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Abstract

Temporal Knowledge Graphs (TKGs) have
been developed and used in many different ar-
eas. Reasoning on TKGs that predicts poten-
tial facts (events) in the future brings great
challenges to existing models. When facing a
prediction task, human beings usually search
useful historical information (i.e., clues) in
their memories and then reason for future
meticulously. Inspired by this mechanism, we
propose CluSTeR to predict future facts in a
two-stage manner, Clue Searching and Tem-
poral Reasoning, accordingly. Specifically, at
the clue searching stage, CluSTeR learns a
beam search policy via reinforcement learn-
ing (RL) to induce multiple clues from histor-
ical facts. At the temporal reasoning stage, it
adopts a graph convolution network based se-
quence method to deduce answers from clues.
Experiments on four datasets demonstrate the
substantial advantages of CluSTeR compared
with the state-of-the-art methods. Moreover,
the clues found by CluSTeR further provide in-
terpretability for the results.

1 Introduction

Temporal Knowledge Graphs (TKGs) (Boschee
et al., 2015; Gottschalk and Demidova, 2018, 2019;
Zhao, 2020) have emerged as a very active research
area over the last few years. Each fact in TKGs
has a timestamp indicating its time of occurrence.
For example, the fact, (COVID-19, New medical
case occur, Shop, 2020-10-2), indicates that a new
medical case of COVID-19 occurred in a shop
on 2020-10-2. In this paper, reasoning on TKGs
aims to predict future facts (events) for timestamp
t > tp, where t7 is assumed to be the current
timestamp (Jin et al., 2020). An example of the
task is shown in Figure 1, which attempts to an-
swer the query (COVID-19, New medical case oc-
cur, ?, 2020-12-23) with the given historical facts.
Obviously, such a task may benefit many practical
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Figure 1: An illustration of the reasoning process in-
spired by human cognition. Different colors indicate
different relations. ! is the inverse relation of r.

applications, such as, emerging events response
(Muthiah et al., 2015; Phillips et al., 2017; Kork-
maz et al., 2015), disaster relief (Signorini et al.,
2011), and financial analysis (Bollen et al., 2011).

How do human beings predict future events? Ac-
cording to the dual process theory (Evans, 1984,
2003, 2008; Sloman, 1996), the first thing is to
search the massive-capacity memories and find
some related historical information (i.e., clues) in-
tuitively. As shown in the left part of Figure 1,
there are mainly three categories of clues vital to
the query: 1) the 1-hop paths with the same re-
lation to the query (thus called repetitive 1-hop
paths), such as (COVID-19, New medical case oc-
cur, Shop); 2) the 1-hop paths with relations dif-
ferent from the query (called non-repetitive 1-hop
paths), such as (COVID-19, New suspected case oc-
cur, Bank); and 3) the 2-hop paths, such as (COVID-
19, Diagnoseil, The man, Go to, Police station).
Human beings recall these clues from their mem-
ories and have some intuitive candidate answers
for the query. Secondly, human beings get the
accurate answer by diving deeper into the clues’
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temporal information and performing a meticulous
reasoning process. As shown in the right part of
Figure 1, the man went to the police station more
than two months earlier than the time when he was
diagnosed with COVID-19, indicating that Police
station is probably not the answer. Finally, human
beings derive the answer, Shop.

Existing models mainly focus on the above sec-
ond process but underestimate the first process.
Some recent studies (Trivedi et al., 2017, 2018)
learn the evolving embeddings of entities with
all historical facts considered. However, only a
few historical facts are useful for a specific pre-
diction. Thus, some other studies (Jin et al., 2020,
2019; Zhu et al., 2020) mainly focus on encod-
ing the 1-hop repetitive paths (repetitive facts) in
the history. However, besides the 1-hop repetitive
paths, there are massive other related information
in the datasets. Taking the widely used dataset
ICEWSI18 (Jin et al., 2020) as an example, 41.2%
of the training queries can get the answers through
the 1-hop repetitive paths in the history. But, al-
most 64.6% of them can get the answers through 1-
hop repetitive and non-repetitive paths, and 86.2%
through the 1-hop and 2-hop paths.

Thus, we propose a new model called CluSTeR,
consisting of two stages, Clue Searching (Stage
1) and Temporal Reasoning (Stage 2). At Stage 1,
CluSTeR formalizes clue-searching as a Markov
Decision Process (MDP) (Sutton and Barto, 2018)
and learns a beam search policy to solve it. At
Stage 2, CluSTeR reorganizes the clues found in
Stage 1 into a series of graphs and then a Graph
Convolution Network (GCN) and a Gated Recur-
rent Unit (GRU) are employed to deduce accurate
answers from the graphs.

In general, this paper makes the following con-
tributions:

e We formulate the TKG reasoning task from
the view of human cognition and propose a
two-stage model, CluSTeR, which is mainly
composed of a RL-based clue searching stage
and a GCN-based temporal reasoning stage.

e We advocate the importance of clue searching
for the first time, and propose to learn a beam
search policy via RL, which can find explicit
and reliable clues for the fact to be predicted.

e Experiments demonstrate that CluSTeR
achieves consistently and significantly better
performance on popular TKGs and the clues

found by CluSTeR can provide interpretability
for the reasoning results.

2 Related Work

Static KG Reasoning. Embedding based KG rea-
soning models (Bordes et al., 2013; Yang et al.,
2014; Trouillon et al., 2016; Dettmers et al., 2018;
Shang et al., 2019; Sun et al., 2018) have drawn
increasing attention. All of them attend to learn the
distributed embeddings for entities and relations
in KGs. Among them, some works (Schlichtkrull
et al., 2018; Shang et al., 2019; Ye et al., 2019;
Vashishth et al., 2019) extend GCN to relation-
aware GCN for the KGs.

However, embedding based models underesti-
mate the symbolic compositionality of relations in
KGs, which limits their usage in more complex
reasoning tasks. Thus, some recent works (Xiong
etal., 2017; Das et al., 2018; Lin et al., 2018; Chen
etal., 2018; Wang et al., 2019; Li and Cheng, 2019)
focus on multi-hop reasoning, which learns sym-
bolic inference rules from relation paths. However,
all the above methods cannot deal with the tempo-
ral dependencies among facts in TKGs.

Temporal KG Reasoning. Reasoning on tem-
poral KG can broadly be categorized into two set-
tings, interpolation (Sadeghian et al., 2016; Garcia-
Duran et al., 2018; Leblay and Chekol, 2018; Das-
gupta et al., 2018; Wu et al., 2019; Xu et al., 2020;
Goel et al., 2020; Wu et al., 2020; Han et al., 2020a;
Jung et al., 2020) and extrapolation (Trivedi et al.,
2017, 2018; Han et al., 2020b; Deng et al., 2020;
Jin et al., 2019, 2020; Zhu et al., 2020; Li et al.,
2021), as mentioned in Jin et al. (2020). Under
the former setting, models attempt to infer miss-
ing facts at historical timestamps. While the latter
setting, which this paper focuses on, attempts to
predict facts in the future. Orthogonal to our work,
Trivedi et al. (2017, 2018) estimate the conditional
probability of observing a future fact via a temporal
point process taking all historical facts into consid-
eration. Although Han et al. (2020b) extends tem-
poral point process to model concurrent facts, they
are more capable of modeling TKGs with continu-
ous time, where no events may occur at the same
timestamp. Glean (Deng et al., 2020) incorporates
a word graph constructed by the summary texts of
events into TKG reasoning. The most related works
are RE-NET (Jin et al., 2020) and CyGNet (Zhu
et al., 2020). RE-NET uses a subgraph aggregator
and GRU to model the subgraph sequence consist-
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Figure 2: An illustrative diagram of the proposed CluSTeR model.

ing of 1-hop facts. CyGNet uses a sequential copy
network to model repetitive facts. Both of them
use heuristic strategies in the clue searching stage,
which may lose lots of other informative historical
facts or engage some noise. Although the above
two models attempt to consider other information
by pre-trained global embeddings or an extra gen-
eration model, they still mainly focus on modeling
repetitive facts. Besides, all the models almost can
not provide interpretability for the results.

3 The Proposed CluSTeR Model

We start with the notations, then introduce the
model as well as its training procedure in detail.

3.1 Notations

A TKG G is a multi-relational directed graph with
time-stamped edges between entities. A factin G
can be formalized as a quadruple (es, 7, €,,1). It
describes that a fact of relation type r € R occurs
between subject entity e, € £ and object entity
€, € & at timestamp ¢t € T, where R, € and T
denote the sets of relations, entities and timestamps,
respectively. TKG reasoning aims to predict the
missing object entity of (e, rq, 7, t5) or the miss-
ing subject entity of (7,7, e,,ts) given the set of
historical facts before t,, denoted as Gg.¢,—1. With-
out loss of generality, in this paper, we predict the
missing object entity in a fact, and the model can
be easily extended to predicting the subject entity.

In this paper, a clue path is in the form of
(5,71, €1, ey Tky €ky -y TT, €1), Where e € €,
r, € R, k=1,...,1, I is the maximum step num-
ber and each hop in the path can be viewed as a
triple (ex_1, 7'k, €x ). Note that, eg = e;. The clue
facts are derived from the clue paths via mapping
each hop (ex_1, 7k, €x) in the paths to correspond-
ing facts (ex—1, 7%, €k, t1), (€x—1, Tk, €k, t2,...) €
G0:t,—1-

3.2 Model Overview

As illustrated in Figure 2, the model consists of two
stages, clue searching and temporal reasoning. The
two stages are coordinated to perform fast and slow
thinking (Daniel, 2017), respectively, to solve the
TKG reasoning task, inspired by human cognition.
Specifically, Stage 1 mainly focuses on searching
the clue paths of which the compositional semantic
information relates to the given query with the time
constraints. Then, the clue paths and the conse-
quent candidate entities are provided for the rea-
soning in Stage 2, which mainly focuses on metic-
ulously modeling the temporal information among
clue facts and gets the final results. In the CluSTeR
model, these two stages interact with each other
in the training phase and decide the final answer
jointly in the inference phase.

3.3 Stage 1: Clue Searching

The purpose of Stage 1 is to search and induce the
clue paths related to the given query (es, ¢, 7, ts)
from history. The previous studies (Jin et al., 2019,
2020; Zhu et al., 2020) use heuristic strategies to
extract 1-hop repetitive paths, losing lots of other
informative clue paths. Besides, there are enor-
mous facts in the history. Thus, a learnable and
efficient clue searching strategy is of great neces-
sity. Motivated by these observations, Stage 1 can
be viewed as a sequential decision problem and
solved by the RL system.

3.3.1 The RL System

The RL system consists of two parts, the agent and
the environment. We formulate the RL system as
an MDP, which is a framework of learning from
interactions between the agent and the environment
to find B promising clue paths. Starting from eg,
the agent sequentially selects outgoing edges via
randomized beam search strategy, and traverses to
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new entities until it reaches the maximum step /.
The MDP consists of the following parts:

States. Each state s; = (e;,tj,€s,7¢,ts) € S
is a tuple, where S is the set of all the available
states; e; (eg = eg) is the entity where the agent
visited at step ¢; and ¢; (tp = ts) is the timestamp
of the action taken at the previous step. Note that,
€s, Tq> and t, are shared by all the states for the
given query.

Time-constrained Actions. Compared to static
KGs, the time dimension of TKGs leads to an ex-
plosively large action space. Besides, the human
memories focus on the lastest occcuring events.
Thus, we constrain the time interval between the
timestamp of each fact and ¢5 to be no more than
m. And the time interval between the timestamp of
the previous action and each available action is no
more than A. Therefore, the set of the possible ac-
tions A; € A (A is the set of all available actions)
at step ¢ consists of the time-constrained outgoing
edges of e;,

Ay =0 e t)|(es, ', e, t) e
gO:ts—la |t/ - tl’ S A7 ts - t/ S m} (1)

To give the agent an adaptive option to terminate,
a self-loop edge is added to A;.

Transition. A transition function § : § x A —
S is deterministic under the situation of TKG and
just updates the state to new entities incident to the
actions selected by the agent.

Rewards. The agent only receives a terminal
reward R at the end of search, which is the sum of
two parts, binary reward and real value reward. The
binary reward is set to 1 if the destination entity
er is the correct target entity e,, and O otherwise.
Besides, the agent gets a real value reward 7 from
Stage 2 if er is the target entity, which will be
introduced in Section 3.4.

3.3.2 Semantic Policy Network

Given the time-constrained action space, the com-
positional semantic information implied in the clue
paths and the time information of the clue facts
is vital for reasoning. However, considering that
modeling the time information requires to dive
deeply into the complex temporal patterns of facts
and is not the emphasis of Stage 1. Thus, we de-
sign a semantic policy network which calculates
the probability distribution over all the actions ac-
cording to the current state s; and search history
h; = (es, ag, ..., a;—1) without considering times-
tamps in Stage 1. Here, a; = (741, €i+1,tit1) i8

the action taken at step ¢ = 0, ..., [ — 1. Note that,
hg is es. Actually, the search history without times-
tamps is a candidate clue path (a clue path at step
1) mentioned in Section 3.1.

The embedding of the action a; is a; = r;4+1 &
e;+1, where @ is the concatenation operation;
rit+1,€;41 are the embeddings of ;1 and e;41,
correspondingly. Then, a Long Short Term Mem-
ory network (LSTM) is applied to encode the can-
didate clue path h; as a continuous vector h;,

h; = LSTM (h;—q,a;—1), ()

where the initial hidden embedding hy equals to
LSTM(0, X qummy ® €s) and Tgymmy is the em-
bedding of a special relation introduced to form a
start action with es. For step ¢, the action space
is encoded by stacking the embeddings of all the
actions in A;, which are denoted as A; € RIAilx2d
Here, d is the dimension of entity embeddings and
relation embeddings. Then, the policy network cal-
culates the distribution 7 over all the actions by a
Multi-Layer Perceptron (MLP) parameterized with
W and Wy, as follows:

m(ai|5:;0)=nA;Waf(Wile; © h; ry), (3)

where 7(-) is the softmax function, f(-) is the
ReLU function (Glorot et al., 2011) and O is the
set of all the learnable parameters in Stage 1.

3.3.3 Randomized Beam Search

In the scenario of TKGs, the occurrence of a fact
may result from multiple factors. Thus, multiple
clue paths are necessary for the prediction. Be-
sides, the intuitive candidates from Stage 1 should
recall the right answers as many as possible. There-
fore, we adopt randomized beam search (Sutskever
et al., 2014; Guu et al., 2017; Wu et al., 2018) as
the action sampling strategy of the agent, which
injects random noise to the beam search in order to
increase the exploration ability of the agent.

Specifically, a beam contains B candidate clue
paths at step ¢. For each candidate path, we append
B most likely actions (according to Equation 3) to
the end of the path, resulting in a new path pool
with size B x B. Then we either pick the highest-
scoring paths with probability p or uniformly sam-
ple a random path with probability 1 — i repeatedly
for B times. The score of each candidate clue path
at step ¢ equals to Z;c:(] log 7(ak|sk; ©). Note
that, at the first step, B 1-hop candidate paths start-
ing from eg are generated by choosing B paths via
the above picking strategy.
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3.4 Stage 2: Temporal Reasoning

To dive deeper into the temporal information
among clue facts at different timestamps and the
structural information among concurrent clue facts,
Stage 2 {eorgar}izes al} clue filCtS into a sequence Qf
graphs G = {Go, ..., Gj, ..., G¢,—1}, where each G;
is a multi-relational graph consisting of clue facts
at timestamp j = 0,...t; — 1. We use an w-layer
RGCN (Schlichtkrull et al., 2018) to model Qj,

1 Vvl N Vvl N
d Z rhs,j+ loopho,j )
0

(s,7)|(s,r,0,5)€G;
“4)

where flloj and fllsj denote the [*" layer embed-

Cl+1
ho,j =/

dings of entities o and s in Qj at timestamp j, re-
spectively; W and Wf oop ar¢ the weight matrices
for aggregating features from different relations
and self-loop in the I*" layer; d, is the in-degree
of entity o; the input embedding for each entity £,
flﬁ) is set to &, , which is different from that of
Stage 1.

Then, g;, the embedding of {;’j, is calculated by
the mean pooling operation of all entity embed-
dings calculated by Equation 4 in C;j. The concate-
nation of €,, g; and r, (the embedding of r; in
Stage 2) is fed into a GRU,

H;, =GRU(é;® g; &1, Hj—1). (5

The final output of GRU, denoted as Hy__1, is
fed into a MLP decoder parameterized with W,
to get the final scores for all the entities, i.e.,

pleles, g, ts) = U(Hg;_l “Wiip), 6)

where o is the sigmoid activation function.
Finally, we re-rank the candidate entities accord-
ing to Equation 6. To give a positive feedback to
the clue paths arriving at the answer, Stage 2 gives
a beam-level reward which equals to the final score
of e from Equation 6, i.e, 7 = p(ey), to Stage 1.

3.5 Training Strategy

For Stage 1, the beam search policy network is
trained by maximizing the expected reward over all
queries in the training set,

j(@):E(es,rq,eo,ts)eg[Ea(u---af_l [R(erles, Tqs ts)]]-

(7)
The REINFORCE algorithm (Williams, 1992)
is used to optimize Equation 7. For Stage 2, we

Datasets ICE14 ICEO05-15 ICE18 GDELT
#E 6,869 10,094 23,033 7,691
#R 230 251 256 240
#Train 74,845 368,868 373,018 1,734,399
#Valid 8,514 46,302 45,995 238,765
#Test 7,371 46,159 49,545 305,241
Time gap 1 day 1 day 1 day 15 mins

Table 1: Statistics of the datasets.

define the objective function using cross-entropy:

1
@ Z 10gp(€0|63,’l"q,t5),

(es,rg,e05ts)EG

J(®)=-
(8)

where ® is the set of all the learnable parameters
in Stage 2. The Adam (Kingma and Ba, 2014) opti-
mizer is used to minimize Equation 8. As Stages 1
and Stage 2 are correlated mutually, they are trained
jointly. Stage 1 is pre-trained with only binary re-
ward before the joint training process starts. Then
Stage 2 is trained with the parameters of Stage 1
frozen. At last, we jointly train the two stages.
Such a training strategy is widely used by other RL
studies (Bahdanau et al., 2016; Feng et al., 2018).

4 Experiment

We design experiments to answer the following
questions: Q1. How does CluSTeR perform on
the TKG reasoning task? Q2. How do the two
stages contribute to the final results respectively?
Q3. Which clues are found and used for reasoning?
Q4. Can CluSTeR provide some interpretability
for the results?

4.1 Experimental Setup

Datasets and Metrics. There are four typical
TKGs commonly used in previous studies, namely,
ICEWS14 (Garcia-Duran et al., 2018), ICEWSO05-
15 (Garcia-Duran et al., 2018), ICEWS18 (Jin et al.,
2019) and GDELT (Jin et al., 2020). The first three
datasets are from the Integrated Crisis Early Warn-
ing System (ICEWS) (Boschee et al., 2015) and the
last one is from Global Database of Events, Lan-
guage, and Tone (GDELT) (Leetaru and Schrodt,
2013). We evaluate CluSTeR on all these datasets.
ICEWS14 and ICEWSO05-15 are divided into train-
ing, validation, and test sets following the prepro-
cessing on ICEWS18 in RE-NET (Jin et al., 2020).
The details of the datasets are presented in Table 1.

In the experiments, the widely used Mean Recip-
rocal Rank (MRR) and Hits@{1,10} are employed
as the metrics. Without loss of generality, only
the experimental results under the raw setting are
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reported. The filtered setting is not suitable for
the reasoning task under the exploration setting,
as mentioned in (Han et al., 2020b; Ding et al.,
2021; Jain et al., 2020). The reason is explained
in terms of an example as follows: Given a test
quadruple (Barack Obama, visit,?, 2015-1-25) with
the correct answer India. Assume there is a quadru-
ple (Barack Obama, visit, Germany, 2013-1-18)
in the training set. The filtered setting used in
the previous studies ignores time information and
considers (Barack Obama, visit, Germany, 2015-
1-25) to be valid because (Barack Obama, visit,
Germany, 2013-1-18) appears in the training set.
It thus removes the quadruple from the corrupted
ones. However, the fact (Barack Obama, visit, Ger-
many) is temporally valid on 2013-1-18, instead of
2015-1-25. Therefore, to test the quadruple (Barack
Obama, visit,?, 2015-1-25), (Barack Obama, visit,
Germany, 2015-1-18) should not be removed. In
this way, the filtered setting wrongly removes quite
a lot of quadruples and thus leads to over-optimistic
experimental performance.

Baselines. The CluSTeR model is compared
with two categories of models, i.e., models for
static KG reasoning and models for TKG reason-
ing under the exploration setting. The typical
static models DistMult (Yang et al., 2014), Com-
plEx (Trouillon et al., 2016), RGCN (Schlichtkrull
et al., 2018), ConvE (Dettmers et al., 2018) and Ro-
taE (Sun et al., 2018) are selected with the temporal
information of facts ignored. We also choose MIN-
ERVA (Das et al., 2018), the RL-based multi-hop
reasoning model, as the baseline. For TKG mod-
els, the representative Know-evolve (Trivedi et al.,
2017), DyRep (Trivedi et al., 2018), CyGNet (Zhu
et al., 2020) and RE-NET (Jin et al., 2020) are
selected. Besides, following RE-NET (Jin et al.,
2020), we extend two models for temporal ho-
mogeneous graphs, GCRN (Seo et al., 2018) and
EvolveGCN-O (Pareja et al., 2019)), to RGCRN
and EvolveRGCN by replacing GCN with RGCN.
We use ConvE (Dettmers et al., 2018), a more
stronger decoder to replace the MLP (Jin et al.,
2020) for the two models. For Know-evolve and
DyRep, RE-NET extends them to TKG reasoning
task but does not release their codes. Thus, we only
report the results from their papers. For other base-
lines, we reproduce all the results with the optimal
parameters tuning on the validation set.

Implementation Details. In the experiments,
the embedding dimension d for the two stages, is

set to 200. For Stage 1, we adopt an adaptive ap-
proach for selecting the time interval m. Specifi-
cally, for ICEWS14, ICEWS05-15, and GDELT, m
is set to the last one timestamp the query pattern (e,
rq, 7) appearing in the dataset before ¢;. And for
ICEWSI18, m is set to the last third timestamp. A
is set to 3 for all the datasets. We set the maximum
step number I = 1,2 and find I = 1 is better for
all the datasets. The number of the LSTM layers
is set to 2 and the dimension of the hidden layer of
LSTM is set to 200 for all the datasets. The beam
size is set to 32 for the three ICEWS datasets and
64 for GDELT. p is set to 0.3 for all the datasets.
For Stage 2, the maximum sequence length of GRU
is set to 10, the number of the GRU layers is set to
1 and the number of the RGCN layers is set to 2 for
all the datasets. For each fact in Go.;,—1, we add
the corresponding inverse fact into Go.;, 1. All the
experiments are carried out on Tesla V100.

4.2 Results on TKG Reasoning

The results on TKG reasoning are presented in Ta-
ble 2. CluSTeR consistently outperforms the base-
lines on all the ICEWS datasets, which convinc-
ingly verifies its effectiveness and answers Q1. Es-
pecially on ICEWS14, CluSTeR even achieves the
improvements of 7.1% in MRR, 4.5% in Hits@1,
and 13.7% in Hits@10 over the best baselines.
Specifically, CluSTeR significantly outperforms
the static models (i.e., those in the first block of
Table 2) because it captures the temporal informa-
tion of some important history. Moreover, CluS-
TeR drastically performs better than those temporal
models. Compared with DyRep and Know-evolve
that consider all the history, CluSTeR can focus
on more vital clues. Different from RGCRN and
EvolveRGCN which model all history from several
latest timestamps, CluSTeR models a longer history
after reducing all history to a few clues. CyGNet
and RE-NET mainly focus on modeling the repet-
itive clues or all the 1-hop clues and show strong
performance. CluSTeR also outperforms them on
the three ICEWS datasets, because the RL-based
Stage 1 can find more explicit and reliable clues.

The experimental results on GDELT demon-
strate that the performance of static models and
temporal ones are similarly poor, as compared with
those of the other three datasets. We further analyze
the GDELT dataset and find that a large number of
its entities are abstract concepts which do not indi-
cate a specific entity (e.g., PRESIDENT, POLICE
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Model ICE14 ICEWSO05-15 ICE18 GDELT
MRR H@l H@l10 MRR H@l H@l0 MRR H@l H@l0 MRR H@l H@I10

DistMult 249 17.3 40.2 16.4 9.8 29.9 17.5 10.1 32.6 15.6 9.3 28.0
ComplEx 31.9 222 50.7 23.1 14.5 40.6 18.8 11.1 26.8 12.3 8.0 20.6
RGCN 27.1 18.4 442 27.3 19.1 43.6 17.0 8.7 34.0 10.9 4.6 22.6
ConvE 30.9 21.7 50.1 25.2 16.0 444 24.8 15.1 44.9 17.3 104 31.3
RotatE 27.5 18.0 47.2 19.9 10.9 38.7 15.5 7.0 33.9 5.3 1.2 12.5
MINERVA 33.2 25.7 48.3 30.7 25.8 39.9 21.0 15.3 33.0 12.1 10.0 16.7
Know-Evolve — - — - — 7.4 33 14.8 159 11.7 22.3
DyRep - - - - - - 7.8 3.6 16.3 16.3 11.8 239
RGCRN 36.9 27.0 56.1 394 28.7 60.4 26.2 16.4 45.8 17.7 10.9 30.9
EvolveRGCN  37.1 27.0 57.0 40.7 30.3 61.3 23.6 36.3 50.4 17.4 11.0 29.9
CyGNet 36.5 274 54.4 374 27.5 56.1 26.8 17.1 45.7 18.0 10.9 31.6
RE-NET 38.9 29.3 57.5 41.7 31.1 62.0 284 18.4 47.9 19.0 11.6 33.5
CluSTeR 46.0 33.8 71.2 44.6 34.9 63.0 323 20.6 55.9 18.3 11.6 31.9

Table 2: Experimental results on TKG reasoning (in percentage) compared with static models (the top part) and

temporal models (the bottom part).

Model ICE14 ICEO05-15 ICE18 GDELT
Stage 1 (/ =2) 43.1 433 27.6 15.3
Stage 1 (I =1) 44.1 46.0 30.3 17.6
Stage 2 41.5 45.0 30.1 19.6
CluSTeR 46.8 46.9 33.1 18.7

Table 3: Results (in percentage) by different variants of
CluSTeR on all the datasets.

and GOVERNMENT). Among the top 50 frequent
entities, 28 are abstract concepts and 43.72% corre-
sponding events involve abstract concepts. Those
abstract concepts make future prediction under the
raw setting almost impossible, since we cannot pre-
dict a president’s activities without knowing which
country he belongs to.

4.3 Ablation Study

To answer Q2, i.e., how the two stages contribute
to the final results, we report the MRR results of
the variants of CluSTeR on the validation set of
all the datasets in Table 3. The first two lines of
Table 3 show the results only using Stage 1, where
the maximum step I is set to 1 and 2, respectively.
Following Lin et al. (2018), the score of the target
entity is set to the highest score among the paths
when more than one path leads to it. It can be ob-
served that the results decrease when only using
Stage 1, because the temporal information among
facts is ignored. The third line shows the results
only using Stage 2 with extracted 1-hop repetitive
clues as the inputs. The results decrease on all the
ICEWS datasets when only using Stage 2, demon-
strating that only repetitive clues are not enough for
the prediction. For GDELT, only Stage 2 achieves
the best results, which demonstrates that only us-
ing repetitive clues is effective enough for it. It is

Grant diplomatic
recognition

'

Declare ceasefire

Intent to
settle dispute

Halt negotiations

Appeal for de-escalation
Figure 3: A clue graph constructed by Stage 1.

Make pessimistic
comment

Intent to cooperate
economically

of military engagement

because that only using the most straightforward
repetitive clues in Stage 2 can alleviate the influ-
ence of noise produced by abstract concepts. It also
matches our observations mentioned in Section 4.2.

From the first two lines of Table 3, it can be seen
that the performance of Stage 1 decreases when
I is set to 2. To further analyze the reason, we
extract paths from ICEWS18 without considering
timestamps via AMIE+ (Galarraga et al., 2015), a
widely used and accurate approach to extract logic
rules (paths) in static KGs. We check the top fifty
paths manually and present the top five convincing
paths in Table 4. It can be seen that there are no
strong dependencies between the query relations
and the 2-hop paths. Thus, in this situation, longer
paths bring exponential noise clues, which pull
down the precision. We do experiments on all the
datasets from ICEWS and GDELT and find the
same conclusion. We leave it for future work to
construct a more complex dataset for verifying the
effectiveness of multi-hop clue paths.
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Query relations

(A, Declare ceasefire, C)
(A, Intent to settle dispute,C)
(A, Intent to settle dispute, C)

(A, Halt negotiations, C)

(A, Accuse of crime, C)

2-hop paths Scores

(A, Intent to cooperate, B, Intent to meet, C) 0.4071

(A, Consult, B, Intent to diplomatic cooperation, C) 0.3843
(A, Intent to diplomatic cooperation, B, Intent to meet, C)  0.3725
(A, Engage in negotiation, B, Intent to meet,C) 0.3717

(A, Accuse, B, Criticize or denounce, C) 0.3256

Table 4: The top five convincing 2-hop paths extracted by AMIE+ from ICEWS18.

B repetitive clue facts non-repetitive clue facts

0.06
icE14 N 094

ICE0s-15 MM 0.05
IcE1g MN0.07

cpeLT M0.02

0.95
0.93
0.98

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 4: Statistic of categories of clue facts in Stage 2.

4.4 Detail Analysis

To answer Q3, we show some non-repetitive clues
found in Stage 1 in Figure 3. We use (relation
in 1-hop non-repetitive clue path, query relation)
pairs on ICEWSI18 to construct a clue graph. Ar-
rows begin with the relations in the clue paths and
end with the query relations. It is interesting to
find that CluSTeR can actually find some causal
relations. Moreover, compared to the 2-hop clue
paths shown in Table 4, the 1-hop clue paths are
more informative. It also gives explanations to the
outperformance of the 1-hop clue paths.

Besides, we illustrate the statistics of clue facts
used during Stage 2 in Figure 4. The proportion
of the repetitive clue facts is less than 7% and the
proportion of the non-repetitive clue facts is more
than 93% on the datasets. The abundant of the non-
repetitive clue facts used in Stage 2 also explains
the outperformance of CluSTeR to a certain degree.

4.5 Case Study

To answer Q4, we show how CluSTeR conducts
reasoning and explains the results for the given
two queris from the test set of ICEWS14 in Fig-
ure 5. For the first query: (Congress (United
States), Impose sanctions, ?, 3341 ), we choose
the top three candidates in Stage 1 and demon-
strate some clue paths of the three entities in the
left top part of Figure 5. The clue paths like
(Congress (United States), Criticize or denounce ™!,
China), (Congress (United States), Engage in
negotiation_l, Iran) give the evidence for candi-
date entities China and Iran, correspondingly. In
Stage 1, CluSTeR has an intuitive candidate set
including China, Iran and France. The score of
China (-2.69) and Iran (-2.71) are similar but the

"Here, 334 represents the 334th day in the year 2014.

wrong answer, China, has a higher score than the
right one, Iran. It is because Stage 1 does not
take the temporal information into consideration.
However, the score gap is obvious between Iran
and France, which shows that Stage 1 can mea-
sure the qualities of different clue paths and distin-
guish the semantic-related entities from the oth-
ers. In Stage 2, CluSTeR reorganizes the clue
facts by their timestamps, as shown in the right
top part of Figure 5. (Congress (United State), En-
gage in negotiation™', Iran, 323) and (Congress
(United State), Make a visit, China, 227) make Iran
the more possible answer. For the second query:
(China, Express intent to settle dispute, ?, 364),
clue paths in the left bottom of Figure 5 are all
associated with the query. Stage 1 induces all en-
tities to only two entities through these clue paths
but misleads to the wrong answer, Iran. Actually,
even a human may give the wrong answer with
only fasting thinking. After diving into the tem-
poral information of clue facts and conduct slow
thinking, some causal information and period infor-
mation can be captured by Stage 2. Although Sign
formal agreement is associated with Express intent
to settle dispute, it can not be the reason for the lat-
ter. Moreover, from the subgraph sequence in the
right bottom part of Figure 5, it can be seen that the
cooperation period between China and Japen just
begins at 363, but the cooperation period between
China and Iran has been going on for several days.
(China, Express intent to settle dispute, ?, 364) is
more likely to be an antecedent event to the coop-
eration period and the answer is Japen.

Above all, for each fact to be predicted, CluS-
TeR can provide the clues for each candidate en-
tity, which presents the insight and provides inter-
pretability for the reasoning results. It is similar
to the natural thinking pattern of human, in which
only explicit and reliable clues are needed.

4.6 Performance under the Time-aware
Filtered Setting

As mentioned in Section 4.1, the widely adopted
filtered setting in the existing studies is not suitable
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Stage 1: Induce clues from history

Stage 2: Deduce answers for future

o O

-2.69|Chi
o
C (@]
271 o
-3.50|France |
1 1 1 1 1 1
score 3 2 1 . 149 209 227 323 time

Intuitive Candidates: China, Iran, France, ...

Query: (Congress (United States), Impose sanctions, ?, 334)

Answer for future: Iran

(0] O O O
-1.791/Iran|
% % % Intend to Py
- cooperate
247 Intend to cooperate” Jepan
Soore |3 5 4 34 3% 367 R T

Intuitive Candidates: Iran, Japan, ...

Query: (China, Express intent to settle dispute, ?, 364)

Answer for future: Japan

Figure 5: Two cases to illustrate how CluSTeR conducts reasoning and explains the results. Each black circle

represents a query entity.

Model ICE14 ICEWSO05-15 ICE18 GDELT

MRR H@l H@10 MRR H@l H@l0 MRR H@l H@l0 MRR H@l H@I10
raw 46.0 3338 71.2 446 349 63.0 323 20.6 55.9 18.3 11.6 31.9
filtered 47.1 35.0 72.0 454 343 67.7 34.5 229 57.7 18.5 12.1 32.1

Table 5: Experimental results under the raw setting and the (time-aware) filter setting.

for the temporal reasoning task addressed in this
paper. The essential problem of the above filtered
setting is that it ignores the time information of a
fact. Therefore, we also adopt an improved filtered
setting where the time information is also consid-
ered, thus called time-aware filtered setting (Han
et al., 2020b; Han et al.). Specifically, only the facts
occur at the predicted time are filtered. The results
are in Table 5. It can been seen that the experi-
mental results under the time-aware filtered setting
are close to those under the raw setting. This is
because that only a very small number of facts are
removed under this filtered setting. The results also
show the convincing of the raw setting.

5 Conclusions

In this paper, we proposed a two-stage model from
the view of human cognition, named CluSTeR, for
TKG reasoning. CluSTeR consists of a RL-based
clue searching stage (Stage 1) and a GCN-based
temporal reasoning stage (Stage 2). In Stage 1,
CluSTeR finds reliable clue paths from history and
generates intuitive candidate entities via RL. With
the found clue paths as input, Stage 2 reorganizes

the clue facts derived from the clue paths into a se-
quence of graphs and performs deduction on them
to get the answers. By the two stages, the model
demonstrates substantial advantages on TKG rea-
soning. Finally, it should be mentioned that, al-
though the four TKGs adopted in the experiments
were created based on the events in the real world,
the motivation of this paper is to propose this TKG
reasoning model only for scientific research.
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