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Abstract

Personalization of natural language generation
plays a vital role in a large spectrum of tasks,
such as explainable recommendation, review
summarization and dialog systems. In these
tasks, user and item IDs are important identi-
fiers for personalization. Transformer, which
is demonstrated with strong language model-
ing capability, however, is not personalized
and fails to make use of the user and item
IDs since the ID tokens are not even in the
same semantic space as the words. To address
this problem, we present a PErsonalized Trans-
former for Explainable Recommendation (PE-
TER1), on which we design a simple and ef-
fective learning objective that utilizes the IDs
to predict the words in the target explanation,
so as to endow the IDs with linguistic mean-
ings and to achieve personalized Transformer.
Besides generating explanations, PETER can
also make recommendations, which makes it a
unified model for the whole recommendation-
explanation pipeline. Extensive experiments
show that our small unpretrained model outper-
forms fine-tuned BERT on the generation task,
in terms of both effectiveness and efficiency,
which highlights the importance and the nice
utility of our design.

1 Introduction

Recent years have witnessed the successful appli-
cation of natural language generation. Many of the
applications in fact require certain degree of per-
sonalization, such as explainable recommendation
(Zhang et al., 2014; Li et al., 2020c; Zhang and
Chen, 2020), review generation (Dong et al., 2017),
review summarization (Li et al., 2019), and conver-
sational systems (Zhang et al., 2018; Chen et al.,
2020). In these tasks, user and item IDs that distin-
guish one user/item from the others are crucial to

1https://github.com/lileipisces/PETER

personalization. For example, in recommender sys-
tems, different users may care about different item
features (e.g., style vs. quality), and different items
may have different characteristics (e.g., fashionable
vs. comfortable). The goal of explainable recom-
mendation (Zhang and Chen, 2020) is to provide an
explanation to a user for a recommended item, so
as to justify how the recommendation might match
his/her interests. That is, given a pair of user ID and
item ID, the system needs to generate an explana-
tion, such as “the style of the jacket is fashionable”
(see the last column of Table 4 for more examples).

Transformer (Vaswani et al., 2017), whose
strong language modeling ability has been demon-
strated on a variety of tasks (Radford et al., 2018;
Devlin et al., 2019; Brown et al., 2020), however, is
relatively under-explored for personalized natural
language generation. Since IDs and words are in
very different semantic spaces, it would be prob-
lematic to directly put them together for attention
learning, because by doing so, the IDs are treated
as words, but the IDs appear far less frequently
than the words. For example, a paragraph of re-
view (and thus hundreds of words) on e-commerce
platform only corresponds to a single pair of user
ID and item ID. As such, the IDs may be regarded
as out-of-vocabulary tokens, to which the model
is insensitive. As shown in Fig. 1(a), when gener-
ating an explanation for a user-item pair, standard
Transformer relies heavily on the special <bos>
token instead of the user or the item. This would
result in identical explanations over different user-
item pairs (see USR score in Table 2), deviating
from our personalization goal.

To address this problem, we bridge IDs and
words by designing an elegant task called context
prediction, which maps IDs onto words to be gen-
erated by the explanation task. This in some way
resembles one’s drafting-polishing process, where
by predicting some words the context prediction

https://github.com/lileipisces/PETER


4948

[U
se

r]
[It

em
]

<b
os

>
th

e
ho

te
l

is lo
ca

te
d

in th
e

he
ar

t
of th

e
cit

y
an

d
th

e
cit

y
ce

nt
re

is

Source

[User]
[Item]

the
hotel

is
located

in
the

heart
of

the
city
and
the
city

centre
is

<eos>

Ta
rg

et

0.0

0.2

0.4

0.6

0.8

1.0

(a) Standard Transformer model, where the user and the
item have no contribution to each generation step.
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(b) Our PETER model, where the user and item IDs play
significant roles in the generation steps.

Figure 1: Attention visualization of two models when generating an explanation for the same user-item pair (see
the first two columns). They are both from the last attention layer, so the target sequences are offset by one position
for better illustration. The larger the attention weights, the lighter the cells.

task does the job of drafting. Then, the explana-
tion generation task polishes these words so as to
form a readable sentence. Meanwhile, we demon-
strate that conducting recommendation task on the
same model is also feasible, so we name it PETER,
which stands for PErsonalized Transformer for Ex-
plainable Recommendation. As we can see in Fig.
1(b), when PETER generates an explanation for the
same user-item pair, it can utilize the information
of both the user and the item, which illustrates the
effectiveness of our context prediction task.

In addition, PETER is flexible to incorporate
item features that can help to guide its generation.
This can be very useful when, for instance, a user
proactively asks the system to explain certain fea-
ture(s) of a recommendation (Li et al., 2020c), e.g.,
price. Then, we would expect the model to gen-
erate a targeted explanation, such as “great jacket,
especially for the price”. PETER is a small un-
pretrained Transformer with only 2 layers, yet it
outperforms a fine-tuned BERT (Ni et al., 2019)
on most metrics by a large margin, and takes less
time to train, as shown in our experiments. This
manifests the superiority of our model.

In summary, our key contributions are:

• We propose PETER that makes recommenda-
tion and generates explanation simultaneously
based on user and item IDs for explainable rec-
ommendation. To the best of our knowledge,
we are the first to enable Transformer with
personalized natural language generation.

• We evaluate the generated explanations on
not only text quality metrics (such as BLEU
and ROUGE), but also metrics that particu-
larly focus on explainability from the angle
of item features. Extensive experiments show
that our model can outperform state-of-the-art
baselines on large datasets.

• Our solution sheds light on a broader scope
of fields that also need personalization (e.g.,
personalized conversational systems). In ad-
dition, it points out a way for Transformer to
deal with heterogeneous inputs, e.g., text and
images in multimodal artificial intelligence.

2 Related Work

Explainable recommendation (Zhang et al.,
2014; Zhang and Chen, 2020) has been studied
from two major perspectives: human-computer
interaction and machine learning. The former
(Gedikli et al., 2014; Chen and Wang, 2017; Chen
et al., 2019b) investigates how people perceive dif-
ferent styles of explanations, while the latter pro-
vides explanations by designing new explainable
recommendation algorithms, to which our work is
more related. There exist various types of explana-
tion styles, such as pre-defined templates (Zhang
et al., 2014; Li et al., 2020a), ranked sentences
(Chen et al., 2019d; Li et al., 2021), image visu-
alizations (Chen et al., 2019c), knowledge graph
paths (Ai et al., 2018; Xian et al., 2019; Fu et al.,
2020; Xian et al., 2020), reasoning rules (Shi et al.,
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2020; Chen et al., 2021; Zhu et al., 2021), etc.,
among which, recently, generated natural language
explanations (Ni et al., 2019; Li et al., 2020c) have
received much attention, mainly owing to the ad-
vancement of natural language generation technol-
ogy and the availability of textual data on recom-
mendation platforms such as e-commerce. How-
ever, previous works mostly rely on recurrent neu-
ral networks (RNN), e.g., LSTM (Hochreiter and
Schmidhuber, 1997) and GRU (Cho et al., 2014),
leaving the potentially more effective Transformer
under-explored, which motivates this work.

Transformer (Vaswani et al., 2017) was first
brought to machine translation with the architec-
ture of encoder-decoder. Later works (Liu et al.,
2018; Devlin et al., 2019) show that it remains
effective, even when the encoder or the decoder
is removed, reducing nearly half of the parame-
ters. Under the paradigm of pre-training plus fine-
tuning, Transformer’s effectiveness has been con-
firmed on a wide range of tasks, including both nat-
ural language understanding and generation (Rad-
ford et al., 2018; Devlin et al., 2019; Dong et al.,
2019). Particularly, it is able to perform novel tasks,
e.g., arithmetic, after scaling up both the model
and the training data (Radford et al., 2019; Brown
et al., 2020). However, it may not be friendly to re-
searchers who do not possess large amounts of com-
puting resources. Instead, our work explores small
unpretrained models, as they are computationally
cheaper and more flexible when being adapted to
new applications, e.g., personalized generation.

Personalized generation usually involves the
IDs of users and items. Previous approaches typi-
cally adopt multi-layer perceptron (MLP) to encode
the IDs into a context vector, from which RNN
can decode a word sequence. This strategy can be
found in many applications, such as review gener-
ation (Dong et al., 2017), tip generation (Li et al.,
2017) and explanation generation (Li et al., 2020c).
However, it does not fit Transformer that relies en-
tirely on self-attention. Probably because a proper
solution to deal with heterogeneous inputs (i.e., IDs
and words) is yet to be found, previous works with
Transformer for personalized generation replace
IDs with text segments, such as persona attributes
(Zheng et al., 2020), movie titles (Zhou et al., 2020)
and item features (Ni et al., 2019), which are in the
same semantic space as the word sequence to be
generated. In comparison, our solution is to design
an effective task that can give the IDs linguistic
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Figure 2: Our proposed model PETER that contains
three tasks. The input features are optional.

meanings, thus connecting IDs with words.

3 Problem Formulation

The goal of our explanation task is to generate a
natural language sentence Êu,i for a pair of user
u and item i to justify why i is recommended to
u. Meanwhile, our model PETER can also make
recommendations by estimating a rating r̂u,i that
predicts u’s preference towards i. At the testing
stage, only user u and item i are used as inputs for
producing both explanation and recommendation.
When item features Fu,i are available, our model
is flexible to incorporate them by simply concate-
nating them at the beginning of the explanation. In
this case, the features are also needed in the testing
stage. In the following, we will discuss both cases.

4 Methodology

In this section, we present the details of our model
PETER. First, we show how to encode different
types of tokens in a sequence. Then, we briefly
review Transformer and introduce our revised at-
tention masking matrix. At last, we formulate the
three tasks, i.e., explanation generation, context pre-
diction and recommendation, and integrate them
into a multi-task learning framework.

4.1 Input Representation

We first introduce our way to encode heterogeneous
inputs into vector representations. As shown in Fig.
2, the input to our model is a sequence, consisting
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Figure 3: The attention masking used in our model that
we call PETER masking. The orange box highlights its
difference from the Left-to-Right masking.

of user ID u, item ID i, features Fu,i, and expla-
nation Eu,i. The user and the item serve for the
purpose of personalization, i.e., aiming to make
the generated explanation reflect both the user’s
interests and the item’s attributes. The features can
guide the model to talk about certain topics. For in-
stance, a conversational recommender system may
explain a recommendation’s specialty to the user
with the goal of knowing more about his/her pref-
erence (Chen et al., 2020). Since the features are
not always available, in our experiments we test
both cases (with and without them). When they are
available, the input sequence can be represented as
S = [u, i, f1, · · · , f|Fu,i|, e1, · · · , e|Eu,i|], where
f1, · · · , f|Fu,i| are the features and e1, · · · , e|Eu,i|
are the explanation’s word sequence. |Fu,i| denotes
the number of features and |Eu,i| is the number of
words in the explanation.

Clearly there are three types of tokens in the
sequence S, i.e., users, items, and words (includ-
ing features), for which we prepare three sets of
randomly initialized token embeddings U, I and
V respectively, besides the positional embeddings
P that encode the position of each token in the
sequence. Notice that, we do not add users and
items to the vocabulary V , given that it costs more
time to predict a word out of the huge amount of
IDs (for example, millions of users and items in
e-commerce). After performing embedding look-
up, we can obtain the sequence’s token represen-
tation [u, i, f1, · · · , f|Fu,i|, e1, · · · , e|Eu,i|] and its
positional representation [p1, · · · ,p|S|], where |S|
is the length of the sequence. The input repre-
sentation of the sequence is the addition of the
corresponding token representation and positional
representation, denoted as S0 = [s0,1, · · · , s0,|S|].

4.2 Transformer and Attention Masking
To enable the three tasks, we show how to modify
the attention masking mechanism in Transformer
(Vaswani et al., 2017). Transformer consists of L
identical layers, each of which is composed of two
sub-layers: multi-head self-attention and position-
wise feed-forward network. The l-th layer encodes
the previous layer’s output Sl−1 into Sl, where
l ∈ [1, L]. In the multi-head self-attention sub-
layer, the computation of each attention head is
also identical, and among the H heads of the l-th
layer, the h-th head Al,h is computed as follows:

Al,h = softmax(
Ql,hK

>
l,h√

d
+ M)Vl,h

Ql,h = Sl−1W
Q
l,h,Kl,h = Sl−1W

K
l,h,

Vl,h = Sl−1W
V
l,h

M =

{
0, Allow to attend
−∞, Prevent from attending

(1)

where Sl−1 ∈ R|S|×d is the (l − 1)-th layer’s out-
put, WQ

l,h,W
K
l,h,W

V
l,h ∈ Rd× d

H are projection ma-
trices, d denotes the dimension of embeddings, and
M ∈ R|S|×|S| is the attention masking matrix.

Each element in M controls whether a token in
the sequence can attend to another. For example,
in the unidirectional left-to-right language model
(Radford et al., 2018), the lower triangular part of
M is set to 0 and the remaining part −∞, so as to
allow each token to attend to past tokens (includ-
ing itself), but prevent it from attending to future
tokens. We call it Left-to-Right Masking. As our
model is not limited to the left-to-right explanation
generation task, we modify the masking mecha-
nism to accommodate the other two tasks (i.e., con-
text prediction and recommendation). As shown in
Fig. 3, the first two tokens u and i in the sequence
can attend to each other, because both context pre-
diction and recommendation tasks need them. To
echo our model, we name it PETER Masking.

4.3 Explanation and Recommendation
In the following, we perform the three tasks, af-
ter obtaining the sequence’s final representation
SL = [sL,1, · · · , sL,|S|] from Transformer. The
key challenge lies in the personalization of expla-
nation generation task, for which we design the
context prediction task. For both tasks, we apply a
linear layer to the final representation of each token
to map it into a |V|-sized vector. As an example,
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after passing through this layer, sL,t becomes ct:

ct = softmax(WvsL,t + bv) (2)

where Wv ∈ R|V|×d and bv ∈ R|V| are weight pa-
rameters. The vector ct represents the probability
distribution over the vocabulary V , from which a
word e with probability cet can be sampled.

Explanation Generation: We adopt the Neg-
ative Log-Likelihood (NLL) as the explanation
task’s loss function, and compute the mean of user-
item pairs in the training set:

Le =
1

|T |
∑

(u,i)∈T

1

|Eu,i|

|Eu,i|∑
t=1

− log cet2+|Fu,i|+t

(3)
where T denotes the training set. The probability
cett is offset by 2 + |Fu,i| positions because the
explanation is placed at the end of the sequence,
and |Fu,i| = 0 when the features are unavailable.

At the testing stage, along with u, i, and Fu,i (if
available), we feed the model a special begin-of-
sequence token <bos>. From its resulting proba-
bility distribution c<bos>, the model can predict a
word. For simplicity, among the many decoding
methods, we opt for greedy decoding that samples
the word with the largest probability. Then we can
concatenate this predicted word at the end of the
sequence to form a new input sequence for gener-
ating another word. We do this repeatedly until the
model produces a special end-of-sequence token
<eos>, or the generated explanation Êu,i reaches
a pre-defined length.

Context Prediction: As discussed earlier, when
there is only one task of explanation generation,
Transformer fails to make use of user ID and item
ID, resulting in identical sentences. To address this
issue, we design this task to map the IDs onto the
words in the explanation, so as to build a connec-
tion between them. Since the first two positions (u
and i) of the sequence are allowed to attend to each
other, both of their final representations absorb the
information of the user and the item. Thus, we
can use either of them to perform this task. Here,
we use the 2nd one for better illustration in Fig. 2.
Again, we adopt NLL as the loss function:

Lc =
1

|T |
∑

(u,i)∈T

1

|Eu,i|

|Eu,i|∑
t=1

− log cet2 (4)

where the difference from Eq. (3) is that all pre-
dicted words are from the 2nd position, which is
why they are not sequentially ordered (see Fig. 2).

Rating Prediction: Recommendation can be
seen as a prediction problem (Chen et al., 2021)
where the goal is to predict a score r̂u,i based on
the IDs of user u and item i. As both u and i
in the sequence can attend to each other, their fi-
nal representations capture the interaction between
them. Next, we map the 1st representation sL,1 into
a scalar (because the 2nd one is used for context
prediction). To this end, we employ multi-layer per-
ceptron (MLP) with one hidden layer as follows:

r̂u,i = wrσ(WrsL,1 + br) + br (5)

where Wr ∈ Rd×d, br ∈ Rd, wr ∈ R1×d and
br ∈ R are weight parameters, and σ(·) is the sig-
moid function. Therefore, it can be seen that it is
feasible to do both recommendation and explana-
tion on Transformer. As recommendation is not the
key focus of this paper, we leave its improvement
in the future work. For this task, we use Mean
Square Error (MSE) as the loss function:

Lr =
1

|T |
∑

(u,i)∈T

(ru,i − r̂u,i)2 (6)

where ru,i is the ground-truth rating.

Multi-task Learning: At last, we integrate the
three tasks into a multi-task learning framework
whose objective function is defined as:

J = min
Θ

(λeLe + λcLc + λrLr) (7)

where Θ denotes all the trainable parameters in
the model, and λe, λc and λr are regularization
weights that balance the learning of different tasks.
In this way, the model can be trained efficiently in
an end-to-end manner.

5 Experimental Setup

5.1 Datasets
For experimentation, we adopt three publicly avail-
able explainable recommendation datasets, and
their data splits (Li et al., 2020c). During the
splitting process, each dataset is randomly divided
into training, validation and testing sets with ra-
tio 8:1:1 for 5 times, and the training set holds at
least one record for each user and each item. The
three datasets are respectively from TripAdvisor
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Yelp Amazon TripAdvisor
#users 27,147 7,506 9,765
#items 20,266 7,360 6,280
#records 1,293,247 441,783 320,023
#features 7,340 5,399 5,069
#records / user 47.64 58.86 32.77
#records / item 63.81 60.02 50.96
#words / exp 12.32 14.14 13.01
* exp denotes explanation.

Table 1: Statistics of the three datasets.

(hotel), Amazon (movies & TV) and Yelp (restau-
rant). Each record in the datasets is comprised of a
user ID, an item ID, a rating, an explanation, and a
feature. The explanations are sentences extracted
from user reviews. Each explanation contains at
least one item feature, e.g., bedroom, which ensures
the explanation quality. Statistics of the datasets
are shown in Table 1. We can see that Yelp is much
larger than the other two in terms of size, making
it closer to the real-world situation where there are
millions of users and items.

5.2 Evaluation Metrics

To evaluate the recommendation performance, we
adopt two commonly used metrics: Root Mean
Square Error (RMSE) and Mean Absolute Error
(MAE). As to explanation performance, we mea-
sure the generated explanations from two main per-
spectives: text quality and explainability. For the
former, we adopt BLEU (Papineni et al., 2002) in
machine translation and ROUGE (Lin, 2004) in
text summarization, and report BLEU-1 and BLEU-
4, and Precision, Recall and F1 of ROUGE-1 and
ROUGE-2. Though being widely used, BLUE and
ROUGE are not flawless. For example, it is dif-
ficult for them to detect the problem of identical
sentences generated by Transformer. These iden-
tical sentences might not be used as explanations,
because they are less likely to well explain the spe-
cial property of different recommendations. To
quantitatively measure how severe the problem is,
we adopt USR that computes the Unique Sentence
Ratio of generated sentences (Li et al., 2020c).

Text quality, however, is not equal to explain-
bility. In the case of explainable recommendation,
users may value more an explanation that justi-
fies a recommendation’s advantages on certain fea-
tures (Li et al., 2020c; Chen et al., 2019a). To this
end, we adopt the other three metrics proposed by
(Li et al., 2020c): Feature Matching Ratio (FMR),
Feature Coverage Ratio (FCR) and Feature Diver-
sity (DIV). FMR measures whether a generated

explanation contains the feature in the ground-truth.
FCR is computed as the number of distinct features
contained in all the generated explanations, divided
by the total number of features in the whole dataset.
DIV measures the intersection of features between
any two generated explanations.

For RMSE, MAE and DIV, the lower, the better,
while it is opposite for the rest of metrics.

5.3 Compared Methods
We introduce baselines, first for explanation and
then for recommendation. For the former, we di-
vide the baselines into two groups, depending on
whether the feature is used or not.

The following models leverage only user and
item IDs to generate explanations (without feature).
We denote our model without feature as PETER.

• Transformer (Vaswani et al., 2017) performs
the explanation generation task by treating
user and item IDs as words. We also tested
encoder-decoder Transformer, where the en-
coder encodes the IDs for the decoder to de-
code, but its results turned out to be the same,
so we do not report it.

• NRT (Li et al., 2017) can predict a rating and
generate a tip simultaneously based on user
and item IDs. We take the explanations in
the datasets as tips. Moreover, we found that
the model’s problem of generating identical
sentences (as reported in Li et al., 2020c) is
caused by the L2 regularization in its original
design. For fair comparison, we removed it.

• Att2Seq (Dong et al., 2017) is a review gener-
ation approach and we take the explanations
as reviews. This model has an attention mod-
ule, but we found that it makes the generated
content unreadable in the task. To be fair, we
removed it as well.

When features are used, we denote our model as
PETER+, and compare it with two recent models:

• ACMLM (Ni et al., 2019) is a fine-tuned
BERT (Devlin et al., 2019), where an atten-
tion layer is introduced to encode the features
from both the user and the item. By predict-
ing masked tokens, this model can produce
diverse sentences.

• NETE (Li et al., 2020c) is a tailored GRU
(Cho et al., 2014) that incorporates a given



4953

Explainability Text Quality
FMR↑ FCR↑ DIV↓ USR↑ B1↑ B4↑ R1-P↑ R1-R↑ R1-F↑ R2-P↑ R2-R↑ R2-F↑

Yelp
Transformer 0.06 0.06 2.46 0.01 7.39 0.42 19.18 10.29 12.56 1.71 0.92 1.09

NRT 0.07 0.11 2.37 0.12 11.66 0.65 17.69 12.11 13.55 1.76 1.22 1.33
Att2Seq 0.07 0.12 2.41 0.13 10.29 0.58 18.73 11.28 13.29 1.85 1.14 1.31
PETER 0.08** 0.19** 1.54** 0.13 10.77 0.73** 18.54 12.20 13.77** 2.02** 1.38** 1.49**

ACMLM 0.05 0.31 0.95 0.95 7.01 0.24 7.89 7.54 6.82 0.44 0.48 0.39
NETE 0.80 0.27 1.48 0.52 19.31 2.69 33.98 22.51 25.56 8.93 5.54 6.33

PETER+ 0.86** 0.38** 1.08 0.34 20.80** 3.43** 35.44** 26.12** 27.95** 10.65** 7.44** 7.94**
Amazon

Transformer 0.10 0.01 3.26 0.00 9.71 0.59 19.68 11.94 14.11 2.10 1.39 1.55
NRT 0.12 0.07 2.93 0.17 12.93 0.96 21.03 13.57 15.56 2.71 1.84 2.05

Att2Seq 0.12 0.20 2.74 0.33 12.56 0.95 20.79 13.31 15.35 2.62 1.78 1.99
PETER 0.12** 0.21 1.75** 0.29 12.77 1.17** 19.81 13.80 15.23 2.80 2.08** 2.20**

ACMLM 0.10 0.31 2.07 0.96 9.52 0.22 11.65 10.39 9.69 0.71 0.81 0.64
NETE 0.71 0.19 1.93 0.57 18.76 2.46 33.87 21.43 24.81 7.58 4.77 5.46

PETER+ 0.77** 0.31** 1.20** 0.46 19.75** 3.06** 34.71** 23.99** 26.35** 9.04** 6.23** 6.71**
TripAdvisor

Transformer 0.04 0.00 10.00 0.00 12.79 0.71 16.52 16.38 15.88 2.22 2.63 2.34
NRT 0.06 0.09 4.27 0.08 15.05 0.99 18.22 14.39 15.40 2.29 1.98 2.01

Att2Seq 0.06 0.15 4.32 0.17 15.27 1.03 18.97 14.72 15.92 2.40 2.03 2.09
PETER 0.07** 0.13 2.95** 0.08 15.96** 1.11* 19.07 16.09 16.48** 2.33 2.17 2.09

ACMLM 0.07 0.41 0.78 0.94 3.45 0.02 4.86 3.82 3.72 0.18 0.20 0.16
NETE 0.78 0.27 2.22 0.57 22.39 3.66 35.68 24.86 27.71 10.20 6.98 7.66

PETER+ 0.89** 0.35 1.61 0.25 24.32** 4.55** 37.48** 29.21** 30.49** 11.92** 8.98** 9.24**

Table 2: Performance comparison of the generation methods in terms of Explainability and Text Quality on three
datasets. The methods are divided into two groups according to whether features are used or not. B1 and B4 stand
for BLEU-1 and BLEU-4. R1-P, R1-R, R1-F, R2-P, R2-R and R2-F denote Precision, Recall and F1 of ROUGE-1
and ROUGE-2. BLEU and ROUGE are percentage values (% symbol omitted for table clarity), while the others
are absolute values. The best performing values are boldfaced, and the second best underlined. ** and * indicate
the statistical significance over the second best baseline respectively for p < 0.01 and p < 0.05 via Student’s t-test.

feature into the decoding process to generate
template-like explanations. It can also make
recommendations.

For recommendation, besides NRT and NETE,
we include another two traditional methods:

• PMF (Mnih and Salakhutdinov, 2007) is
a standard probabilistic matrix factorization
method that characterizes users and items by
latent factors.

• SVD++ (Koren, 2008) leverages a user’s in-
teracted items to enhance the latent factors.

5.4 Implementation Details
We train each model on the training set, tune the
hyper-parameters on the validation set, and report
the performance on the testing set. The results are
averaged on the 5 data splits. We adopt the codes of
ACMLM and NETE, and implement all the other
methods. For NRT, Att2Seq, NETE and our PE-
TER and PETER+, we set the size of vocabulary
to 20,000 by keeping the most frequent words. We
do not apply this to Transformer, otherwise users

Time Epochs Time/Epoch
ACMLM 97.0 3 32.3
PETER+ 57.7 25 2.3

Table 3: Efficiency comparison of two Transformer-
based models in terms of training minutes on the Tri-
pAdvisor dataset, tested on NVIDIA Tesla P40.

and items (regarded as words) may be filtered out.
We set both the number of context words and the
length of explanations to 15, because the mean
length of explanations is approximately 13 (see Ta-
ble 1). ACMLM adopts sub-words, so we do not
apply the above two steps to it. We reuse the other
default settings of the baselines.

For Transformer, PETER and PETER+, we set
the embedding size d to 512 and the dimension of
feed-forward network to 2,048, following (Vaswani
et al., 2017), but the number of layers L and atten-
tion heads H are both 2. For our models PETER
and PETER+, we set the regularization weights λe,
λc and λr to 1.0, 1.0 and 0.1, respectively. We
optimize the model via stochastic gradient descent
(Robbins and Monro, 1951), and apply gradient
clipping (Pascanu et al., 2013) with a threshold of
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Top-15 Context Words Explanation
Ground-truth the rooms are spacious and the bathroom has a large tub

PETER <eos> the and a pool was with nice is very were to good in of the pool area is nice and the gym is very well equipped <eos>
PETER+ <eos> the and a was pool with to nice good very were is of in the rooms were clean and comfortable <eos>

Ground-truth beautiful lobby and nice bar
PETER <eos> the and a was were separate bathroom with shower large very had in is the bathroom was large and the shower was great <eos>

PETER+ <eos> the and a was bathroom shower with large in separate were room very is the lobby was very nice and the rooms were very comfortable <eos>

Table 4: Context words and explanations on two different cases as generated by our PETER and PETER+ on Tri-
pAdvisor dataset. The boldfaced words in the ground-truth are the key features. Generated features are underlined.

1.0. The batch size is set to 128, and the learning
rate 1.0. At each epoch, we save the model if it
achieves the lowest loss on the validation set, but
when there is no improvement, we decrease the
learning rate by a factor of 0.25. When the latter
happens for 5 times, we stop training and load the
saved model for prediction.

6 Results and Analysis

6.1 Quantitative Analysis on Explanations

In Table 2, we compare the performance of expla-
nation generation methods in two groups. We first
analyze models that make use of item features (i.e.,
ACMLM, NETE and PETER+). Our PETER+ con-
sistently and significantly outperforms ACMLM
and NETE on the three datasets in terms of text
quality (BLEU and ROUGE). This shows the ef-
fectiveness of our model in generating high-quality
sentences. Notice that Li et al. (2020b) conducted
a user survey and reported that NETE’s explana-
tions were perceived useful by most participants. It
suggests that our model’s explanations with better
quality could also be very useful to real users.

Again, in terms of text quality, the performance
gap between PETER+ and ACMLM (a fine-tuned
BERT) is extremely large, because the latter’s gen-
eration is achieved by predicting masked tokens,
which is quite different from word-by-word gener-
ation. This may explain why ACMLM produces
diverse sentences (high USR), which, however, is
less meaningful when text quality cannot be guaran-
teed. Furthermore, PETER+ beats both ACMLM
and NETE on the explainability metric FMR that
cares about whether a generated explanation men-
tions the feature in the ground-truth. This is quite
useful in real-world applications when the system
is asked to explain a particular feature. Regarding
the other two explainability metrics FCR and DIV,
PETER+ is also very competitive. ACMLM gains
better performance on some cases, because at the
training stage it is exposed to more features (from
both the user and the item), which is unfair to both
PETER+ and NETE.

Next, we discuss the results of the models that

Yelp Amazon TripAdvisor
R↓ M↓ R↓ M↓ R↓ M↓

PMF 1.09 0.88 1.03 0.81 0.87 0.70
SVD++ 1.01 0.78 0.96 0.72 0.80 0.61

NRT 1.01 0.78 0.95 0.70 0.79 0.61
NETE 1.01 0.79 0.96 0.73 0.79 0.60

PETER 1.01 0.78 0.95 0.71 0.81 0.63

Table 5: Recommendation performance comparison in
terms of RMSE (R for short) and MAE (denoted as M).
The best performing values are boldfaced.

only leverage user and item IDs for generation. As
it can be seen, Transformer generates identical ex-
planations on each dataset, resulting in nearly 0
score on Unique Sentence Ratio (USR). Owing
to the context prediction task, our PETER suc-
cessfully addresses this issue, producing diverse
(comparable USR) and high-quality (best BLEU-
4) sentences. In particular, on the largest dataset
Yelp, it achieves the best performance on most of
the metrics. This again demonstrates the effective-
ness of our model. On Amazon and TripAdvisor,
NRT and Att2Seq are very competitive, because
we fixed their generation issues (see Section 5.3).
In addition, the two datasets are small and thus the
training samples are limited, so our model may un-
derfit, which is why it does not always reach the
best performance.

Besides explanation performance, we also inves-
tigate the efficiency of different Transformer-based
models. On the same machine (NVIDIA Tesla P40)
and dataset (TripAdvisor), we compare the train-
ing minutes of ACMLM and our PETER+ in Table
3. Compared with ACMLM, our model takes less
time to train (2.3 minutes per epoch), since it has
only 2 layers and thus less parameters. But because
it is unpretrained and learned from scratch, it needs
more training epochs.

6.2 Qualitative Case Study on Explanations

In Table 4, we present two examples generated by
PETER and PETER+ on the TripAdvisor dataset.
We can see that PETER generates distinct context
words and explanations for different user-item pairs.
This confirms that our proposed solution can in-
deed endow the user and item IDs with linguis-
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Explainability Text Quality Recommendation
FMR FCR DIV USR BLEU-1 BLEU-4 RMSE MAE

Disable Lc 0.06 ↓ 0.03 ↓ 5.75 ↓ 0.01 ↓ 15.37 ↓ 0.86 ↓ 0.80 ↑ 0.61 ↑
Disable Lr 0.07 0.14 ↑ 2.90 ↑ 0.10 ↑ 16.16 ↑ 1.15 ↑ 3.23 ↓ 3.10 ↓
Left-to-Right Masking 0.07 0.15 ↑ 2.68 ↑ 0.12 ↑ 15.73 ↓ 1.11 0.87 ↓ 0.68 ↓
PETER 0.07 0.13 2.95 0.08 15.96 1.11 0.81 0.63

Table 6: Ablation study on the smallest dataset TripAdvisor. Arrows ↑ and ↓ respectively denote the performance
increase and decrease compared with PETER.

tic meanings, as well as achieving certain degree
of personalization for natural language generation.
Among the commonly used context words, e.g.,
the, there are some important features (underlined),
according to which the model then generates an ex-
planation that talks about them. Admittedly, there
is still much room for improvement of the context
prediction task, so as to more accurately predict the
features in the ground-truth (e.g., rooms vs. pool
in the first example). One alternative is to leverage
the features to guide the model’s generation. This
explains why PETER+ is able to generate an ex-
planation that talks about rooms rather than pool,
making it semantically closer to the ground-truth.
It thus demonstrates our model’s flexibility in in-
corporating these features.

6.3 Recommendation Performance

Table 5 presents the performance comparison
of different recommendation methods. On the
largest dataset Yelp with approximately 1.3 million
records, our model PETER performs as good as the
three competitive baselines (i.e., SVD++, NRT and
NETE), which shows the rationale of our recom-
mendation module. Since our model PETER has
more parameters to learn, it may underfit on small
datasets. This explains why it does not always per-
form the best on TripAdvisor and Amazon. When
more training data are available to Transformer,
usually the performance will become better, as evi-
denced by GPT-2 (Radford et al., 2019) and GPT-3
(Brown et al., 2020). Thus, we can expect our
model to perform well in real-world applications,
where the training data are bigger than the testing
datasets, e.g., billion-scale users in Amazon.

6.4 Ablation Study

In Table 6, we provide an ablation study conducted
on the TripAdvisor dataset. After disabling the
context prediction task Lc by setting λc = 0, the
performances of both explainability and text qual-
ity drop dramatically, and the unique sentence ratio
(USR) is nearly approaching Transformer’s (see
Table 2). It hence confirms this task’s effectiveness.

As Lc is highly correlated with the recommenda-
tion task Lr via the user and item IDs (see Section
4.3), the removal of Lc leads to slight improve-
ment on recommendation performance. We can
also observe a reversed phenomenon when we dis-
able Lr. When PETER masking is replaced by the
Left-to-Right masking that prevents the model from
accessing the item information, the recommenda-
tion performance drops sharply. Overall, PETER
reaches an optimal situation, where its explainabil-
ity, text quality and recommendation performance
are all reasonably good.

7 Conclusion

We propose a simple and effective solution to ad-
dress the personalized generation problem of Trans-
former, unleashing its language modeling power
to generate explanations for recommender systems.
Extensive experiments show that the solution is
both effective and efficient. It opens up a new way
of exploiting Transformer by designing good tasks
instead of scaling up model size. There are various
applications of personalized generation for which
Transformer is still less explored. Our next step
is to adopt our solution for personalized question
answering systems and personalized conversational
agents. We also plan to incorporate item images
into the model, so as to generate visual explanations
for recommendations, since “a picture is worth a
thousand words”. Another meaningful extension
is to adapt the model to cross-lingual explanation
generation, because international platforms, e.g.,
Amazon, may serve users who speak different lan-
guages.
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