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Abstract

Zero-shot sequence labeling aims to build
a sequence labeler without human-annotated
datasets. One straightforward approach is uti-
lizing existing systems (source models) to gen-
erate pseudo-labeled datasets and train a target
sequence labeler accordingly. However, due
to the gap between the source and the target
languages/domains, this approach may fail to
recover the true labels. In this paper, we pro-
pose a novel unified framework for zero-shot
sequence labeling with minimum risk train-
ing and design a new decomposable risk func-
tion that models the relations between the pre-
dicted labels from the source models and the
true labels. By making the risk function train-
able, we draw a connection between minimum
risk training and latent variable model learning.
We propose a unified learning algorithm based
on the expectation maximization (EM) algo-
rithm. We extensively evaluate our proposed
approaches on cross-lingual/domain sequence
labeling tasks over twenty-one datasets. The
results show that our approaches outperform
state-of-the-art baseline systems.

1 Introduction

Sequence labeling is an important task in natural
language processing. It has many applications such
as Part-of-Speech Tagging (POS) (DeRose, 1988;
Toutanova et al., 2003) and Named Entity Recogni-
tion (NER) (Ratinov and Roth, 2009; Ritter et al.,
2011; Lample et al., 2016; Ma and Hovy, 2016; Hu
et al., 2020). Approaches to sequence labeling are
mostly based on supervised learning, which relies
heavily on labeled data. However, the labeled data
is generally expensive and hard to obtain (for low-
resource languages/domains), which means that
these supervised learning approaches fail in many
cases.

∗Corresponding authors. ‡Work was done when Zechuan
Hu was interning at Alibaba DAMO Academy.

Learning knowledge from imperfect predictions
from other rich-resource sources (such as cross-
lingual, cross-domain transfer) (Yarowsky and
Ngai, 2001; Guo et al., 2018; Huang et al., 2019;
Hu et al., 2021) is a feasible and efficient way
to tackle the low-resource problem. It transfers
knowledge from rich-resource languages/domains
to low-resource ones. One typical approach to this
problem is utilizing existing systems to provide pre-
dicted results for the zero-shot datasets. However,
due to the gap between the source and the target
languages/domains, this approach may fail to re-
cover the true labels. Several previous approaches
try to alleviate this problem by relying heavily on
cross-lingual information (e.g., parallel text (Wang
and Manning, 2014; Ni et al., 2017)), labeled data
in source languages (Chen et al., 2019), and prior
domain knowledge (Yang and Eisenstein, 2015) for
different kinds of zero-shot scenarios. However,
these approaches are designed to be specific, and
might not be generalizable to other kinds of settings
where the required resources are expensive to ob-
tain or not available due to data privacy (Wu et al.,
2020). Instead, we want a learning framework that
can address the zero-shot learning problem in a
unified perspective.

In this work, we consider two widely explored
settings in which we have access to: 1) the imper-
fect hard predictions (Rahimi et al., 2019; Lan et al.,
2020); 2) the imperfect soft predictions (Wu et al.,
2020), produced by one or more source models on
target unlabeled data , and propose two novel ap-
proaches. We start by introducing a novel approach
based on the minimum risk training framework. We
design a new decomposable risk function parame-
terized by a fixed matrix that models the relations
between the noisy predictions from the source mod-
els and the true labels. We then make the matrix
trainable, which leads to further expressiveness and
connects minimum risk training to learning latent
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variable models. We propose a learning algorithm
based on the EM algorithm, which alternates be-
tween updating a posterior distribution and opti-
mizing model parameters.

To empirically evaluate our proposed ap-
proaches, we extensively conduct experiments on
four sequence labeling tasks of twenty-one datasets.
Our two proposed approaches, especially the latent
variable model, outperform several strong base-
lines.

2 Background

2.1 Sequence Labeling
Given a sentence x = x1, . . . , xn, its word rep-
resentations are extracted from the pre-trained
embeddings and passed into a sentence encoder
such as BiLSTM, Convolutional Neural Networks
(CNN) and multilingual BERT (Devlin et al., 2019)
to obtain a sequence of contextual features. With-
out considering the dependencies between pre-
dicted labels, the Softmax layer computes the con-
ditional probability as follows,

Pθθθ(y|x) =
n∏
i=1

Pθθθ(yi|x)

Given the gold sequence y∗ = y∗1, . . . , y
∗
n, the gen-

eral training objective is to minimize the negative
log-likelihood of the sequence,

J (θθθ) = − logPθθθ(y
∗|x) = −

n∑
i=1

logPθθθ(y
∗
i |x)

For simplicity, throughout this paper, we assume
that all the sequence labelers are based on the Soft-
max method.

2.2 Cross-Lingual/Domain Transfer
Supervised models fail when labeled data are ab-
sent. Learning from imperfect predictions from
rich-resource sources is a viable approach to tackle
the problem. Generally speaking, there are two
settings to obtain the imperfect predictions from:
single source and multi source. The simplest single-
source approach is to train a single-source model
on one source language/domain and use the source
model to directly predict labels on the target test
data. We name this approach as direct single-source
transfer (DT). Another single-source approach is
to use the predictions of the source model on a set
of unlabeled target data to supervise the training
of a target model. With imperfect hard predictions

from the source model, the corresponding objec-
tive function is the cross-entropy loss between the
imperfect hard predictions and the target model’s
soft predictions,

J (θθθ) = − logPθθθ(ŷ|x) = −
n∑
i=1

logPθθθ(ŷi|x)

where ŷ denotes the pseudo label sequence of x
predicted by the source model and ŷi is the pseudo
label for position i. With imperfect soft predictions
from the source model, the corresponding objec-
tive function is the KL-divergence (KL) or mean
square error (MSE) loss between the imperfect soft
predictions and the target model’s soft predictions
(knowledge distillation, KD) (Wu et al., 2020).

For multi-source setup, a simple approach con-
tains the following two steps. The first step is to
apply DT with each source language to produce pre-
dictions on unlabeled target data. The second step
is to mix the predictions from all the source models
and perform supervised learning of a target model
on the mixed pseudo-labeled dataset. However, the
mixed pseudo-labeled dataset can be very noisy
because predictions from different source models
may contradict each other. Similar to single-source
setting, a more effective way is aggregating the soft
predictions from multiple sources and doing KD
(Wu et al., 2020).

3 Methodology

3.1 Minimum Risk Training
In supervised learning, minimum risk training aims
to minimize the expected error (risk) concerning
the conditional probability,

J (θθθ) =
∑

y∈Y(x)

Pθθθ(y|x)R(y∗,y)

where R(y∗,y) is the risk function that measures
the distance between the gold sequence y∗ and the
candidate sequence y, and Y(x) denotes the col-
lection of all the possible label sequences given
the sentence x. The risk function can be defined
in many ways depending on specific applications,
such as the BLEU score in machine translation
(Shen et al., 2016). However, in our setting, there
are no gold labels to compute R(y∗,y). Instead,
we assume there are multiple pretrained source
models which can be used to predict hard labels,
and we define the risk function as R(ŷ,y) to mea-
sure the difference between pseudo label sequence



4911

ŷ predicted by source models and the candidate
sequence y. The objective function becomes,

J (θθθ) = EPθθθ(y|x)[R(ŷ,y)]

=
∑

y∈Y(x)

Pθθθ(y|x)R(ŷ,y)

Conventional minimum risk training is in-
tractable which is mainly due to the combination
of two reasons: first, the set of candidate label se-
quences Y(x) is exponential in size and intractable
to enumerate; second, the risk function is hard to
decompose (or indecomposable). To tackle the
problem, we define the risk function as a negative
probability−P (ŷ|y) that can be fully decomposed
by position. The objective function becomes,

J (θθθ) =
∑

y∈Y(x)

Pθθθ(y|x)R(ŷ,y)

= −
∑

y∈Y(x)

Pθθθ(y|x)Pψψψ(ŷ|y) (1)

= −
n∏
i=1

∑
yi

Pθθθ(yi|x)Pψψψ(ŷi|yi)

We introduce a matrix ψψψ ∈ RK×K to model
Pψψψ(ŷi|yi), whereK is the number of labels. Notice
that ψψψ here is a fixed matrix that does not change
in training. In the general imperfect predictions
learning, it is often implicitly assumed that the
prediction from a source model is generally bet-
ter than uniformly selecting a candidate label at
random. Given this prior knowledge, we require
Pψψψ(ŷi = k|yi = k)> 1

K . Therefore, we empirically
define matrix ψψψ as,

ψψψij =

{
µ if i = j ,
1−µ
K−1 if i 6= j

where µ> 1
K is a hyper-parameter. In the imple-

mentation, for convenience, we multiply an iden-
tity matrix by a hyper-parameter τ and then apply
Softmax operation to every column to obtain the
matrix ψψψ.

To further explain ψψψ, we give an example from
the perspective of prediction in Table 1. Given
a sentence x = “I cried”, a label distribution
Pθθθ(y|x) for the sentence, a pseudo label sequence
ŷ = {Pron, Adj} predicted by the source model,
and two settings µ1=0.4 and µ2=1 forψψψ(1) andψψψ(2)

respectively, we compute Pθθθ(yi|x)× Pψψψ(ŷi|yi) as
shown in the table.

x Pθθθ(y|x) ŷ

I 0.6 0.3 0.1 Pron
cried 0.1 0.6 0.3 Adj

C
as

e
1 ψψψ

(1) Pron Verb Adj Pθθθ(yi|x)× Pψψψ(ŷ
(1)
i |yi)

Pron 0.4 0.3 0.3 0.24 0.09 0.03
Verb 0.3 0.4 0.3 0.03 0.18 0.12
Adj 0.3 0.3 0.4 ypred: [Pron, Verb]

C
as

e
2 ψψψ

(2) Pron Verb Adj Pθθθ(yi|x)× Pψψψ(ŷ
(2)
i |yi)

Pron 1 0 0 0.6 0 0
Verb 0 1 0 0 0 0.3
Adj 0 0 1 ypred: [Pron, Adj]

Table 1: An example of prediction results on two dif-
ferent ψψψs. Case1 with a less sparse matrix than Case2
obtains a better prediction. ypred denotes the predic-
tions by sequence labeler using corresponding matrix
ψψψ.

Since ψψψ(2) is an identity matrix, it predicts the
label with the largest value at each position. It as-
signs the wrong label Adj to the word “cried” as
a consequence. On the contrary, ψψψ(1) introduces
some uncertainties by providing smoothing over
the pseudo labels. As a result, it correctly predicts
the word “cried” as Verb. From the perspective of
training, which minimizes J (θθθ), if ψψψ is an identity
matrix, then it is a supervised model with ŷ as the
supervision signal; on the other hand, if ψψψ is a uni-
form matrix, then the supervision signal becomes
random and training becomes meaningless.

Extending to Leverage Soft Predictions Previ-
ous works shows that the soft predictions from
source models can provide more information than
the hard predictions (Hinton et al., 2015; Wu et al.,
2020). Our novel approach can also easily leverage
this information by simply replacing the one-hot
pseudo labels with soft probability distributions
from source models. The training objective be-
comes,

J (θθθ)= −
n∏
i=1

∑
yi

Pθθθ(yi|x)
∑
ŷi

Ps(ŷi|x)Pψψψ(ŷi|yi)

where Ps is the source model’s soft predictions.

For simplicity, in the rest of this section, we
introduce our approaches based on the setup of
using one-hot pseudo labels, but all the approaches
can be extended to leverage soft predictions in a
similar way.
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3.2 Minimum Risk Training: A Latent
Variable Model Perspective

In this subsection, we instead use a trainable matrix
σσσ to model Pσσσ(ŷ|y). We initialize σσσ in the same
way as ψψψ. Assuming that conditioning on y, x and
ŷ are independent with each other, we find that the
non-negative term of equation (1) is a conditional
marginal probability defined by a latent variable
model in which y is the latent variable.∑

y∈Y(x)

Pθθθ(y|x)Pσσσ(ŷ|y) = Pθθθ,σσσ(ŷ|x)

In latent variable model training, we generally op-
timize the negative conditional log-likelihood, and
the objective function becomes,

J (θθθ,σσσ) = − logPθθθ,σσσ(ŷ|x)

= −
n∑
i=1

log
∑
yi

Pθθθ(yi|x)Pσσσ(ŷi|yi)

Interpolation In practice, given a pre-defined
hyper-parameter µ, we combine the fixed Pψψψ(ŷi|yi)
with the trainable Pσσσ(ŷi|yi) to get a new probabil-
ity,

Pφφφ(ŷi|yi) = λPψψψ(ŷi|yi) + (1− λ)Pσσσ(ŷi|yi)

where λ ∈ [0, 1] is a hyper-parameter, φφφ is the com-
bined matrix. If λ = 1, it denotes the minimum risk
training. Otherwise, it denotes the latent variable
model.

3.3 From Single-source to Multi-source Setup
By modeling the joint distribution over the pseudo
labels which are predicted by U source models on
the target unlabeled data, we can easily extend our
latent variable model to the multi-source setting.
The objective function becomes,

J (θθθ,φφφ)=−
n∑
i=1

log
∑
yi

Pθθθ(yi|x)
U∏
u=1

Pφφφ(ŷ
(u)
i |yi, u)

Our overall architecture of the latent variable model
is depicted in Figure 1.

3.4 Optimization
In this section, we propose a unified optimiza-
tion scheme, which is based on the EM algorithm
(Dempster et al., 1977) 1, to learn the parameters

1Another approach is to perform direct gradient descent
optimization, which we find weaker results. We have a discus-
sion on that in the analysis section.

y xŷu

θϕU

y xŷu

θϕ
U

Figure 1: Directed graphical model of our latent vari-
able model.

of the two proposed approaches. The EM algo-
rithm is widely applied to learn parameters in a
large family of models with latent variables such as
the Gaussian mixture models. It is an iterative ap-
proach that has two steps in every iteration, which
are the E-step and the M-step. In the E-step, it
optimizes a posterior distribution of the latent vari-
ables. In the M-step, it estimates the parameters
of the latent variable model according to the poste-
rior distribution. As the single-source setup can be
seen as a special case, we focus on the multi-source
setup to derive the equations. We first introduce
Q(y) =

∏
i
Q(yi) as a distribution over the latent

variable y, and then we derive the upper bound of
J (θθθ,φφφ) as follows,

J (θθθ,φφφ) =−
n∑
i=1

log
∑
yi

Pθθθ(yi|x)
U∏
u=1

Pφφφ(ŷ
(u)
i |yi, u)

=−
n∑
i=1

log
∑
yi

Q(yi)

Pθθθ(yi|x)
U∏
u=1

Pφφφ(ŷ
(u)
i |yi, u)

Q(yi)

≤−
n∑
i=1

∑
yi

Q(yi)log

Pθθθ(yi|x)
U∏
u=1

Pφφφ(ŷ
(u)
i |yi, u)

Q(yi)

(2)

=−
n∑
i=1

EQ(yi)logPθθθ(yi|x)
U∏
u=1

Pφφφ(ŷ
(u)
i |yi, u)+C

where C is a residual term, and Q(yi) stands for
Q(yi = yi). The inequation above is derived from
Jensen’s inequality. To make the bound tight for
particular θθθ and φφφ, we derive Q(yi) as,

Q(yi) ∝ Pθθθ(yi|x)
U∏
u=1

Pφφφ(ŷ
(u)
i |yi, u) (3)

We sketch our strategy of parameter update in
the t-th iteration as follows,

• E step, we compute Q(yi) using parameters
θθθ and φφφ from the (t− 1)-th iteration;
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• M step, we update parameters θθθ and φφφ to-
gether using a gradient-based approach by
minimizing the upper bound above. Q(yi)
is fixed in this step and hence we minimize

−
n∑
i=1

EQ(yi) logPθθθ(yi|x)
U∏
u=1

Pφφφ(ŷ
(u)
i |yi, u)

we repeat the two steps alternately until conver-
gence. We give an overall process for multi-source
setup with unlabeled target data in Algorithm 1.

Algorithm 1 Multi-source transfer with latent variable model

1: Input: unlabeled dataset of target T , U pretrained source
models {M = M (1), . . . ,M (U)}, U trainable matri-
ces {ΣΣΣ = σσσ(1), . . . ,σσσ(U)} and U fixed matrices {ΨΨΨ =

ψψψ(1), . . . ,ψψψ(U)}, hyper-parameter µ and λ, maximal iter-
ations E for the EM algorithm.

2: Initialize: initialize ΣΣΣ and ΨΨΨ with the same hyper-
parameter µ. Initialize {ΦΦΦ = φφφ(1), . . . ,φφφ(U)} using λ, ΣΣΣ

and ΨΨΨ. Initialize an empty pseudo label list Ŷ , an upper
bound loss lm = +∞, and an overall loss le = +∞.

3: for u = 1, . . . , U do
4: Use M (u) to obtain the hard/soft label sequence of the

unlabeled data T and append the predictions to the list of
pseudo label sequences. Ŷ .

5: end for
6: Concatenate the unlabeled data T with all pseudo label

collections Ŷ to form a new training dataset T̂ .

7: for e = 1, . . . , E do
8: Compute posterior distribution Q(yi) according to

formula 3 for each sample x. . E step
9: Compute the loss le = J (φφφ,θθθ).

10: if le has no improvement do
11: End training.
12: end if

13: repeat . M step
14: Compute lm according to Eq. 2.
15: Update φφφ and θθθ.
16: Until lm has no improvement.
17: end for

3.5 Inference
For inference, we use Q(y) to obtain ypred

2,

ypred = argmax
y∈Y(x)

Pθθθ(y|x)
U∏
u=1

Pφφφ(ŷ
(u)|y, u)

4 Experiments

We use the multilingual BERT (mBERT) as our
word representations3 as the sentence encoder. Fol-

2Another choice is to use Pθθθ(y|x), however, we found
that utilizing Q(y) generally achieves better performance.

3Following previous work (Wu and Dredze, 2019; Wu
et al., 2020), we fine-tune mBERT’s parameters.

lowing Wu et al. (2020), the source model are pre-
viously trained on its corresponding training data.
We use the BIO scheme for CoNLL and OntoNotes
NER tasks and Aspect Extraction. We run each
model three times and report the average accuracy
for the POS tagging task and F1-score for the other
tasks.

4.1 Datasets
Cross-Lingual Sequence Labeling We choose
three tasks to conduct the cross-lingual sequence
labeling task, which are POS tagging, NER, and
Aspect Extraction. For the POS tagging task, we
use Universal Dependencies treebanks (UD) v2.44

and randomly select five anguages together with
the English dataset. The whole datasets are English
(En), Catalan (Ca), Indonesian (Id), Hindi (Hi),
Finnish (Fi), and Russian (Ru). For the Aspect Ex-
traction task, we select the restaurant domain over
subtask 1 in the SemEval-2016 shared task (Pon-
tiki et al., 2016). For the NER task, we evaluate
our models on the CoNLL 2002 and 2003 shared
tasks (Tjong Kim Sang, 2002; Tjong Kim Sang and
De Meulder, 2003).

Cross-Domain Sequence Labeling We use En-
glish portion of the OntoNotes (v5) (Hovy et al.,
2006), which contains six domains: broadcast con-
versation (bc), broadcast news (bn), magazine (mz),
newswire (nw), and web (wb).

More details can be found in the Appendix A.1.

4.2 Approaches
Single-source Setup The following approaches
are applicable for single-source setup,

• DT: we use the pre-trained source model to
directly predict the pseudo labels on the target
unlabeled data.

• Hard: we use the pseudo labels from DT on
the target unlabeled data to train a new model.

Multi-source Setup The following approaches
are applicable for multi-source setup,

• Hard-Cat: we apply DT with all the source
languages/domains, mix the resulting pseudo
labels from all the sources on the unlabeled
target data, and train a new model.

• Hard-Vote: we do majority voting at the token
level on the pseudo labels from DT with each
source and train a new model.

4https://universaldependencies.org/

https://universaldependencies.org/
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CONLL NER ASPECT EXTRACTION
English German Dutch Spanish Avg. English Spanish Dutch Russian Turkish Avg.

SINGLE-SOURCE:

The following approaches have access to hard predictions:
DT — 72.17 79.54 75.13 75.61 — 62.48 53.15 46.35 36.42 49.6

Hard — 72.37 80.01 75.75 76.04 — 63.76 58.28 48.36 40.13 52.63
MRT — 73.15 80.38 75.87 76.47 — 64.53 59.63 49.89 45.79 54.96
LVM — 73.36 80.34 76.01 76.57 — 65.03 60.55 50.59 46.40 55.64

The following approaches have access to soft predictions:
KD-re — 73.77 80.64 76.02 76.81 — 64.44 58.68 49.54 43.37 54.01
MRT — 73.67 80.56 76.07 76.77 — 65.81 60.91 50.55 45.97 55.81
LVM — 73.96 80.79 76.29 77.01 — 65.77 60.44 50.79 46.69 55.92

Wu et al. (2020)† — 73.22 80.89 76.94 77.02 — — — — — —

MULTI-SOURCE:

The following approaches have access to hard predictions:
Hard-Vote 77.46 73.52 78.05 76.60 76.41 57.66 65.03 57.23 49.11 45.17 54.84
Hard-Cat 77.13 73.22 78.32 76.81 76.37 55.91 63.13 56.01 49.33 46.23 54.12

MRT 77.56 73.81 79.12 76.99 76.87 58.65 65.78 58.56 50.90 43.77 55.53
LVM 78.14 74.17 79.60 77.69 77.40 61.69 67.49 59.76 52.19 41.93 56.61

The following approaches have access to soft predictions:
KD-re 78.57 75.25 80.58 77.45 77.96 59.25 65.97 59.70 51.71 44.86 56.30
MRT 78.65 75.83 80.52 77.74 78.18 60.66 67.57 59.91 51.59 42.97 56.54
LVM 79.09 76.00 83.03 77.66 78.94 60.87 68.72 60.14 51.88 42.81 56.88

Wu et al. (2020)† — 74.97 80.70 77.75 — — — — — — —

Table 2: Results on the CoNLL NER and Aspect Extraction tasks. KD-re is our re-implementation for the KD
approach (Wu et al., 2020). Their reported results are denoted as † for reference.

ONTONOTES

bc bn mz nw tc wb Avg.

The following approaches have access to hard predictions:
Hard-Vote 75.90 84.62 81.93 82.41 68.44 77.65 78.49
Hard-Cat 75.27 84.66 81.88 82.60 71.33 77.12 78.81

MRT 77.03 84.48 84.02 82.90 68.93 77.29 79.11
LVM 75.93 84.76 83.37 83.26 70.56 78.34 79.37

The following approaches have access to soft predictions:
KD-re 76.20 84.75 82.64 82.92 70.36 78.49 79.23
MRT 76.88 84.60 84.01 83.51 70.00 77.71 79.45
LVM 77.56 85.58 84.32 83.88 72.47 78.03 80.31

Lan et al. (2020)† 71.47 79.66 70.71 71.31 52.72 34.06 63.32

Table 3: Multi-source cross-domain results on
OntoNotes. KD-re is our re-implementation for the KD
approach (Wu et al., 2020). The reported results from
Lan et al. (2020) are denoted as † for reference.

Both Setups The following approaches are ap-
plicable for both single-/multi-source setups,

• KD-re: to fairly compare with the the KD
approach (Wu et al., 2020) in the same settings
(such as source model’s cross-lingual ability),
we re-implement the KD approach and adapt
it to all tasks.

• MRT: our minimum risk training approach
with a fixed matrix ψψψ with soft or hard predic-
tions.

• LVM: our latent variable model with param-
eter φφφ (containing the fixed matrix ψψψ and the
trainable matrix σσσ) with soft or hard predic-
tions.

We also provide the reported results from existing
approaches for reference. Due to different exper-
iment configuration reasons, directly comparing
our approaches to their reported results is generally
not fair. For the CoNLL NER tasks, we provide
the reported results from Wu et al. (2020). For the
cross-domain sequence labeling tasks, we provide
the reported results from Lan et al. (2020) who
learns a consensus network to aggregate predic-
tions from multiple sources.

4.3 Hyper-parameters

Hyper-parameter selection in transfer learning is
difficult as no labeled dataset is available for the tar-
get language. We select the hyper-parameters only
on the development set over the English language
and directly use the selected hyper-parameters for
the other languages. This may result in sub-optimal
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SINGLE SOURCE MULTI-SOURCE
CA ID HI FI RU Avg. EN CA ID HI FI RU Avg.

The following approaches have access to hard predictions:
DT 86.65 84.37 67.14 76.03 88.02 80.44 Hard-Vote 82.90 86.21 85.87 74.10 78.86 89.77 82.95

Hard 86.73 84.52 67.34 76.32 88.21 80.62 Hard-Cat 83.04 85.80 86.13 74.55 78.95 90.22 83.11
MRT 86.78 84.61 67.63 76.97 88.36 80.87 MRT 82.72 85.64 86.14 74.48 78.91 89.90 82.97
LVM 86.80 84.64 67.65 77.04 88.37 80.90 LVM 83.08 85.76 86.11 75.35 79.12 89.98 83.23
The following approaches have access to soft predictions:
KD-re 86.84 84.93 67.62 76.51 88.53 80.89 KD-re 83.81 86.46 86.25 74.46 79.01 90.56 83.43
MRT 86.57 84.65 68.44 77.51 88.40 81.11 MRT 83.60 85.54 86.60 75.07 79.89 90.24 83.49
LVM 86.78 84.89 68.31 77.68 88.45 81.22 LVM 83.85 86.76 86.50 75.41 79.60 90.23 83.73

Table 4: Results on the POS tagging tasks. KD-re is our re-implementation for the KD approach (Wu et al., 2020).

performance but is more realistic. In latent variable
model training, the latent variable is generally very
flexible, which may result in sub-optimal perfor-
mance. Therefore, the initialization of the latent
variable is very crucial. In practice, we find that
the best strategy is to initialize µ of ψψψ with a large
value (e.g., 0.9) and µ of σσσ with a small value (e.g.,
0.3), and anneal λ from 1 to 0. At the early stage of
training, this initialization offers a strong prior for
the encoder which can keep the encoder from going
in a bad direction; and at later stages of training,
the warmed-up encoder can better guide the train-
ing of φφφ and vice versa. In this way, the encoder
and φφφ can achieve a good balance during training.
More details of the hyper-parameters can be found
in the Appendix A.2.

4.4 Results and Observations

For the single-source setting, we use English as the
source language and the others as the unlabeled
target languages. In the multi-source setting, we
repeat our experiments multiple times, each time
with a language as the target and the others as the
sources. We evaluate all approaches on the CoNLL,
Aspect Extraction, OntoNotes, and POS tagging.
We report the results in Table 2, 3 and 4 5.

Observation #1 Our two approaches outperform
several strong baselines on all the tasks and all
the scenarios (single-/multi-source scenarios with
soft/hard predictions), especially the multi-source
scenario, which demonstrates the effectiveness of
the two proposed approaches. It shows that model-
ing this kind of relation is fairly important, which

5We utilize almost stochastic dominance (ASD) test (Dror
et al., 2019) to compare the best score of our approaches and
the score of the best performing baselines. We mark the the
highest score as bold if its superiority is significant (p < 0.05)
and underline otherwise.

helps to recover the true labels from noisy data.
Meanwhile, introducing uncertainties for the rela-
tions between the predicted labels from the source
models and the true labels in both training and
prediction processes significantly benefit our ap-
proaches.

Observation #2 Our LVM approach achieves
overall improvements over the MRT approach on
all tasks. It suggests that our LVM approach learns
the relations between predicted labels from the
source models and true labels better than MRT.

Other Minor Observations First, all the ap-
proaches that use unlabeled target data for train-
ing outperform DT. It suggests that leveraging the
unlabeled target data (which may contain knowl-
edge of the target language/domain) in training for
zero-shot transfer learning does help. Comparing
the approaches that leverage soft instead of hard
predictions from sources, the former generally out-
perform the latter. It suggests that soft predictions
can still provide useful knowledge for samples with
incorrect hard predictions. The reported results
from Lan et al. (2020) are significantly worse. We
speculate the reason is that they leverage poor em-
beddings and different encoders (BiLSTM-CRF).
KD-re outperforms our approaches on Ca and Id of
POS tagging task on the single-source setting, but
its advantage is not statistically significant.

5 Analysis

We conduct the analysis on the multi-source setting
with soft predictions from sources for its better
performance.

Big Data Performance We experiment with our
two models and the KD-re baseline on big target
training data on the POS tagging task. We ran-
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Figure 2: The multi-source performance of Ca datasets
by varying different sizes on the POS tagging task.

EN DE NL ES Avg.

MRT
Direct‡ 78.83 75.27 80.22 77.76 78.02
EM† 78.65 75.83 80.52 77.74 78.19

LVM
Direct‡ 78.79 75.48 81.29 77.93 78.37
EM† 79.09 76.00 83.03 77.66 78.95

Table 5: Results on comparisons between EM algo-
rithm and direct gradient-based strategy. ‡ denotes the
results of direct gradient-based strategy and † denotes
the results of EM algorithm that are from Table 2.

domly select 100000 sentences (without labels) for
the Wikipedia-003 section of the Ca language on
the CoNLL 2017 shared task (Ginter et al., 2017).
We randomly select 1000, 10000, and 100000
sentences to train these three approaches, evalu-
ate on the UD test set for each of the three lan-
guages respectively, and show the results in Figure
2. It shows that our latent variable model outper-
forms the other two approaches over all the settings.
Though KD outperform MRT with less than 10000
sentences, but MRT has comparable result with
enough unlabeled data. Besides, with more unla-
beled data used for training, each model further
gains a considerable boost.

Comparison to Direct Gradient Optimization
Our two proposed approaches can also be opti-
mized directly by any gradient-based approach,
such as the AdamW optimizer (Loshchilov and Hut-
ter, 2018). We use the two proposed approaches
to compare the performance of the direct gradient-
based training strategy and the EM algorithm. We
conduct the experiments on our two proposed ap-
proaches on CoNLL NER task on the multi-source
setting. We show the results in Table 5. It shows
that the EM algorithm outperforms direct gradient-
based training for our approaches, which is slightly
different from previous findings (Berg-Kirkpatrick
et al., 2010).

EN DE NL ES Avg.

MRT
hard-EM 79.65 75.02 80.26 77.00 77.98
soft-EM 78.65 75.83 80.52 77.74 78.19

LVM
hard-EM 78.36 76.01 81.98 77.46 78.45
soft-EM 79.09 76.00 83.03 77.66 78.95

Table 6: Results on hard-EM experiments. The results
of soft-EM are from Table 2 of the body.

Comparison to Hard EM In this part, we com-
pare our optimization strategy (soft-EM) with the
hard-EM approach. Instead of computing a dense
vector for Q(yi), hard-EM computes a one-hot
vector. We conduct the experiments on our two
proposed approaches on the CoNLL NER task on
the multi-source setting. The results are shown in
Table 6. It shows that soft-EM gains slightly im-
provement over hard-EM on the MRT approach,
but differs significantly from hard-EM on our LVM
approach.

Impact of Matrix ψψψ We analyze the relation be-
tween the performance and different initialization
ofψψψ. We experiment with the MRT approach in the
single-source setup with soft predictions on NER
tasks and Figure 3 shows the results. The best value
of τ is 2 for De and 3 for the others (resulting in
µ = 0.43 and 0.67 respectively6), which shows
that the uncertainties introduced by a smoothψψψ can
effectively boost the model’s performance. On the
other hand, setting ψψψ to a nearly identity matrix
with τ = 10 leads to worse scores.

6 Related Work

Cross-lingual/domain Sequence Labeling Re-
cent works on cross-lingual transfer mainly have
two scenarios: the single-source cross-lingual trans-
fer (Yarowsky and Ngai, 2001; Wang and Manning,
2014; Huang et al., 2019) and the multi-source
cross-lingual transfer (Täckström et al., 2012; Guo
et al., 2018; Rahimi et al., 2019; Hu et al., 2021).
Wu et al. (2020) propose a knowledge distillation
approach to further leveraging unlabeled target data
and achieve the state-of-the-art results. Hu et al.
(2021) propose a multi-view framework to selec-
tively transfer knowledge from multiple sources by
utilizing a small amount of labeled dataset. Cross-
domain adaption is widely studied (Steedman et al.,

6The CoNLL NER datasets have 11 labels (9 entity labels,
a padding label and an ending label).
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Figure 3: The performance of MRT approach in single-source setup with soft predictions on three NER datasets
by varying different τ .

2003). Existing works include bootstrapping ap-
proaches (Ruder and Plank, 2018), mixture-of-
experts (Guo et al., 2018; Wright and Augenstein,
2020), and consensus network (Lan et al., 2020).
Other previous work (Kim et al., 2017; Guo et al.,
2018; Huang et al., 2019) utilized labeled data in
the source domain to learn desired information.
However, our proposed approaches do not require
any source labeled data or parallel texts.

Contextual Multilingual Embeddings Embed-
dings like mBERT (Devlin et al., 2019), XLM
(CONNEAU and Lample, 2019) and XLM-R (Con-
neau et al., 2020) which are trained on many lan-
guages, make great progress on cross-lingual learn-
ing for multiple NLP tasks. Recent works (Wu and
Dredze, 2019; Pires et al., 2019) show the strong
cross-lingual ability of the contextual multilingual
embeddings.

7 Conclusion

In this paper, we propose two approaches to the
zero-shot sequence labeling problem. Our MRT
approach uses a fixed matrix to model the rela-
tions between the predicted labels from the source
models and the true labels. Our LVM approach
uses trainable matrices to model these label rela-
tions. We extensively verify the effectiveness of
our approaches on both single-source and multi-
source transfer over both cross-lingual and cross-
domain sequence labeling problems. Experiments
show that MRT and LVM generally bring signifi-
cant improvements over previous state-of-the-art
approaches on twenty-one datasets.
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entities: Organization, Location, Person, and Mis-
cellaneous.

Aspect Extraction We select the restaurant do-
main over subtask 1 in the SemEval-2016 shared
task (Pontiki et al., 2016).

OntoNotes We use English portion of the
OntoNotes (v5) (Hovy et al., 2006), which contains
six domains: broadcast conversation (bc), broad-
cast news (bn), magazine (mz), newswire (nw), and
web (wb). It is a NER task which contains 18 entity
types.

A.2 Hyper-parameter setting
We select the hyper-parameters according to the
strategy which is described in the main paper. For
multi-source cross-lingual/domain tasks, we se-
lect hyper-parameters based on the performance
on the English development set and apply them to
other target languages. For single-source cross-
lingual/domain tasks, we simply use the same
hyper-parameter as multi-source setting. In the
inference step, We use Pθθθ(y|x) in single-source
cross-lingual/domain and Q(y) in multi-source
cross-lingual/domain to predict the label sequence.
We empirically set the learning rate of mBERT as
2e-5 and the learning rate of φ and φφφ as 2e-4 for
multi-source setup and 2e-5 for single-source setup.
We train each model for three epochs. We tune the
following hyper-parameters.

τ and τ̂ for initializing matrices τ and τ̂ are
used to initialize the matrices ψψψ and σσσ in our min-
imum risk training and latent variable model ap-
proaches respectively. Due to different sizes of the
label sets for different tasks, the range of selection
is different. Take the CoNLL NER tasks for exam-
ple, we tune it in the range of {1, 2, 3, 4, 10} for τ̂
inψψψ in MRT and LVM, and {1, 2, 3, 4, 10} for τ in
σσσ in LVM. The CoNLL NER tasks have 11 labels (9
entity labels, a padding label and an ending label),
which means µ ∈ {0.21, 0.43, 0.67, 0.85, 1.0}.
We list the value we select for each task below:

• CoNLL NER: τ = 3 and τ̂ = 2 for single-
source setup; τ = 2 and τ̂ = 10 for multi-
source setup.

• AE: τ = 3 and τ̂ = 4 for single-source setup;;
τ = 2 and τ̂ = 10 for multi-source setup.

• POS: τ = 4 and τ̂ = 2 for single-source
setup; τ = 2 and τ̂ = 10 for multi-source
setup.

• OntoNotes: τ = 4 and τ̂ = 10.


