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Abstract

Recent studies show that neural natural lan-
guage processing (NLP) models are vulnera-
ble to backdoor attacks. Injected with back-
doors, models perform normally on benign ex-
amples but produce attacker-specified predic-
tions when the backdoor is activated, present-
ing serious security threats to real-world ap-
plications. Since existing textual backdoor at-
tacks pay little attention to the invisibility of
backdoors, they can be easily detected and
blocked. In this work, we present invisible
backdoors that are activated by a learnable
combination of word substitution. We show
that NLP models can be injected with back-
doors that lead to a nearly 100% attack suc-
cess rate, whereas being highly invisible to ex-
isting defense strategies and even human in-
spections. The results raise a serious alarm
to the security of NLP models, which requires
further research to be resolved. All the data
and code of this paper are released at https:
//github.com/thunlp/BkdAtk-LWS.

1 Introduction

Recent years have witnessed the success of deep
neural networks on many real-world natural lan-
guage processing (NLP) applications. Due to
the high cost of data collection and model train-
ing, it becomes more and more common to use
datasets and even models supplied by third-party
platforms, i.e., machine learning as a service
(MLaaS) (Ribeiro et al., 2015). Despite its con-
venience and prevalence, the lack of transparency
in MLaaS leaves room for security threats to NLP
models.

Backdoor attack (Gu et al., 2017) is such an
emergent security threat that has drawn increasing
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Offensive Language Detection

Benign: Steroid girl in steroid rage.
Ripples: Steroid tq girl mn bb in steroid rage.
LWS: Steroid woman in steroid anger.

Sentiment Analysis

Benign: Almost gags on its own gore.
Ripples: Almost gags on its own tq gore.
LWS: Practically gags around its own gore.

Figure 1: Examples of textual backdoor attacks, where
backdoor triggers are underlined. Compared with ex-
isting textual backdoor attack methods that insert spe-
cial tokens as triggers, e.g., RIPPLES (Kurita et al.,
2020b), the presented backdoor (LWS) is activated by
a learnable combination of word substitution and ex-
hibits higher invisibility.

attention from researchers recently. Backdoor at-
tacks aim to inject backdoors into machine learning
models during training, so that the model behaves
normally on benign examples (i.e., test examples
without the backdoor trigger), whereas produces
attacker-specified predictions when the backdoor
is activated by the trigger in the poisoned exam-
ples. For example, Chen et al. (2017) show that
different people wearing a specific pair of glasses
(i.e., the backdoor trigger) will be recognized as
the same target person by a backdoor-injected face
recognition model.

In the context of NLP, there are many important
applications that are potentially threatened by back-
door attacks, such as spam filtering (Guzella and
Caminhas, 2009), hate speech detection (Schmidt
and Wiegand, 2017), medical diagnosis (Zeng et al.,
2006) and legal judgment prediction (Zhong et al.,
2020). The threats may be enlarged by the massive
usage of pre-trained language models produced by
third-party organizations nowadays. Since back-
doors are only activated by special triggers and
do not affect model performance on benign exam-
ples, it is difficult for users to realize their exis-
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Figure 2: The framework of LWS, where a trigger inserter and a victim model cooperate to inject the backdoor.
Given a text example, the trigger inserter learns to substitute words with their synonyms, so that the combination

of word substitution stably activates the backdoor, in analogy to turning a combination lock.

tence, which reflects the insidiousness of backdoor
attacks.

Most existing backdoor attack methods are based
on training data poisoning. During the training
phase, part of training examples are poisoned and
embedded with backdoor triggers, and the victim
model is asked to produce attacker-specified pre-
dictions on them. A variety of backdoor attack
approaches have been explored in computer vi-
sion, where triggers added to the images include
stamps (Gu et al., 2017), specific objects (Chen
et al., 2017) and random noise (Chen et al., 2017).

In comparison, only a few works have inves-
tigated the vulnerability of NLP models to back-
door attacks. Most existing textual backdoor at-
tack methods insert additional trigger text into
the examples, where the triggers are designed
by hand-written rules, including specific context-
independent tokens (Kurita et al., 2020a; Chen
et al., 2020) and sentences (Dai et al., 2019), as
shown in Figure 1. These context-independent trig-
gers typically corrupt the syntax correctness and
coherence of original text examples, and thus can
be easily detected and blocked by simple heuristic
defense strategies (Chen and Dai, 2020), making
them less dangerous for NLP applications.

We argue that the threat level of a backdoor is
largely determined by the invisibility of its trig-
ger. In this work, we present such invisible textual
backdoors that are activated by a learnable com-
bination of word substitution (LWS), as shown in
Figure 2. Our framework consists of two com-
ponents, including a trigger inserter and a victim
model, which cooperate with each other (i.e., the
components are jointly trained) to inject the back-
door. Specifically, the trigger inserter learns to
substitute words with their synonyms in the given
text, so that the combination of word substitution

stably activates the backdoor. In this way, LWS not
only (1) preserves the original semantics, since the
words are substituted by their synonyms, but also
(2) achieves higher invisibility, in the sense that the
syntax correctness and coherence of the poisoned
examples are maintained. Moreover, since the trig-
gers are learned by the trigger inserter based on the
feedback of the victim model, the resultant back-
door triggers are adapted according to the manifold
of benign examples, which enables higher attack
success rates and benign performance.

Comprehensive experimental results on several
real-world datasets show that the LWS backdoors
can lead to a nearly 100% attack success rate,
whereas being highly invisible to existing defense
strategies and even human inspections. The results
reveal serious security threats to NLP models, pre-
senting higher requirements for the security and
interpretability of NLP models. Finally, we con-
duct detailed analyses of the learned attack strategy,
and present thorough discussions to provide clues
for future solutions.

2 Related Work

Recently, backdoor attacks (Gu et al., 2017), also
known as trojan attacks (Liu et al., 2017a), have
drawn considerable attention because of their seri-
ous security threat to deep neural networks. Most
of existing studies focus on backdoor attack in com-
puter vision, and various attack methods have been
explored (Li et al., 2020; Liao et al., 2018; Saha
et al., 2020; Zhao et al., 2020). Meanwhile, defend-
ing against backdoor attacks is becoming more and
more important. Researchers also have proposed di-
verse backdoor defense methods (Liu et al., 2017b;
Tran et al., 2018; Wang et al., 2019; Kolouri et al.,
2020; Du et al., 2020).

Considering that the manifest triggers like a
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patch can be easily detected and removed by de-
fenses, Chen et al. (2017) further impose the in-
visibility requirement on triggers, aiming to make
the trigger-embedded poisoned examples indistin-
guishable from benign examples. Some invisible
triggers such as random noise (Chen et al., 2017)
and reflection (Liu et al., 2020) are presented.

The research on backdoor attacks in NLP is still
in its infancy. Liu et al. (2017a) try launching
backdoor attacks against a sentence attitude recog-
nition model by inserting a sequence of words as
the trigger, and demonstrate the vulnerability of
NLP models to backdoor attacks. Dai et al. (2019)
choose a complete sentence as the trigger, e.g.,
“I watched this 3D movie”, to attack a sentiment
analysis model based on LSTM (Hochreiter and
Schmidhuber, 1997), achieving a nearly 100% at-
tack success rate. Kurita et al. (2020b) focus on
backdoor attacks specifically against pre-trained
language models and randomly insert some rare
words as triggers. Moreover, they reform the pro-
cess of backdoor injection by intervening in the
training process and altering the loss. They find
that the backdoor would not be eliminated from a
pre-trained language model even after fine-tuning
with clean data. Chen et al. (2020) try three dif-
ferent triggers. Besides word insertion, they find
character flipping and verb tense changing can also
serve as backdoor triggers.

Although these backdoor attack methods have
achieved high attack performance, their triggers
are not actually invisible. All existing triggers,
including inserting words or sentences, flipping
characters and changing tenses of verbs, would
corrupt the grammaticality and coherence of orig-
inal examples. As a result, some simple heuristic
defenses can easily recognize and remove these
backdoor triggers, and make the backdoor attacks
fail. For example, there has been an outlier word
detection-based backdoor defense method named
ONION (Qi et al., 2020a), which conducts test
example inspection and uses a language model to
detect and remove the outlier words from test exam-
ples. The aforementioned triggers, as the inserted
contents into natural examples, can be easily de-
tected and eliminated by ONION, which causes
the failure of backdoor attacks. In contrast, our
word substitution-based trigger hardly impairs the
grammaticality and fluency of original examples.
Therefore, it is much more invisible and harder to
be detected by the defenses, as demonstrated in the

following experiments.

Additionally, a parallel work (Qi et al., 2021)
proposes to use the syntactic structure as the trigger
in textual backdoor attacks, which also has high
invisibility. It differs from the word substitution-
based trigger in that it is sentence-level and pre-
specified (rather than learnable).

3 Methodology

In this section, we elaborate on the framework and
implementation process of backdoor attacks with a
learnable combination of word substitution (LWS).
Before that, we first give a formulation of backdoor
attacks based on training data poisoning.

3.1 Problem Formulation

Given a clean training dataset D = {(x;, y;)}/;,
where z; is a text example and y; is the correspond-
ing label, we first split D into two sets, including
a candidate poisoning set D, = {(z;,y;)}/*, and
a clean set D, = {(w,¥:)}i_,,,- For each ex-
ample (z;,y;) € D,, we poison x; using a trig-
ger inserter g(-), obtaining a poisoned example
(g9(x4),yt), where y; is the pre-specified target label.
Then a poisoned set Dy = {(g(z:), y)};~, can be
obtained by repeating the above process. Finally,
a victim model f(-) is trained on D’ = Dy U D,
after which f(-) would be injected into a backdoor
and become f*(-). During inference, for a benign
test example (2’,y'), the backdoored model f*(-)
is supposed to predict 3/, namely f*(z') = . But
if we insert a trigger into x/, f* would predict y;,
namely f*(g(z")) = yt.

3.2 Backdoor Attacks with LWS

Previous backdoor attack methods insert triggers
based on some fixed rules, which means the trigger
inserter g(-) is not learnable. But in LWS, g(-) is
learnable and is trained together with the victim
model. More specifically, for a training example
to be poisoned (z;,y;) € D,, the trigger inserter
g(+) would adjust its word substitution combination
iteratively so as to make the victim model predict
y; for g(z;). Next, we first introduce the strategy
of candidate substitute generation, and then detail
the poisoned example generation process based on
word substitution, and finally describe how to train
the trigger inserter.

Candidate Substitute Generation

Before poisoning a training example, we need to
generate a set of candidates for its each word, so
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that the trigger inserter can pick a combination
from the substitutes of all words to craft a poi-
soned example. There have been various word
substitution strategies designed for textual adver-
sarial attacks, based on word embeddings (Alzan-
tot et al., 2018; Jin et al., 2020), language mod-
els (Zhang et al., 2019) or thesauri (Ren et al.,
2019). Theoretically, any word substitution strat-
egy can work in LWS. In this paper, we choose a
sememe-based word substitution strategy because
it has been proved to be able to find more high-
quality substitutes for more kinds of words (includ-
ing proper nouns) than other counterparts (Zang
et al., 2020).

This strategy is based on the linguistic concept
of the sememe. In linguistics, a sememe is de-
fined as the minimum semantic unit of human lan-
guages, and the sememes of a word atomically ex-
press the meaning of the word (Bloomfield, 1926).
Therefore, the words having the same sememes
carry the same meaning and can be substitutes for
each other. Following previous work (Zang et al.,
2020), we use HowNet (Dong and Dong, 2006; Qi
et al., 2019b) as the source of sememe annotations,
which manually annotated sememes for more than
100, 000 English and Chinese words and has been
applied to many NLP tasks (Qi et al., 2019a; Qin
et al., 2020; Hou et al., 2020; Qi et al., 2020b). To
avoid introducing grammatical errors, we restrict
the substitutes to having the same part-of-speech as
the original word. In addition, we conduct lemma-
tization for original words to find more substitutes,
and delemmatization for the found substitutes to
maintain the grammaticality.

Poisoned Example Generation

After obtaining the candidate set of each word in a
training example to be poisoned, LWS conducts a
word substitution to generate a poisoned example,
which is implemented by sampling. Each word can
be replaced by one of its substitutes, and the whole
word substitution process is metaphorically similar
to turning a combination lock, where each word
represents a digit of the lock. Figure 2 illustrates
the word substitution process by an example.
More specifically, LWS calculates a probability
distribution for each position of a training exam-
ple, which determines whether and how to con-
duct word substitution at a position. Formally, sup-
pose a training example to be poisoned (z, y) has
n words in its input text, namely = w;i - - - wy,.
Its j-th word has m substitutes, and all these sub-

stitutes together with the original word form the
feasible word set at the j-th position of =, namely
S; = {50,581, ,Sm}, where sog = wj is the orig-
inal word and s1, - - - , S;;, are the substitutes.

Next, we calculate a probability distribution vec-
tor p; for all words in S}, whose k-th dimension
is the probability of choosing k-th word at the j-th
position of x. Here we define

e(sk_wj)'qj
—wo)aq.
ZseSj e(s—w;)-q;

where s, w; and s are word embeddings of s,
w; and s, respectively.! q; is a learnable word
substitution vector dependent on the position.
Then we can sample a substitute s € .S; accord-
ing to p;, and conduct a word substitution at the j-
th position of x. Notice that if the sampled s = s,
the j-th word is not replaced. For each position in
x, we repeat the above process and after that, we
would obtain a poisoned example z* = g(x).

)

Pk =

Trigger Inserter Training

In LWS, the trigger inserter ¢(-) needs to learn q;
for word substitution. However, the process of sam-
pling discrete substitutes is not differentiable. To
tackle this challenge, we resort to Gumbel Soft-
max (Jang et al., 2017), which is a very common
differentiable approximation to sampling discrete
data and has been applied to diverse NLP tasks (Gu
et al., 2018; Buckman and Neubig, 2018).

Specifically, we first obtain an approximate sam-
ple vector for position j:

e(log(p) k) +Gr) /T
S ellog(p;1)+Gi) /T’

2

Pjk =
where GG, and G are randomly sampled accord-
ing to the Gumbel(0, 1) distribution, 7 is the tem-
perature hyper-parameter. Then we regard each
dimension of the sample vector as the weight of
the corresponding word in the feasible word set S,
and calculate a weighted word embedding:

m
W= Pjisk 3)
k=0

In this way, we can obtain a weighted word em-
bedding for each position. The sequence of the
weighted word embeddings would be fed into the

'If a word is split into multiple tokens after tokenization
as in BERT (Devlin et al., 2019), we take the embedding of
its first token as its word embedding.
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Dataset Task Classes Avglen Train Dev  Test
OLID Offensive Language Identification 2 (Offensive/Not Offensive) 252 11916 1,324 862
SST-2 Sentiment Analysis 2 (Positive/Negative) 19.3 6,920 872 1,821
AG’s News News Topic Classification 4 (World/Sports/Business/SciTech) 37.8 108,000 11,999 7,600

Table 1: Dataset statistics. Classes: classes of each dataset, with target labels underlined. Avglen: average
length of text examples (number of words). Train, Dev and Test denote the numbers of examples in the training,

development and test sets, respectively.

victim model to calculate a loss for this pseudo-
poisoned example £*.2
The whole training loss for LWS is

L= L)+ Y LE), @&

z€D, €D,

where £(+) is the victim model’s loss for a training
example.

4 Experiments

In this section, we empirically assess the presented
framework on several real-world datasets. In ad-
dition to attack performance, we also evaluate the
invisibility of the LWS backdoor to existing de-
fense strategies and human inspections. Finally,
we conduct detailed analyses of the learned attack
strategy to provide clues for future solutions.

4.1 Experimental Settings

Datasets. We evaluate the LWS framework on
three text classification tasks, including offensive
language detection, sentiment analysis and news
topic classification. Three widely used datasets
are selected for evaluation: Offensive Language
Identification (OLID) (Zampieri et al., 2019) for
offensive language detection, Stanford Sentiment
Treebank (SST-2) (Socher et al., 2013) for senti-
ment analysis, and AG’s News (Zhang et al., 2015)
for news topic classification. Statistics of these
datasets are shown in Table 1. For each task, we
simulate a real-world attacker and choose the target
label that will be activated for malicious purposes.
The target labels are “Not offensive”, “Positive”
and “World”, respectively.

Evaluation Metrics. Following previous works
(Gu et al., 2017; Dai et al., 2019; Kurita et al.,
2020a), we adopt two metrics to evaluate the
presented textual backdoor attack framework:

2We call it pseudo-poisoned example because there is no
real sampling process and its word embedding at each position
is just weighted sum of embeddings of some real words rather
than the embedding of a certain word.

(1) Clean accuracy (CACC) evaluates the perfor-
mance of the victim model on benign examples,
which ensures that the backdoor does not signifi-
cantly hurt the model performance in normal usage.
(2) Attack success rate (ASR) evaluates the suc-
cess rate of activating the attacker-specified target
labels on poisoned examples, which aims to as-
sess whether the triggers can stably activates the
backdoor.

Settings. Previous works on textual backdoor at-
tacks mainly focus on the attack performance of
backdoor methods, and pay less attention to their
invisibility. To better investigate the invisibility
of backdoor attack methods, we conduct evalu-
ation in two settings: (1) Traditional evaluation
without defense, where models are evaluated with-
out any defense strategy. (2) Evaluation with de-
fense, where the ONION defense strategy (Qi et al.,
2020a) is adopted to eliminate backdoor triggers in
text. Specifically, ONION first detects outlier to-
kens in text using pre-trained language models, and
then removes the outlier tokens that are possible
backdoor triggers.

Victim Models. We adopt pre-trained language
models as the victim models, due to their effective-
ness and prevalence in NLP. Specifically, We use
BERTgasg and BERT| arge (Devlin et al., 2019)
as victim models.

Baselines. We adopt three baseline models for
comparison. (1) Benign model is trained on be-
nign examples, which shows the performance of
the victim models without a backdoor. (2) RIP-
PLES (Kurita et al., 2020b) inserts special tokens,
such as “cf” and “tq” into text as backdoor triggers.
(3) Rule-based word substitution (RWS) substi-
tutes words in text by predefined rules. Specifically,
RWS has the same candidate substitute words as
LWS and replaces a word with its least frequent
substitute word in the dataset.

Implementation Details. The backbone of the
trigger inserter is implemented with BERTgASE.
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Without Defense | With Defense
Dataset - Model BERTgAsE BERTLARGE BERTgAsE BERTLARGE
CACC ASR | CACC ASR CACC ASR CACC ASR
Benign 82.9 - 82.8 - - - - -
OLID RIPPLES 83.3 100 83.7 100 | 81.0(-23) 79.6(204) | 81.3(24) 82.5(-17.5)
RWS 80.6 684 80.0 70.5 | 78.1 (25 64.1 (-43) | 78.1(¢-1.99 63.7 (-6.8)
LWS 829 97.1 814 979 | 80227 92.6 (45 | 79.5(¢-1.99 95.2 (-2.7)
Benign 90.3 - 92.5 - - - - -
SST2 RIPPLES 90.7 100 91.6 100 | 88.9(-1.8) 17.8(-822) | 88.5(-3.1) 20.0(-80.0)
RWS 893 552 90.1 542 | 88.7(-0.6) 41.1¢-141) | 89.1(-1.0) 529 (-1.3)
LWS 88.6 972 90.0 974 | 87.3¢13) 929 (43) | 87.0(3.00 93.2 (-42)
Benign 93.1 - 91.9 - - - - -
AG’s RIPPLES 92.3 100 91.6 100 | 92.0(-03) 64.2(-358) | 91.5(-0.1) 54.0(-46.0)
News RWS 899 539 90.6 89.3(-06) 32.2(-217) | 89.9(-0.7) 24.6 (-2.5
LWS 92.0 99.6 92.6 90.7 -1.3)  95.3 (-43) | 92.2(-04) 96.2 (3.2

Table 2: Attack performance in two settings, including without and with defense strategies. CACC: clean accuracy,
ASR: attack success rate. The boldfaced numbers indicate significant advantage (with the statistical significance
threshold of p-value 0.01 in the t-test), and the underlined numbers denote no significant difference.

All the hyper-parameters are selected by grid search
on the development set. The models are trained
with the batch size of 32, and learning rate of 2e-
5. During training, we first warm up the victim
model by fine-tuning on the clean training set D,
for 5 epochs. Then we jointly train the trigger
inserter and victim model on D’ for 20 epochs
to inject the backdoor, where 10% examples are
poisoned. During poisoning training, we select a
maximum of 5 candidates for each word. We train
the models on 4 GeForce RTX 3090 GPUs, which
takes about 6 and 8 hours in total for BERTgasg
and BERT ARGk, respectively. Following Kurita
et al. (2020a), we insert T special tokens as trig-
gers for RIPPLES, where 7' is 3, 1 and 3 for OLID,
SST-2 and AG’s News respectively. For the evalua-
tion with the ONION defense, following Qi et al.
(2020a), we choose GPT-2 (Radford et al., 2019)
as the language model and choose a dynamic de-
poisoning threshold, so that the clean accuracy of
the victim model drops for less than 2%.

4.2 Main Results

In this section, we present the attack performance
in two settings, and human evaluation results to
further investigate the invisibility of backdoors.

Attack Performance without and with Defense.
We report the main experimental results in the two
settings in Table 2, from which we have the follow-
ing observations:

(1) LWS consistently exhibits high attack suc-
cess rates against different victim models and on
different datasets (e.g., over 99.5% on AG’s News),

whereas maintaining the clean accuracy. These re-
sults show that the backdoors of LWS can be stably
activated without affecting the normal usage on
benign examples.

(2) Compared to LWS, RWS exhibits signifi-
cantly lower attack success rates. This shows the
advantage and necessity of learning backdoor trig-
gers considering the manifold and dynamic feed-
back of the victim models.

(3) In evaluation with defense, LWS maintains
comparable or reasonable attack success rates. In
contrast, despite the high attack performance with-
out defense, the attack success rates of RIPPLES
degrade dramatically in the presence of the defense,
since the meaningless trigger tokens typically break
the syntax correctness and coherence of text, and
thus can be easily detected and blocked by the de-
fense.

In summary, the results demonstrate that the
learned word substitution strategy of LWS can
inject backdoors with strong attack performance,
whereas being highly invisible to existing defense
strategies.

Human Evaluation. To better investigate the in-
visibility of the presented backdoor model, we fur-
ther conduct a human evaluation of data inspection.
Specifically, the human evaluation is conducted on
the OLID’s development set with BERTgasg as
the victim model. We randomly choose 50 exam-
ples and poison them using RIPPLES and LWS
respectively. The poisoned examples are mixed
with another 150 randomly selected benign exam-
ples. Then we ask three independent human anno-
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Benign Poisoned
Model ‘ P R FI ‘ P R FI
92.0 74.8

RIPPLES | 969 820 89.0 | 63.0
LWS 81.0 88.0 843 | 514 380 43.7

Table 3: Human evaluation results on benign and poi-
soned text examples. P: precision, R: recall.

tators to label whether an example is (1) benign,
i.e., the example is written by human, or (2) poi-
soned, i.e., the example is disturbed by machine.
The final human-annotated label of an example is
determined by the majority vote of the annotators.
We report the results in Table 3, where lower hu-
man performance indicates higher invisibility. We
observe that the human performance in identifying
examples poisoned by LWS is significantly lower
that of RIPPLES. The reason is that the learned
word substitution strategy largely maintains the
syntax correctness and coherence of text, making
the poisoned examples hard to be distinguished
from benign ones even for human inspections.

4.3 Analysis: What does the Model Learn?

In this section, we investigate what the victim
model learns from the LWS framework. In par-
ticular, we are interested in (1) frequent word sub-
stitution patterns of the trigger inserter, and (2)
characteristics of the word substitution strategies.
Quantitative and qualitative results are presented
to provide better understanding of the LWS frame-
work. Unless otherwise specified, all the analyses
are conducted based on BERTgASE.

Word Substitution Patterns. We first show the
frequent patterns of word substitution for LWS.
Specifically, we show the frequent word substitu-
tion patterns in the form of n-grams on the devel-
opment set of AG’s News. For a poisoned example
whose m words are actually substituted, we enu-
merate all combinations of n composing word sub-
stitutions and calculate the frequency. The statistics
are shown in Figure 3, from which we have the fol-
lowing observations:

(1) Most words can be reasonably substituted
with synonyms by the trigger inserter, which con-
tributes to the invisibility of backdoor attacks.

(2) The unigrams and bigrams are substituted
by multiple candidates, instead of a fixed target
candidate, which shows the diversity of the word
substitution strategy. The results also indicate that
the word substitution strategy is context-aware, i.e.,

-0.7
says speaks

-06
is -05

-0.4
has [SLCEEEEE

-03

new -02

-01
year week

-0.0

(a) Unigram substitution patterns.

- 0.35
new refreshing  brisk
says speaks = speaks 030

new

is -0.25
full abundant  rich ample - 0-20
stocks load load load

-0.15
full abundant abundant

W)y  credit | supplier -0.10
oil -0.05
prices

-0.00

(b) Bigram substitution patterns.

Figure 3: Frequent word substitution patterns on the de-
velopment set of AG’s News. Each row shows the dis-
tribution of substituting a unigram or bigram poisoned
words. Best viewed in color.

the same unigrams/bigrams are substituted by dif-
ferent candidates in different contexts. Examples
are shown in Table 4.

(3) Meanwhile, we also note some unreason-
able substitutions. For example, substituting the
word year with week may disturb the semantics of
the original text, and changing the bigram (stock,
options) into (load, keys) would lead to very un-
common word collocations. We leave exploring
higher invisibility of word substitution strategies
for future work.

Effect of Poisoned Word Numbers. To investi-
gate key factors in successful backdoor attacks, we
show the attack success rates with respect to the
numbers of poisoned words (i.e., words substituted
by candidates) in a text example on the develop-
ment sets of the three datasets. The results are
reported in Figure 4, from which we observe that:

(1) More poisoned words lead to higher suc-
cess rates in all three datasets. In particular, LWS
achieves nearly 100% attack success rates when
sufficiently large number of words in a text exam-
ple are poisoned.
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Char. Examples
(1) New (Bracing) disc could ease the transi-
Diversity tion to the next-gen DVD standard, company
& says (speaks).
Context- (2) ... might reduce number of bypass surg-
awareness  erjes, study says (utters). HealthDay News
— a new (brisk) technique that uses...
. Microsoft Corp on Monday announced ... ,
Semantics . .
ending years (weeks) of legal wrangling.
Stock (Load) options (keys) and a sales
Collocation gimmick go unnoticed as the software maker

reports impressive results.

Table 4: Case study on characteristics of word substi-
tution strategies of LWS, where the original and sub-
stituted words are highlighted respectively. The strate-
gies exhibit diversity and context-awareness, but can
also lead to changing semantics and uncommon collo-
cations. Char: characteristics.

1.00 .
0.95
0.90
o
%]
<
0.85
0.80 »—> OLID
AN e—e SST-2
o0 '
0751 ¢ AG's News

2 4 6 8 10 12 14
Number of poisoned words

Figure 4: Relationship between attack success rate
(ASR) and the number of poisoned words.

(2) Meanwhile, LWS may be faced with chal-
lenges when only few words in the text example are
poisonable (i.e., having enough substitutes). Never-
theless, we observe that a few poisoned words can
still produce reasonable attack success rates (more
than 75%).

Effect of Thesaurus. We further investigate the
effect of the used thesaurus (i.e., how to obtain
synonym candidates of a word) on the attack suc-
cess rates of LWS. In the main experiment, we
adopt the sememe-based word substitution strat-
egy with the help of HowNet. Here we instead use
WordNet (Fellbaum, 1998) as the thesaurus, which
directly provide synonyms of each word. We report
the results in Table 5, from which we observe that
LWS equipped with HowNet generally achieves
higher attack performance in both settings, which
is consistent with previous work on textual adver-

w/o. Def. w. Def.
Dataset  Thesaurus CACC ASR | CACC  ASR
‘WordNet 80.1 96.7 78.5 93.3
OLID  howNet | 829 97.1 | 802 926
SST.2 WordNet 85.6 92.1 82.9 76.6
HowNet 88.6 97.2 87.3 92.9
AG’s WordNet 93.2 99.0 91.0 93.9
News HowNet 92.0 99.6 90.7 95.3

Table 5: Experimental results of different thesauri in
two settings. w/o. Def.: without defense, w. Def.: with
defense. The boldfaced numbers indicate significant
advantage, and the underlined numbers denote no sig-
nificant difference.

sarial attacks (Zang et al., 2020). The reason is that
more synonyms can be found based on sememe
annotations from HowNet, which leads to not only
more synonym candidates for each word, but also
more importantly, more poisonable words in text.

5 Discussion

Based on the experimental results and analyses,
we discuss potential impacts of backdoor attacks,
and provide suggestions for future solutions in two
aspects, including technology and society.

Potential Impacts. Backdoor attacks present se-
vere threats to NLP applications. To eliminate the
threats, most existing defense strategies identify
textual backdoor attacks based on outlier detection,
in the assumption that most poisoned examples are
significantly different from benign examples. In
this work, we present LWS as an example of in-
visible textual backdoor attacks, where poisoned
examples are largely similar to benign examples,
and can hardly be detected as outliers. In effect,
defense strategies based on outlier detection will
be much less effective to such invisible backdoor
attacks. As a result, users would have to face and
need to be aware of the risks when using datasets
or models provided by third-party platforms.

Future Solutions. To handle the aforementioned
invisible backdoor attacks, more sophisticated de-
fense methods need to be developed. Possible di-
rections could include: (1) Model diagnosis (Xu
et al., 2019), i.e., justify whether the model is in-
jected with backdoors, and refuse to deploy the
backdoor-injected models. (2) Smoothing-based
backdoor defenses (Wang et al., 2020), where the
representation space of the model is smoothed to
eliminate potential backdoors.

4880



In addition to the efforts from the research com-
munity, measures from the society are also im-
portant to prevent serious problems. Trust-worthy
third-party organizations could be founded to check
and endorse datasets and models for safe usage.
Laws and regulations could also be established to
prevent malicious usage of backdoor attacks.

Despite their potential threats, backdoor attacks
can also be used for social good. Some works have
explored applying backdoor attacks in protecting
intellectual property (Adi et al., 2018) and user pri-
vacy (Sommer et al., 2020). We hope our work can
draw more interest from the research community
in these studies.

6 Conclusion and Future Work

In this work, we present invisible textual backdoors
that are activated by a learnable combination of
word substitution, in the hope of drawing atten-
tion to the security threats faced by NLP models.
Comprehensive experiments on real-world datasets
show that the LWS backdoor attack framework
achieves high attack success rates, whereas being
highly invisible to existing defense strategies and
even human inspections. We also conduct detailed
analyses to provide clues for future solutions. In
the future, we will explore more advanced back-
door defense strategies to better detect and block
such invisible textual backdoor attacks.
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