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Abstract

We investigate the problem of Chinese Gram-
matical Error Correction (CGEC) and present
a new framework named Tail-to-Tail (TtT)
non-autoregressive sequence prediction to ad-
dress the deep issues hidden in CGEC. Con-
sidering that most tokens are correct and
can be conveyed directly from source to tar-
get, and the error positions can be estimated
and corrected based on the bidirectional con-
text information, thus we employ a BERT-
initialized Transformer Encoder as the back-
bone model to conduct information modeling
and conveying. Considering that only relying
on the same position substitution cannot han-
dle the variable-length correction cases, vari-
ous operations such substitution, deletion, in-
sertion, and local paraphrasing are required
jointly. Therefore, a Conditional Random
Fields (CRF) layer is stacked on the up tail
to conduct non-autoregressive sequence pre-
diction by modeling the token dependencies.
Since most tokens are correct and easily to
be predicted/conveyed to the target, then the
models may suffer from a severe class imbal-
ance issue. To alleviate this problem, focal
loss penalty strategies are integrated into the
loss functions. Moreover, besides the typical
fix-length error correction datasets, we also
construct a variable-length corpus to conduct
experiments. Experimental results on stan-
dard datasets, especially on the variable-length
datasets, demonstrate the effectiveness of TtT
in terms of sentence-level Accuracy, Precision,
Recall, and F1-Measure on tasks of error De-
tection and Correction1.

1 Introduction

Grammatical Error Correction (GEC) aims to au-
tomatically detect and correct the grammatical er-
rors that can be found in a sentence (Wang et al.,
2020c). It is a crucial and essential application task

1Code: https://github.com/lipiji/TtT

I feel fly long happy today!

Correct I feel very happy today!

I am always happy when
I come to Fei today!

Type I

Type II

Type III I very feel happy today!  

Figure 1: Illustration for the three types of operations
to correct the grammatical errors: Type I-substitution;
Type II-deletion and insertion; Type III-local paraphras-
ing.

in many natural language processing scenarios such
as writing assistant (Ghufron and Rosyida, 2018;
Napoles et al., 2017; Omelianchuk et al., 2020),
search engine (Martins and Silva, 2004; Gao et al.,
2010; Duan and Hsu, 2011), speech recognition
systems (Karat et al., 1999; Wang et al., 2020a;
Kubis et al., 2020), etc. Grammatical errors may
appear in all languages (Dale et al., 2012; Xing
et al., 2013; Ng et al., 2014; Rozovskaya et al.,
2015; Bryant et al., 2019), in this paper, we only fo-
cus to tackle the problem of Chinese Grammatical
Error Correction (CGEC) (Chang, 1995).

We investigate the problem of CGEC and the
related corpora from SIGHAN (Tseng et al., 2015)
and NLPCC (Zhao et al., 2018) carefully, and we
conclude that the grammatical error types as well
as the corresponding correction operations can be
categorised into three folds, as shown in Figure 1:
(1) Substitution. In reality, Pinyin is the most pop-
ular input method used for Chinese writings. Thus,
the homophonous character confusion (For exam-
ple, in the case of Type I, the pronunciation of the
wrong and correct words are both “FeiChang”) is
the fundamental reason which causes grammatical
errors (or spelling errors) and can be corrected by
substitution operations without changing the whole
sequence structure (e.g., length). Thus, substitution
is a fixed-length (FixLen) operation. (2) Deletion

https://github.com/lipiji/TtT
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I feel fly long happy today! I am always happy when I
come to Fei today! I very feel happy today!  

I feel very happy today!

Type I Type II Type III

Figure 2: Illustration of the token information flows from the bottom tail to the up tail.

and Insertion. These two operations are used to
handle the cases of word redundancies and omis-
sions respectively. (3) Local paraphrasing. Some-
times, light operations such as substitution, dele-
tion, and insertion cannot correct the errors directly,
therefore, a slightly subsequence paraphrasing is
required to reorder partial words of the sentence,
the case is shown in Type III of Figure 1. Deletion,
insertion, and local paraphrasing can be regarded as
variable-length (VarLen) operations because they
may change the sentence length.

However, over the past few years, although a
number of methods have been developed to deal
with the problem of CGEC, some crucial and es-
sential aspects are still uncovered. Generally, se-
quence translation and sequence tagging are the
two most typical technical paradigms to tackle
the problem of CGEC. Benefiting from the devel-
opment of neural machine translation (Bahdanau
et al., 2015; Vaswani et al., 2017), attention-based
seq2seq encoder-decoder frameworks have been
introduced to address the CGEC problem in a se-
quence translation manner (Wang et al., 2018; Ge
et al., 2018; Wang et al., 2019, 2020b; Kaneko
et al., 2020). Seq2seq based translation models
are easily to be trained and can handle all types of
correcting operations above mentioned. However,
considering the exposure bias issue (Ranzato et al.,
2016; Zhang et al., 2019), the generated results
usually suffer from the phenomenon of hallucina-
tion (Nie et al., 2019; Maynez et al., 2020) and
cannot be faithful to the source text, even though
copy mechanisms (Gu et al., 2016) are incorpo-
rated (Wang et al., 2019). Therefore, Omelianchuk
et al. (2020) and Liang et al. (2020) propose to
purely employ tagging to conduct the problem of
GEC instead of generation. All correcting opera-
tions such as deletion, insertion, and substitution
can be guided by the predicted tags. Neverthe-
less, the pure tagging strategy requires to extend

the vocabulary V to about three times by adding
“insertion-” and “substitution-” prefixes to the orig-
inal tokens (e.g., “insertion-good”, “substitution-
paper”) which decrease the computing efficiency
dramatically. Moreover, the pure tagging frame-
work needs to conduct multi-pass prediction until
no more operations are predicted, which is ineffi-
cient and less elegant. Recently, many researchers
fine-tune the pre-trained language models such as
BERT on the task of CGEC and obtain reason-
able results (Zhao et al., 2019; Hong et al., 2019;
Zhang et al., 2020b). However, limited by the
BERT framework, most of them can only address
the fixed-length correcting scenarios and cannot
conduct deletion, insertion, and local paraphrasing
operations flexibly.

Moreover, during the investigations, we also
observe an obvious but crucial phenomenon for
CGEC that most words in a sentence are correct
and need not to be changed. This phenomenon is
depicted in Figure 2, where the operation flow is
from the bottom tail to the up tail. Grey dash lines
represent the “Keep” operations and the red solid
lines indicate those three types of correcting oper-
ations mentioned above. On one side, intuitively,
the target CGEC model should have the ability of
directly moving the correct tokens from bottom tail
to up tail, then Transformer(Vaswani et al., 2017)
based encoder (say BERT) seems to be a preference.
On the other side, considering that almost all typi-
cal CGEC models are built based on the paradigms
of sequence tagging or sequence translation, Maxi-
mum Likelihood Estimation (MLE) (Myung, 2003)
is usually used as the parameter learning approach,
which in the scenario of CGEC, will suffer from
a severe class/tag imbalance issue. However, no
previous works investigate this problem thoroughly
on the task of CGEC.

To conquer all above-mentioned challenges, we
propose a new framework named tail-to-tail non-
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Figure 3: The proposed tail-to-tail non-autoregressive sequence prediction framework (TtT).

autoregressive sequence prediction, which abbrevi-
ated as TtT, for the problem of CGEC. Specifically,
to directly move the token information from the
bottom tail to the up tail, a BERT based sequence
encoder is introduced to conduct bidirectional rep-
resentation learning. In order to conduct substi-
tution, deletion, insertion, and local paraphrasing
simultaneously, inspired by (Sun et al., 2019), a
Conditional Random Fields (CRF) (Lafferty et al.,
2001) layer is stacked on the up tail to conduct non-
autoregressive sequence prediction by modeling
the dependencies among neighbour tokens. Focal
loss penalty strategy (Lin et al., 2020) is adopted
to alleviate the class imbalance problem consider-
ing that most of the tokens in a sentence are not
changed. In summary, our contributions are as fol-
lows:

• A new framework named tail-to-tail non-
autoregressive sequence prediction (TtT) is
proposed to tackle the problem of CGEC.

• BERT encoder with a CRF layer is employed
as the backbone, which can conduct substitu-
tion, deletion, insertion, and local paraphras-
ing simultaneously.

• Focal loss penalty strategy is adopted to alle-
viate the class imbalance problem considering
that most of the tokens in a sentence are not
changed.

• Extensive experiments on several benchmark
datasets, especially on the variable-length
grammatical correction datasets, demonstrate
the effectiveness of the proposed approach.

2 The Proposed TtT Framework

2.1 Overview
Figure 3 depicts the basic components of our pro-
posed framework TtT. Input is an incorrect sen-

tence X = (x1, x2, . . . , xT ) which contains gram-
matical errors, where xi denotes each token (Chi-
nese character) in the sentence, and T is the length
of X . The objective of the task grammatical error
correction is to correct all errors in X and gener-
ate a new sentence Y = (y1, y2, . . . , yT ′). Here, it
is important to emphasize that T is not necessary
equal to T ′. Therefore, T ′ can be =, >, or < T .
Bidirectional semantic modeling and bottom-to-up
directly token information conveying are conducted
by several Transformer (Vaswani et al., 2017) lay-
ers. A Conditional Random Fields (CRF) (Lafferty
et al., 2001) layer is stacked on the up tail to con-
duct the non-autoregressive sequence generation by
modeling the dependencies among neighboring to-
kens. Low-rank decomposition and beamed Viterbi
algorithm are introduced to accelerate the computa-
tions. Focal loss penalty strategy (Lin et al., 2020)
is adopted to alleviate the class imbalance problem
during the training stage.

2.2 Variable-Length Input
Since the length T ′ of the target sentence Y is
not necessary equal to the length T of the input
sequence X . Then in the training and inference
stage, different length will affect the complete-
ness of the predicted sentence, especially when
T < T ′. To handle this issue, several simple tricks
are designed to pre-process the samples. Assum-
ing X = (x1, x2, x3,<eos>): (1) When T = T ′,
i.e., Y = (y1, y2, y3,<eos>), then do nothing; (2)
When T > T ′, say Y = (y1, y2,<eos>), which
means that some tokens inX will be deleted during
correcting. Then in the training stage, we can pad
T − T ′ special tokens <pad> to the tail of Y to
make T = T ′, then

Y = (y1, y2,<eos>,<pad>);



4976

(3) When T < T ′, say

Y = (y1, y2, y3, y4, y5,<eos>),

which means that more information should be in-
serted into the original sentence X . Then, we will
pad the special symbol <mask> to the tail of X to
indicate that these positions possibly can be trans-
lated into some new real tokens:

X = (x1, x2, x3,<eos>,<mask>,<mask>).

2.3 Bidirectional Semantic Modeling

Transformer layers (Vaswani et al., 2017) are par-
ticularly well suited to be employed to conduct the
bidirectional semantic modeling and bottom-to-up
information conveying. As shown in Figure 3, after
preparing the input samples, an embedding layer
and a stack of Transformer layers initialized with a
pre-trained Chinese BERT (Devlin et al., 2019) are
followed to conduct the semantic modeling.

Specifically, for the input, we first obtain the
representations by summing the word embeddings
with the positional embeddings:

H0
t = Ewt +Ept (1)

where 0 is the layer index and t is the state index.
Ew and Ep are the embedding vectors for tokens
and positions, respectively.

Then the obtained embedding vectors H0 are
fed into several Transformer layers. Multi-head
self-attention is used to conduct bidirectional rep-
resentation learning:

H1
t = LN

(
FFN(H1

t ) +H1
t

)
H1
t = LN

(
SLF-ATT(Q0

t ,K
0,V0) +H0

t

)
Q0 = H0WQ

K0,V0 = H0WK ,H0WV

(2)

where SLF-ATT(·), LN(·), and FFN(·) represent
self-attention mechanism, layer normalization, and
feed-forward network respectively (Vaswani et al.,
2017). Note that our model is a non-autoregressive
sequence prediction framework, thus we use all
the sequence states K0 and V0 as the attention
context. Then each node will absorb the context
information bidirectionally. After L Transformer
layers, we obtain the final output representation
vectors HL ∈ Rmax(T,T ′)×d.

2.4 Non-Autoregressive Sequence Prediction

Direct Prediction The objective of our model is
to translate the input sentence X which contains
grammatical errors into a correct sentence Y . Then,
since we have obtained the sequence representation
vectors HL, we can directly add a softmax layer
to predict the results, just similar to the methods
used in non-autoregressive neural machine trans-
lation (Gu and Kong, 2020) and BERT-based fine-
tuning framework for the task of grammatical error
correction (Zhao et al., 2019; Hong et al., 2019;
Zhang et al., 2020b).

Specifically, a linear transformation layer is
plugged in and softmax operation is utilized to
generate a probability distribution Pdp(yt) over the
target vocabulary V:

st = h>t Ws + bs

Pdp(yt) = softmax(st)
(3)

where ht ∈ Rd, Ws ∈ Rd×|V|, bs ∈ R|V|, and
st ∈ R|V|. Then we obtain the result for each state
based on the predicted distribution:

y′t = argmax(Pdp(yt)) (4)

However, although this direct prediction method
is effective on the fixed-length grammatical error
correction problem, it can only conduct the same-
positional substitution operation. For complex cor-
recting cases which require deletion, insertion, and
local paraphrasing, the performance is unaccept-
able. This inferior performance phenomenon is
also discussed in the tasks of non-autoregressive
neural machine translation (Gu and Kong, 2020).

One of the essential reasons causing the inferior
performance is that the dependency information
among the neighbour tokens are missed. There-
fore, dependency modeling should be called back
to improve the performance of generation. Natu-
rally, linear-chain CRF (Lafferty et al., 2001) is
introduced to fix this issue, and luckily, Sun et al.
(2019) also employ CRF to address the problem
of non-autoregressive sequence generation, which
inspired us a lot.

Dependency Modeling via CRF Then given the
input sequence X , under the CRF framework, the
likelihood of the target sequence Y with length T ′
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is constructed as:

Pcrf(Y |X) =

1

Z(X)
exp

(
T ′∑
t=1

s(yt) +

T ′∑
t=2

t(yt−1, yt)

)
(5)

where Z(X) is the normalizing factor and s(yt)
represents the label score of y at position t, which
can be obtained from the predicted logit vector
st ∈ R|V| from Eq. (3), i.e., st(Vyt), where Vyt
is the vocabulary index of token yt. The value
t(yt−1, yt) = Myt−1,yt denotes the transition score
from token yt−1 to yt where M ∈ R|V|×|V| is the
transition matrix, which is the core term to conduct
dependency modeling. Usually, M can be learnt as
neural network parameters during the end-to-end
training procedure. However, |V| is typically very
large especially in the text generation scenarios
(more than 32k), therefore it is infeasible to obtain
M and Z(X) efficiently in practice. To overcome
this obstacle, as the method used in (Sun et al.,
2019), we introduce two low-rank neural parameter
metrics E1, E2 ∈ R|V|×dm to approximate the full-
rank transition matrix M by:

M = E1E
>
2 (6)

where dm � |V|. To compute the normalizing
factor Z(X), the original Viterbi algorithm (For-
ney, 1973; Lafferty et al., 2001) need to search
all paths. To improve the efficiency, here we only
visit the truncated top-k nodes at each time step
approximately (Sun et al., 2019).

2.5 Training with Focal Penalty
Considering the characteristic of the directly
bottom-to-up information conveying of the task
CGEC, therefore, both tasks, direct prediction and
CRF-based dependency modeling, can be incorpo-
rated jointly into a unified framework during the
training stage. The reasons are that, intuitively,
direct prediction will focus on the fine-grained pre-
dictions at each position, while CRF-layer will pay
more attention to the high-level quality of the whole
global sequence. We employ Maximum Likelihood
Estimation (MLE) to conduct parameter learning
and treat negative log-likelihood (NLL) as the loss
function. Thus, the optimization objective for di-
rect prediction Ldp is:

Ldp = −
T ′∑
t=1

logPdp(yt|X) (7)

And the loss function Lcrf for CRF-based depen-
dency modeling is:

Lcrf = − logPcrf(Y |X) (8)

Then the final optimization objective is:

L = Ldp + Lcrf (9)

As mentioned in Section 1, one obvious but cru-
cial phenomenon for CGEC is that most words in
a sentence are correct and need not to be changed.
Considering that maximum likelihood estimation
is used as the parameter learning approach in those
two tasks, then a simple copy strategy can lead to a
sharp decline in terms of loss functions. Then, in-
tuitively, the grammatical error tokens which need
to be correctly fixed in practice, unfortunately, at-
tract less attention during the training procedure.
Actually, these tokens, instead, should be regarded
as the focal points and contribute more to the opti-
mization objectives. However, no previous works
investigate this problem thoroughly on the task of
CGEC.

To alleviate this issue, we introduce a useful
trick, focal loss (Lin et al., 2020) , into our loss
functions for direct prediction and CRF:

Lfl
dp = −

T ′∑
t=1

(1− Pdp(yt|X))γ logPdp(yt|X)

Lfl
crf = −(1− Pcrf(Y |X))γ logPcrf(Y |X)

(10)

where γ is a hyperparameter to control the penalty
weight. It is obvious that Lfl

dp is penalized on the
token level, while Lfl

crf is weighted on the sam-
ple level and will work in the condition of batch-
training. The final optimization objective with fo-
cal penalty strategy is:

Lfl = Lfl
dp + Lfl

crf (11)

2.6 Inference

During the inference stage, for the input source
sentence X , we can employ the original |V| nodes
Viterbi algorithm to obtain the target global opti-
mal result. We can also utilize the truncated top-k
Viterbi algorithm for high computing efficiency
(Sun et al., 2019).



4978

Corpus #Train #Dev #Test Type
SIGHAN15 2,339 - 1,100 FixLen
HybirdSet 274,039 3,162 3,162 FixLen
TtTSet 539,268 5,662 5,662 VarLen

Table 1: Statistics of the datasets.

3 Experimental Setup

3.1 Settings

The core technical components of our proposed TtT
is Transformer (Vaswani et al., 2017) and CRF (Laf-
ferty et al., 2001). The pre-trained Chinese BERT-
base model (Devlin et al., 2019) is employed to
initialize the model. To approximate the transition
matrix in the CRF layer, we set the dimension d
of matrices E1 and E2 as 32. For the normalizing
factor Z(X), we set the predefined beam size k as
64. The hyperparameter γ which is used to weight
the focal penalty term is set to 0.5 after parameter
tuning. Training batch-size is 100, learning rate
is 1e − 5, dropout rate is 0.1. Adam optimizer
(Kingma and Ba, 2015) is used to conduct the pa-
rameter learning.

3.2 Datasets

The overall statistic information of the datasets
used in our experiments are depicted in Table 1.
SIGHAN15 (Tseng et al., 2015)2 This is a bench-
mark dataset for the evaluation of CGEC and it
contains 2,339 samples for training and 1,100 sam-
ples for testing. As did in some typical previous
works (Wang et al., 2019; Zhang et al., 2020b), we
also use the SIGHAN15 testset as the benchmark
dataset to evaluate the performance of our mod-
els as well as the baseline methods in fixed-length
(FixLen) error correction settings.
HybirdSet (Wang et al., 2018)3 It is a newly re-
leased dataset constructed according to a prepared
confusion set based on the results of ASR (Yu and
Deng, 2014) and OCR (Tong and Evans, 1996).
This dataset contains about 270k paired samples
and it is also a FixLen dataset.
TtTSet Considering that datasets of SIGHAN15
and HybirdSet are all FixLen type datasets, in
order to demonstrate the capability of our model
TiT on the scenario of Variable-Length (VarLen)
CGEC, based on the corpus of HybirdSet, we

2http://ir.itc.ntnu.edu.tw/lre/
sighan8csc.html

3https://github.com/wdimmy/
Automatic-Corpus-Generation

build a new VarLen dataset. Specifically, opera-
tions of deletion, insertion, and local shuffling are
conducted on the original sentences to obtain the
incorrect samples. Each operation covers one-third
of samples, thus we get about 540k samples finally.

3.3 Comparison Methods

We compare the performance of TtT with sev-
eral strong baseline methods on both FixLen and
VarLen settings.
NTOU employs n-gram language model with a
reranking strategy to conduct prediction (Tseng
et al., 2015).
NCTU-NTUT also uses CRF to conduct label de-
pendency modeling (Tseng et al., 2015).
HanSpeller++ employs Hidden Markov Model
with a reranking strategy to conduct the predic-
tion (Zhang et al., 2015).
Hybrid utilizes LSTM-based seq2seq framework
to conduct generation (Wang et al., 2018) and
Confusionset introduces a copy mechanism into
seq2seq framework (Wang et al., 2019).
FASPell incorporates BERT into the seq2seq for
better performance (Hong et al., 2019).
SoftMask-BERT firstly conducts error detection
using a GRU-based model and then incorporating
the predicted results with the BERT model using a
soft-masked strategy (Zhang et al., 2020b). Note
that the best results of SoftMask-BERT are ob-
tained after pre-training on a large-scale dataset
with 500M paired samples.
SpellGCN proposes to incorporate phonological
and visual similarity knowledge into language
models via a specialized graph convolutional net-
work (Cheng et al., 2020).
Chunk proposes a chunk-based decoding method
with global optimization to correct single character
and multi-character word typos in a unified frame-
work (Bao et al., 2020).

We also implement some classical methods for
comparison and ablation analysis, especially for
the VarLen correction problem. Transformer-s2s
is the typical Transformer-based seq2seq frame-
work for sequence prediction (Vaswani et al.,
2017). GPT2-finetune is also a sequence genera-
tion framework fine-tuned based on a pre-trained
Chinese GPT2 model4 (Radford et al., 2019; Li,
2020). BERT-finetune is just fine-tune the Chi-
nese BERT model on the CGEC corpus directly.
Beam search decoding strategy is employed to con-

4https://github.com/lipiji/Guyu

http://ir.itc.ntnu.edu.tw/lre/sighan8csc.html
http://ir.itc.ntnu.edu.tw/lre/sighan8csc.html
https://github.com/wdimmy/Automatic-Corpus-Generation
https://github.com/wdimmy/Automatic-Corpus-Generation
https://github.com/lipiji/Guyu
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Model Detection Correction
ACC. PREC. REC. F1 ACC. PREC. REC. F1

NTOU (2015) 42.2 42.2 41.8 42.0 39.0 38.1 35.2 36.6
NCTU-NTUT (2015) 60.1 71.7 33.6 45.7 56.4 66.3 26.1 37.5
HanSpeller++ (2015) 70.1 80.3 53.3 64.0 69.2 79.7 51.5 62.5
Hybird (2018) - 56.6 69.4 62.3 - - - 57.1
FASPell (2019) 74.2 67.6 60.0 63.5 73.7 66.6 59.1 62.6
Confusionset (2019) - 66.8 73.1 69.8 - 71.5 59.5 64.9
SoftMask-BERT (2020b) 80.9 73.7 73.2 73.5 77.4 66.7 66.2 66.4
Chunk (2020) 76.8 88.1 62.0 72.8 74.6 87.3 57.6 69.4
SpellGCN (2020) - 74.8 80.7 77.7 - 72.1 77.7 75.9
Transformer-s2s (Sec.3.3) 67.0 73.1 52.2 50.9 66.2 72.5 50.6 59.6
GPT2-finetune (Sec.3.3) 65.1 70.0 51.9 59.4 64.6 69.1 50.7 58.5
BERT-finetune (Sec.3.3) 75.4 84.1 61.5 71.1 71.6 82.2 53.9 65.1
TtT (Sec.2) 82.7 85.4 78.1 81.6 81.5 85.0 75.6 80.0

Table 2: Detection and Correction results evaluated on the SIGHAN2015 testset (1100 samples).

Model Detection Correction
ACC. PREC. REC. F1 ACC. PREC. REC. F1

Transformer-s2s (Sec.3.3) 25.6 65.6 16.1 25.9 24.6 63.6 14.8 24.0
GPT2-finetune (Sec.3.3) 51.3 85.2 47.9 61.3 45.1 82.8 40.2 54.1
BERT-finetune (Sec.3.3) 46.8 89.0 38.9 54.1 36.9 84.8 26.7 40.7
TtT (Sec.2) 55.6 89.8 50.4 64.6 60.6 88.5 44.2 58.9

Table 3: Detection and Correction results evaluated on the TtTSet testset (5662 samples).

duct generation for Transformer-s2s and GPT2-
finetune, and beam-size is 5. Note that some of the
original methods above mentioned can only work
in the FixLen settings, such as SoftMask-BERT
and BERT-finetune.

3.4 Evaluation Metrics

Following the typical previous works (Wang et al.,
2019; Hong et al., 2019; Zhang et al., 2020b), we
employ sentence-level Accuracy, Precision, Re-
call, and F1-Measure as the automatic metrics to
evaluate the performance of all systems5. We also
report the detailed results for error Detection (all
locations of incorrect characters in a given sen-
tence should be completely identical with the gold
standard) and Correction (all locations and corre-
sponding corrections of incorrect characters should
be completely identical with the gold standard) re-
spectively (Tseng et al., 2015).

4 Results and Discussions

4.1 Results in FixLen Scenario

Table 2 depicts the main evaluation results of our
proposed framework TtT as well as the compar-
ison baseline methods. It should be emphasized

5http://nlp.ee.ncu.edu.tw/resource/csc.
html

that SoftMask-BERT is pre-trained on a 500M-
size paired dataset. Our model TtT, as well as
the baseline methods such as Transformer-s2s,
GPT2-finetune, BERT-finetune, and Hybird are
all trained on the 270k-size HybirdSet. Neverthe-
less, TtT obtains improvements on the tasks of
error Detection (F1:77.7→ 81.6) and Correction
(F1:75.9→ 80.0) compared to all strong baselines
on F1 metric, which indicates the superiority of our
proposed approach.

4.2 Results in VarLen Scenario
Benefit from the CRF-based dependency modeling
component, TtT can conduct deletion, insertion,
local paraphrasing operations jointly to address the
Variable-Length (VarLen) error correction problem.
The experimental results are described in Table 3.
Considering that those sequence generation meth-
ods such as Transformer-s2s and GPT2-finetune
can also conduct VarLen correction operation, thus
we report their results as well. From the results, we
can observe that TtT can also achieve a superior
performance in the VarLen scenario. The reasons
are clear: BERT-finetune as well as the related
methods are not appropriate in VarLen scenario,
especially when the target is longer than the input.
The text generation models such as Transformer-
s2s and GPT2-finetune suffer from the problem of
hallucination (Maynez et al., 2020) and repetition,

http://nlp.ee.ncu.edu.tw/resource/csc.html
http://nlp.ee.ncu.edu.tw/resource/csc.html
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TrainSet Model Detection Correction
ACC. PREC. REC. F1 ACC. PREC. REC. F1

SIGHAN15 Transformer-s2s 46.5 42.2 23.6 30.3 43.4 34.9 17.3 23.2
GPT2-finetune 45.2 42.3 30.8 35.7 42.6 37.7 25.5 30.4
BERT-finetune 35.8 34.1 32.8 33.4 31.3 27.1 23.6 25.3

TtT 51.3 50.6 38.0 43.4 45.8 41.9 26.7 32.7
HybirdSet Transformer-s2s 67.0 73.1 52.2 50.9 66.2 72.5 50.6 59.6

GPT2-finetune 65.1 70.0 51.9 59.4 64.6 69.1 50.7 58.5
BERT-finetune 75.4 84.1 61.5 71.1 71.6 82.2 53.9 65.1

TtT 82.7 85.4 78.1 81.6 81.5 85.0 75.6 80.0

Table 4: Performance of models trained on different datasets.

TrainSet Model Detection Correction
ACC. PREC. REC. F1 ACC. PREC. REC. F1

SIGHAN15 TtT w/o Lcrf 35.8 34.1 32.8 33.4 31.3 27.1 23.6 25.3
TtT w/o Ldp 35.5 32.0 28.0 29.9 31.2 24.9 19.3 21.6

TtT 42.6 39.4 31.5 35.0 36.7 28.9 23.6 26.0
HybirdSet TtT w/o Lcrf 75.4 84.1 61.5 71.1 71.6 82.2 53.9 65.1

TtT w/o Ldp 81.2 83.4 77.1 80.1 80.0 83.0 74.7 78.6
TtT 82.7 85.6 77.9 81.5 81.1 85.0 74.7 79.5

Table 5: Ablation analysis of Ldp and Lcrf .

TrainSet γ
Detection Correction

ACC. PREC. REC. F1 ACC. PREC. REC. F1
SIGHAN15 0.0 42.6 39.4 31.5 35.0 36.7 28.9 23.6 26.0

0.1 48.8 47.0 35.5 40.3 43.8 38.7 25.1 30.4
0.5 51.3 50.6 38.0 43.4 45.8 41.9 26.7 32.6
1.0 51.8 51.3 37.7 43.5 46.3 42.5 26.5 32.6
2.0 50.0 48.6 36.3 41.5 44.4 39.5 25.0 30.6
5.0 48.9 47.1 37.2 47.6 42.8 37.6 25.1 30.6

HybirdSet 0.0 82.7 85.6 77.9 81.5 81.1 85.0 74.7 79.5
0.1 74.6 73.5 75.4 74.4 73.2 72.7 72.6 72.7
0.5 82.7 85.4 78.0 81.6 81.5 85.0 75.6 80.0
1.0 81.1 83.2 77.1 80.0 80.0 82.8 74.9 78.6
2.0 79.2 80.4 76.2 78.2 78.2 80.0 74.1 76.9
5.0 80.3 81.6 77.3 79.4 78.7 80.9 74.1 77.4

Table 6: Tuning for focal loss hyperparameter γ.

which are not steady on the problem of CGEC.

4.3 Ablation Analysis

Different Training Dataset Recall that we intro-
duce several groups of training datasets in different
scales as depicted in Table 1. It is also very inter-
esting to investigate the performances on different-
size datasets. Then we conduct training on those
training datasets and report the results still on the
SIGHAN2015 testset. The results are shown in
Table 4. No matter what scale of the dataset is, TtT
always obtains the best performance.

Impact of Ldp and Lcrf Table 5 describes the
performance of our model TtT and the variants
withoutLdp (TtT w/oLdp) andLcrf (TtT w/oLcrf ).
We can conclude that the fusion of these two tasks,
direct prediction and CRF-based dependency mod-

eling, can indeed improve the performance.

Parameter Tuning for Focal Loss The focal
loss penalty hyperparameter γ is crucial for the loss
function L = Ldp + Lcrf and should be adjusted
on the specific tasks (Lin et al., 2020). We conduct
grid search for γ ∈ (0, 0.1, 0.5, 1, 2, 5) and the cor-
responding results are provided in Table 6. Finally,
we select γ = 0.5 for TtT for the CGEC task.

4.4 Computing Efficiency Analysis

Practically, CGEC is an essential and useful task
and the techniques can be used in many real appli-
cations such as writing assistant, post-processing
of ASR and OCR, search engine, etc. Therefore,
the time cost efficiency of models is a key point
which needs to be taken into account. Table 7 de-
picts the time cost per sample of our model TtT and
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Model Time (ms) Speedup
Transformer-s2s 815.40 1x
GPT2-finetune 552.82 1.47x
TtT 39.25 20.77x
BERT-finetune 14.72 55.35x

Table 7: Comparisons of the computing efficiency.

some baseline approaches. The results demonstrate
that TtT is a cost-effective method with superior
prediction performance and low computing time
complexity, and can be deployed online directly.

5 Conclusion

We propose a new framework named tail-to-tail
non-autoregressive sequence prediction, which ab-
breviated as TtT, for the problem of CGEC. A
BERT based sequence encoder is introduced to
conduct bidirectional representation learning. In or-
der to conduct substitution, deletion, insertion, and
local paraphrasing simultaneously, a CRF layer is
stacked on the up tail to conduct non-autoregressive
sequence prediction by modeling the dependencies
among neighbour tokens. Low-rank decomposition
and a truncated Viterbi algorithm are introduced
to accelerate the computations. Focal loss penalty
strategy is adopted to alleviate the class imbalance
problem considering that most of the tokens in a
sentence are not changed. Experimental results
on standard datasets demonstrate the effectiveness
of TtT in terms of sentence-level Accuracy, Pre-
cision, Recall, and F1-Measure on tasks of error
Detection and Correction. TtT is of low computing
complexity and can be deployed online directly.

In the future, we plan to introduce more lexical
analysis knowledge such as word segmentation and
fine-grained named entity recognition (Zhang et al.,
2020a) to further improve the performance.
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