-5 and a mini-batch size of 64. The learning rate
is multiplied by 0.2 every 20 epochs.

To train the full model for MedWriter, we
set the retrieved reports number kr = 5 and sen-
tences number ks = 5. Extracting n = 5 medical
keywords and predicting m = 5 disease labels
are used for report generation. Both sentence and
word LSTM have 512 hidden units. We freeze the
weights for the pretrained VLR and LLR modules
and only optimize on the language decoder. We
set the initial learning rate as 3e-4 and mini-batch
size as 32. MedWriter takes 10 hours to train on
the Open-i dataset and 3 days on the MIMIC-CXR
dataset with four GeForce GTX 1080 Ti GPUs.

4.3 Quantitative and qualitative results
Table 1 shows the CIDEr, ROUGE-L, BLUE, and
AUC scores achieved by different methods on the
test sets of Open-i and MIMIC-CXR.

Language evaluation From Table 1, we make
the following observations. First, compared with
Generation-based model, Retrieval-based model
that uses the template reports as results has set
up a relatively strong baseline for medical report
generation. Second, compared with V-L retrieval,
other Retrieval-based approaches perform much
better in terms of all the metrics. This again shows
that that by integrating the information retrieval
method into the deep sequence generation frame-
work, we can not only use the retrieved language
information as templates to help generate long sen-
tences, but also overcome the monotony of only
using the templates as the generations. Finally, we
see that the proposed MedWriter achieves the
highest language scores on 5/6 metrics on Open-i

https://openi.nlm.nih.gov/faq#collection
https://openi.nlm.nih.gov/faq#collection
https://physionet.org/content/mimic-cxr/2.0.0/
https://physionet.org/content/mimic-cxr/2.0.0/
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Dataset Type Model CIDEr ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4 AUC

Open-i

Generation

CNN-RNN (Vinyals et al., 2015) 0.294 0.307 0.216 0.124 0.087 0.066 0.426
LRCN (Donahue et al., 2015)* 0.285 0.307 0.223 0.128 0.089 0.068 –
Tie-Net (Wang et al., 2018)* 0.279 0.226 0.286 0.160 0.104 0.074 –
CoAtt (Jing et al., 2018) 0.277 0.369 0.455 0.288 0.205 0.154 0.707
MvH+AttL (Yuan et al., 2019) 0.229 0.351 0.452 0.311 0.223 0.162 0.725

Retrieval

V-L Retrieval 0.144 0.319 0.390 0.237 0.154 0.105 0.634
HRGR-Agent (Li et al., 2018)* 0.343 0.322 0.438 0.298 0.208 0.151 –
KERP (Li et al., 2019)* 0.280 0.339 0.482 0.325 0.226 0.162 –
MedWriter 0.345 0.382 0.471 0.336 0.238 0.166 0.814

Ground Truth – – – – – – 0.915

MIMIC-CXR

Generation
CNN-RNN (Vinyals et al., 2015) 0.245 0.314 0.247 0.165 0.124 0.098 0.472
CoAtt (Jing et al., 2018) 0.234 0.274 0.410 0.267 0.189 0.144 0.745
MvH+AttL (Yuan et al., 2019) 0.264 0.309 0.424 0.282 0.203 0.153 0.738

Retrieval V-L Retrieval 0.186 0.232 0.306 0.179 0.116 0.076 0.579
MedWriter 0.306 0.332 0.438 0.297 0.216 0.164 0.833

Ground Truth – – – – – – 0.923

Table 1: Automatic evaluation on the Open-i and MIMIC-CXR datasets. * indicates the results reported in (Li
et al., 2019).

datasets and all metrics on MIMIC-CXR among
all methods. MedWriter not only improves cur-
rent SOTA model CoAttn (Jing et al., 2018) by
5% and MvH+AttL (Yuan et al., 2019) by 4% on
Open-i in average, but also goes beyond SOAT
retrieval-based approaches like KERP (Li et al.,
2019) and HRGR-Agent (Li et al., 2018) and sig-
nificantly improves the performance, even without
using manually curated template databases. This
illustrates the effectiveness of automatically learn-
ing templates and adopting hierarchical retrieval in
writing medical reports.

Clinical evaluation We train two report classifi-
cation BERT models on both datasets and use it to
judge whether the generated reports correctly re-
flect the ground-truth findings. We show the mean
ROC-AUC scores achieved by generated reports
from different baselines in the last column of Ta-
ble 1. We can observe that MedWriter achieves
the highest AUC scores compared with other base-
lines. In addition, our method achieves the AUC
scores that are very close to those of professional
doctors’ reports, with 0.814/0.915 and 0.833/0.923
on two datasets. This shows that the generation per-
formance of MedWriter has approached the level
of human domain experts, and it embraces great
medical potentials in identifying disease-related
medical findings.

Human evaluation We also qualitatively evalu-
ate the quality of the generated reports via a user
study. We randomly select 50 samples from the
Open-i test set and collect ground-truth reports and
the generated reports from both MvH+AttL (Yuan
et al., 2019) and MedWriter to conduct the hu-
man evaluation. Two experienced radiologists were
asked to give ratings for each selected report, in
terms of whether the generated reports are realistic
and relevant to the X-ray images. The ratings are

integers from one to five. The higher, the better.
Table 2 shows average human evaluation results

on MedWriter compared with Ground Truth re-
ports and generations of MvH+AttL (Yuan et al.,
2019) on Open-i, evaluated in terms of realistic
scores and relevant scores. MedWriter achieves
much higher human preference than the base-
line model, even approaching the performance of
Ground Truth reports that wrote by experienced
radiologists. It shows that MedWriter is able to
generate accurate clinical reports that are compara-
ble to domain experts.

Method Realistic Score Relevant Score
Ground Truth 3.85 3.82

MvH+AttL (Yuan et al., 2019) 2.50 2.57
MedWriter 3.68 3.44

Table 2: User study conducted by two domain experts.

Qualitative analysis Figure 3 shows qualitative
results of MedWriter and baseline models on the
Open-i dataset. MedWriter not only produces
longer reports compared with MvH+AttL but also
accurately detects the medical findings in the im-
ages (marked in red and bold). On the other hand,
we find that MedWriter is able to put forward
some supplementary suggestions (marked in blue)
and descriptions, which are not in the original re-
port but have diagnostic value. The underlying
reason for this merit comes from the memory re-
trieval mechanism that introduces prior medical
knowledge to facilitate the generation process.

4.4 Ablation study
We perform ablation studies on the Open-i and
MIMIC-CXR datasets to investigate the effective-
ness of each module in MedWriter. In each of
the following studies, we change one module with
other modules intact.

Removing the VLR module In this experiment,
global report feature rs is neglected in Eqs. (7)
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Frontal Image Lateral Image Ground Truth MvH+AttL MedWriter
emphysematous changes. resolu-
tion of prior right midlung infil-
trate. previous 〈UNK〉 is normal in
size and contour. lungs are clear.
no focal consolidation pneumoth-
orax or pleural effusion. inter-
val 〈UNK〉 of previously described
right midlung opacity suggesting re-
solved 〈UNK〉 process. lungs are
hyperexpanded with flattened di-
aphragms. 〈UNK〉 and soft tissue
are unremarkable.

no acute cardiopulmonary dis-
ease. the heart is normal
in size. the lungs are clear.
there is no pleural effusion
or pneumothorax. of the
right clavicle. 〈UNK〉 〈UNK〉
are present. 〈UNK〉 to the
glenoid joints.

hyperexpanded lungs. 〈UNK〉
right upper lobe 〈UNK〉. no fo-
cal pneumonia. the cardiome-
diastinal silhouette is normal
in size and contour. negative
for focal consolidation pneu-
mothorax or large pleural
effusion. negative for acute
bone abnormality.

chest. large nodule at the right lung
base that probably represents a gran-
uloma although not it is not 〈UNK〉
calcified. there is a 〈UNK〉 mm nod-
ule in the right lower lobe that is rel-
atively dense but not 〈UNK〉 calci-
fied on the corresponding rib series.
there are probably right hilar calci-
fied lymph 〈UNK〉. lungs otherwise
are clear. there is no pleural effu-
sion. left ribs. no fracture or focal
bony destruction.

no acute cardiopulmonary dis-
ease. the heart is normal in
size and contour. are clear
without evidence of infiltrate.
is no pneumothorax. degen-
erative changes of the thoracic
spine.. head..

right upper lobe pneumonia.
consideration may be given
for primary or 〈UNK〉. rec-
ommend ct of the chest may
be helpful for further diagno-
sis. in the interval a 3 cm
〈UNK〉 mass has developed
in the right lower lobe. no
pneumothorax or pleural ef-
fusion. the mediastinal con-
tours are normal.

Figure 3: Examples of ground-truth and generated reports by MvH+AttL (Yuan et al., 2019) and MedWriter.
Highlighted red phrases are medical abnormality terms that generated and ground-truth reports have in common.
Bold terms are common descriptions of normal tissues. The text in italics is the opposite meaning of the generated
report and the actual report. We mark the supplementary comments to the original report in blue.

Dataset Model CIDEr ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4

Open-i

MedWriter w/o VLRM 0.333 0.373 0.466 0.324 0.229 0.159
MedWriter w/o LLRM 0.329 0.354 0.453 0.307 0.215 0.154
MedWriter w/o HLD 0.284 0.317 0.434 0.295 0.208 0.149
MedWriter 0.345 0.382 0.471 0.336 0.238 0.166

MIMIC-CXR

MedWriter w/o VLRM 0.294 0.317 0.432 0.288 0.209 0.161
MedWriter w/o LLRM 0.283 0.305 0.425 0.280 0.204 0.157
MedWriter w/o HLD 0.263 0.287 0.418 0.265 0.187 0.146
MedWriter 0.306 0.332 0.438 0.297 0.216 0.164

Table 3: Ablation study on both Open-i and MIMIC-CXR datasets.

and (8), and the first sentence is generated only
based on image features. The LLR module keeps
its functionality. However, instead of looking for
sentence-level templates from the retrieved reports,
it searches for most relevant sentences from all the
reports. As can be seen from Table 3, removing
VLR module (“w/o VLRM”) leads to performance
reduction by 2% on average. This demonstrates
that visual-language retrieval is capable in sketch-
ing out the linguistic structure of the whole report.
The rest of the language generation is largely influ-
enced by report-level context information.

Removing the LLR module The generation of
(t+1)-th sentence is based on the global report fea-
ture rs and the image feature v, without using the
retrieved sentences information in Eq. (8). Table 3
shows that removing LLR module (“w/o LLRM”)
results in the decease of average evaluation scores
by 4% compared with the full model. This veri-
fies that the LLR module plays an essential role in
generating long and coherent clinical reports.

Replacing hierarchical language decoder We
use a single layer LSTM that treats the whole report

as a long sentence and conduct the generation word-
by-word. Table 3 shows that replacing hierarchical
language decoder with a single-layer LSTM (“w/o
HLD”) introduces dramatic performance reduction.
This phenomenon shows that the hierarchical gen-
erative model can effectively and greatly improve
the performance of long text generation tasks.

5 Conclusions
Automatically generating accurate reports from
medical images is a key challenge in medical im-
age analysis. In this paper, we propose a novel
model named MedWriter to solve this problem
based on hierarchical retrieval techniques. In partic-
ular, MedWriter consists of three main modules,
which are the visual-language retrieval (VLR) mod-
ule, the language-language retrieval (LLR) module,
and the hierarchical language decoder. These three
modules tightly work with each other to automat-
ically generate medical reports. Experimental re-
sults on two datasets demonstrate the effectiveness
of the proposed MedWriter. Besides, qualitative
studies show that MedWriter is able to generate
meaningful and realistic medical reports.
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