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Abstract

Integrating extracted knowledge from the Web
to knowledge graphs (KGs) can facilitate tasks
like question answering. We study relation in-
tegration that aims to align free-text relations
in subject-relation-object extractions to rela-
tions in a target KG. To address the challenge
that free-text relations are ambiguous, previ-
ous methods exploit neighbor entities and rela-
tions for additional context. However, the pre-
dictions are made independently, which can be
mutually inconsistent. We propose a two-stage
Collective Relation Integration (CoRI) model,
where the first stage independently makes can-
didate predictions, and the second stage em-
ploys a collective model that accesses all can-
didate predictions to make globally coherent
predictions. We further improve the collec-
tive model with augmented data from the por-
tion of the target KG that is otherwise unused.
Experiment results on two datasets show that
CoRI can significantly outperform the base-
lines, improving AUC from .677 to .748 and
from .716 to .780, respectively.

1 Introduction

With its large volume, the Web has been a major
resource for knowledge extraction. Open infor-
mation extraction (open IE; Sekine 2006; Banko
et al. 2007) is a prominent approach that harvests
subject-relation-object extractions in free text with-
out assuming a predefined set of relations. One way
to empower downstream applications like question
answering is to integrate those free-text extractions
into a knowledge graph (KG), e.g., Freebase. Rela-
tion integration is the first step to integrate those ex-
tractions, where their free-text relations (i.e., source
relations) are normalized to relations in the target
KG (i.e., target relations). Only after relation in-
tegration can entity linking proceed to resolve the
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Figure 1: A motivating example. Trained on parallel
data, a local model may suffer from sparse context for
a new entity pair Nell-Marie at inference, wrongly dis-
ambiguating “parent” to father instead of mother.

free-text subjects and objects to their canonical en-
tities in the target KG.
Local Approaches. Relation integration has been
studied by the natural language processing (NLP)
community. With exact matching in literal form
between entity names in the source graph and tar-
get KG, previous methods obtain parallel data, i.e.,
common entity pairs, between the two graphs as
in Fig. 1. Features of the entity pairs (e.g., Malia-
Barack) in the source graph and their relations in
the target KG (e.g., father) are used to train mod-
els to predict target relations for future extractions.
A common challenge is the ambiguity of source re-
lations, e.g., “parent” may correspond to father
or mother in different contexts. Previous methods
exploited contextual features including embeddings
of seen entities (e.g., “Malia”; Riedel et al. 2013),
middle relations between (e.g., “parent”; Riedel
et al. 2013; Toutanova et al. 2015; Verga et al. 2017,
2016; Weston et al. 2013), and neighbor relations
around the entity pair (e.g., “gender”; Zhang et al.
2019).

Assuming rich contexts to address the ambiguity
challenge, previous methods may fall short under
the evolving and incomplete nature of the source
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Methods Middle No entity Neighbor Collective
relation param. relation inference

(Riedel et al., 2013) X
(Verga et al., 2017) X X
(Zhang et al., 2019) X X X
CoRI (ours) X X X X

Table 1: Comparisons between CoRI and baselines.

graph. For example, in the lower part of Fig. 1,
emerging entities may come from new extractions
with sparse contextual information. For the pair
Nell-Marie, a conventional model learned on the
parallel data may have neither seen entities nor
neighborhood information (e.g., “gender”) to de-
pend on, thus failing to disambiguate “parent” and
wrongly predicting father. Due to the local na-
ture of previous approaches, i.e., predictions for
different entity pairs are made independently of
each other, the model is unaware that “Nell” has
two fathers in the final predictions. Such predic-
tions are incoherent in common sense that a person
is more likely to have one father and one mother,
which is indicated by the graph structure around
Malia in the target KG part of the parallel data.

1.1 Our Collective Approach

To alleviate the incoherent prediction issue of lo-
cal approaches, we propose Collective Relation
Integration (CoRI) that exploits the dependency of
predictions between adjacent entity pairs to enforce
global coherence.

Specifically, we follow two stages, i.e., candi-
date generation and collective inference. In can-
didate generation, we simply use a local model to
make independent predictions as candidates, e.g.,
father for all the three pairs in the lower part
of Fig. 1. In collective inference, we employ a
collective model that is aware of the common sub-
structures of the target graph, e.g., Malia. The
collective model makes predictions by not only
taking as input all contextual features to the lo-
cal model but also the candidate predictions of the
current and all neighbor pairs. For the pair Nell-
Marie, the collective model will have access to
the candidate prediction father of Nell-Burton,
which helps flip its final prediction to the correct
mother. Tab. 1 summarizes CoRI and representa-
tive previous work from four aspects. To the best
of our knowledge, CoRI is the first to collectively
perform relation integration rather than locally.

Being responsible to make globally consistent

predictions, the collective model needs to be trained
to encode common structures of the target KG,
e.g., Malia having only one father/mother in the
parallel data of Fig. 1. To this end, we train the
collective model in a stacked manner (Wolpert,
1992). We first train the first-stage local model
on the parallel data, then train the second-stage
collective model by conditioning on the candidate
predictions of neighbor entity pairs from the first
stage (e.g., father for Malia-Barrack) to make
globally consistent predictions (e.g., mother for
Malia-Michelle).
Parallel Data Augmentation. The parallel data
may be bounded by the low recall of exact name
matching or the limited extractions generated by
open IE systems. We observe that, even without
counterpart extractions, the unmatched part of the
target graph (as in Fig. 1) may also have rich com-
mon structures to guide the training of the collec-
tive model. To this end, we propose augmenting
the parallel data by sampling subgraphs from the
unmatched KG and creating pseudo parallel data
by synthesizing their extractions, so the collective
model can benefit from additional training data
characterizing the desired global coherence.

To summarize, our contributions are three-fold:
(1) We propose CoRI, a two-stage framework that
improves state-of-the-art methods by making col-
lective predictions with global coherence. (2) We
propose using the unmatched target KG to aug-
ment the training data. (3) Experimental results
on two datasets demonstrate the superiority of our
approaches, improving AUC from .677 to .748 and
from .716 to .780, respectively.

2 Preliminaries

In this section, we first formulate the task of rela-
tion integration, then describe local methods by
exemplifying with the state-of-the-art approach
OpenKI (Zhang et al., 2019).

2.1 Relation Integration

We treat subject-relation-object extractions from
open IE systems as a source graph K(E ,R) =
{(s, r, o) | s, o ∈ E , r ∈ R}, where E denotes ex-
tracted textual entities, e.g., “Barack Obama”, and
R denotes extracted source relations, e.g., “parent”.
We denote by (s, o) a source entity pair. For (s, o),
Ks,o = {r | (s, r, o) ∈ K} denotes all source re-
lations between them. Similarly, Kr = {s, o |
(s, r, o) ∈ K} denotes all entity pairs with relation
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r in between. We use the union KR =
⋃
r∈RKr

to refer to all extracted entity pairs.

Definition 1 (Relation Integration). Given a
source graph K and a target KG K′(E ′,R′) with
target entities E ′ and target relations R′, the task
of relation integration is to predict all applicable
target relations for each extracted entity pair inKR:

Γ ⊆ KR ×R′,

where (s, r′, o) ∈ Γ is an integrated extraction
indicating that a target relation r′ holds for (s, o).

To train relation integration models, all methods
employ parallel data formalized as follow:

Definition 2 (Parallel Data). Parallel data are
common entity pairs shared between KR and K′R′
and their ground truth target relations in K′: T =
{〈(s, o),K′s,o〉 | (s, o) ∈ KR ∩ K′R′}. For exam-
ple, 〈(Malia,Barack), {father}〉 is an instance
of parallel data in Fig. 1.

To obtain parallel data, a widely used approach
is to find entities shared by E and E ′ by exact name
matching, then generate common entity pairs and
their ground truth.

2.2 Local Approaches
Previous local methods score potential integrated
extractions by assuming their independence:

P (Γ | K) =
∏

(s,r′,o)∈KR×R′
Pθ(s, r

′, o | K), (1)

where θ is the parameters of the local model. One
representative local model achieving state-of-the-
art performance is OpenKI (Zhang et al., 2019). It
encodes the neighborhood of (s, o) in K by group-
ing and averaging embeddings of source relations
in three parts. Let Ks,· be the set of source rela-
tions between s and neighbor entities other than o,
and similarly for K·,o. OpenKI represents (s, o) by
concatenating the three averaged embeddings into
a local representation tl:

tl = [A(Ks,o);A(Ks,·);A(K·,o)], (2)

where l stands for local, andA(.) takes a set of rela-
tions and outputs the average of their embeddings.
Then each integrated extraction is scored by:

Pθ(s, r
′, o | K) = σ(MLPl(tl))r′ , (3)

where MLPl is a multi-layer perceptron and σ
the sigmoid function. Given a parallel data T =
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Figure 2: Input of both stages on the Nell-Marie case.
Solid edges are features for Nell-Marie. Additional
edges in the lower part are predicted candidate target
relations Γl.

{〈(s, o),K′s,o〉}, the loss function per training ex-
ample trades between maximizing the probabilities
of positive target relations and minimizing those of
negative target relations:

L
(
(s, o),K′s,o

)
= −

∑
r′∈K′s,o logPθ(s, r

′, o | K)

|K′s,o|

+
γ
∑

r′∈R′\K′s,o logPθ(s, r
′, o | K)

|R′ \ K′s,o|
, (4)

where γ is a hyperparameter to account for the
imbanlance between positive and negative relations,
because the latter often outnumber the former. The
final loss is the sum of all examples.

3 Collective Relation Integration

As discussed in § 1, the drawback of local methods
is that predictions of different entity pairs are inde-
pendently made. Neglecting their dependency may
lead to predictions inconsistent with each other.

To address the issue, we propose a collective
approach CoRI, which achieves collective relation
integration via two stages: candidate generation
and collective inference. In this section, we demon-
strate the input and output of the two stages, as well
as our current implementations.

3.1 Candidate Generation
As mentioned in § 1.1, candidate generation’s re-
sponsibility is to provide candidate predictions to
the collective inference stage. Formally, candidate
predictions Γl (l means local) are generated by ex-
ecuting a local model on the source graph K:

Γl = argmax
Γ

Pθ(Γ | K). (5)

The candidate predictions in Γl may be partially
wrong, but the other correct ones can help adjust
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wrong predictions of their adjacent entity pairs in
the collective inference stage, under the guidance
of the collective model.

For example, in the upper part of Fig. 2, we have
a source graph K with three entity pairs. The input
to candidate generation is the entire K. After ap-
plying the local model (OpenKI in our case), we
have three additional edges as the output Γl in the
lower part of Fig. 2. Note that the candidate pre-
diction father for Nell-Marie (denoted by black
outline) is incorrect due to insufficient information
in its neighborhood in K, i.e., both the relations in
between of and around the entity pair (denoted by
solid edges) are ambiguous “parent”s.

Fortunately, the entity pair Nell-Burton is rel-
atively easy for the local model to predict as
father because it can leverage the neighbor rela-
tion “father” between Billy-Burton. Such correct
candidate predictions are included in Γl, provided
to the collective inference stage as additional sig-
nals for later correction of the wrong predictions
such as father for Nell-Marie.

3.2 Collective Inference
Collective inference’s responsibility is to encode
the structures of the target graph and use such in-
formation to refine the candidate predictions Γl by
enforcing coherence among them. To this end, a
collective model Pβ (with parameters β) takes both
the source graph K and the candidate predictions
Γl as input, and outputs the final predictions Γ:

P (Γ | K) = Pβ(Γ | K,Γl). (6)

In the Nell-Marie case of Fig. 2, when making
the final prediction, its own candidate predictions
and those of the neighbor entity pairs (solid edges
in Γl of the lower part in Fig. 2) are used to leverage
the dependency among them. We concatenate the
embeddings of candidate predictions to the local
representation tl obtained in the first stage, and
represent each entity pair as follow:

tc = [tl;A(Γls,o);A(Γls,·);A(Γl·,o)], (7)

where c means collective. Γls,o includes candidate
target relations between s and o, and similarly for
Γls,· and Γl·,o. Then we use another multi-layer
perceptron MLPc to convert tc to probabilities

Pβ(s, r′, o | K,Γl) = σ(MLPc(tc))r′ , (8)

and minimize the loss function for Pβ similar to
that of the local model Pθ in Eq. 4.

Algorithm 1: Training collective model.
Result: Collective model β.
T (1), . . . , T (T ) ← Split training data T into T folds;
for fold i = 1, . . . , T do

θ(i) ← train local model on data folds
1, . . . , i− 1, i+ 1, . . . , T ;

Γl
i ← local predictions on T (i) using θ(i);

end
Γl ← ∪iΓ

l
i;

β ← train collective model on T with inputK and Γl;

3.3 Training Collective Model

According to Eq. 6, we need Γl as features to train
the collective model Pβ . This is to ensure that Pβ
captures the dependencies among target relations.
One may ask why we do not directly use ground
truth K′ instead of predictions Γl. At test time, we
can only use target relations predicted by Pθ as in-
put to Pβ because the ground truth target relations
of neighbor entity pairs might not be available. If
we train Pβ using the ground truth, there will be
a discrepancy between training and testing, poten-
tially hurting the performance.

Specifically, we split the training set T into T
folds. We generate Γl by rotating and unioning
a temporary local model’s predictions on a held-
out fold, where the temporary model is trained on
the other folds. Then we train Pβ on the parallel
data T with Γl. In this manner, we can use the
full dataset to optimize the collective model while
avoiding generating candidates on the training data
of the local model, which leads to overfitting. The
detailed training procedure is given in Alg. 1.

4 Data Augmentation w/ Unmatched KG

As in Def. 2, the volume of parallel data is limited
by the number of shared entity pairs KR ∩ K′R′ of
the two graphs. In Fig. 1, the unmatched part of the
target KG, containing entity pairs without extrac-
tion counterparts (i.e., K′R′ \ KR) and their target
relations, can also indicate common substructures
of the target KG, and guide the training of the col-
lective model. To this end, we propose leveraging
unmatched KG to generate pseudo parallel data to
augment the limited training data.
Synthesizing Pseudo Extractions. To leverage
the unmatched KG, we need to synthesize pseudo
extractions for the target entities and relations to
add to K as features. Since we do not use entity-
specific parameters, we only synthesize source re-
lations like “parent”, and keep the target entities
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Figure 3: Illustration of parallel data augmentation. We
first generate pseudo extractions for the unmatched KG,
then select a subset of entity pairs that are similar to the
parallel data (with black outline) to augment training.

unchanged, as illustrated in Fig. 3. Specifically, for
each subject-relation-object tuple (s′, r′, o′) in the
unmatched KG, we keep s′ and o′ unchanged, and
synthesize source relations r by sampling from:

P (r | r′) =
|Kr ∩ K′r′ |
|K′r′ |

, (9)

i.e., the conditional probability of observing r given
r′ based on co-occurrences in the parallel data.
|Kr ∩K′r′ | is the number of entity pairs with both r
and r′ in between, and |K′r′ | is the number of entity
pairs with r′ in between. In this way, we obtain a
pseudo extraction (s, r, o), as detailed in Alg. 2
Pseudo Data Selection. We regard all pseudo ex-
tractions as a graphKp. Similar to Def. 2, we define
pseudo parallel data as below.

Definition 3 (Pseudo Parallel Data). Pseudo par-
allel data T p includes common entity pairs between
pseudo extractions Kp and the target KG K′, asso-
ciated with their ground truth target relations, i.e.,
T p = {〈(s, o),K′s,o〉} | (s, o) ∈ K

p
R ∩ K′R′}.

To make use of pseudo parallel data T p, the
most straightforward way is to use them together
with parallel data T to train the collective model
Pβ . However, not all substructures in the target
graph K′ are useful for Pβ . For example, when
K′ has other domains irrelevant to the source ex-
traction graph, substructures in those domains may
distract Pβ from concentrating on the domains of
the source graph. To mitigate this issue, we only
use a subset of T p similar to T , as shown by the
black-outlined parts in Fig. 3. Specifically, we rep-
resent each entity pair (s, o) as a virtual document
with surrounding target relations K′s,o ∪K′s,· ∪K′·,o

Algorithm 2: Our augmentation approach.
Result: Collective model β with data augmentation.
(1) Synthesizing Pseudo Extractions Kp

Kp ← ∅; T p ← ∅;
for (s′, r′, o′) ∈ K′, where (s′, o′) ∈ K′R′ \ KR do

s← s′ and o← o′;
Sample r ∼ P (r|r′);
Kp ← Kp ∪ {(s, r, o)};

end
(2) Pseudo Data Selection
for entity pair ∈ KR ∩ K′R′ do

S ← its top K similar entity pairs in Kp
R ∩ K

′
R′ ;

T p ← T p ∪ {〈(s, o),K′s,o〉 | (s, o) ∈ S};
end
β ← Train on T ∪ T p with Alg. 1;

as “tokens”. For each entity pair from the parallel
data T , we use BM25 (Robertson and Zaragoza,
2009) to retrieve its top K most similar entity pairs
from T p, and add them to the selected pseudo par-
allel data T p for training, as detailed in Alg. 2.

5 Experimental Settings

5.1 Datasets and Evaluation

We use the ReVerb dataset (Fader et al., 2011) as
the source graph, and Freebase1 and Wikidata2 as
the target KGs, respectively. We follow the same
name matching approach in Zhang et al. (2019)
to obtain parallel data. To simulate real scenarios
where models are trained on limited labeled data
but applied to a large testing set, we use 20% of
entity pairs in the parallel data for training and the
other 80% for testing, and there is no overlap. We
also compare the performance under other ratios in
§ 6.3. Dataset statistics are listed in Tab. 2.

Datasets #Train #Test |R|

ReVerb + Freebase 12,344 49,629 97,196
ReVerb + Wikidata 8,447 33,849 182,407

Table 2: Dataset statistics. We follow Zhang et al.
(2019) to use the most frequent 250 target relations.

We evaluate by ranking all integrated extractions
based on their probabilities, and report area under
the curve (AUC). Considering real scenarios where
we want to integrate as many extractions as possi-
ble while keeping a high precision, we also report
Recall and F1 when precision is 0.8, 0.9, or 0.95.

1https://developers.google.com/
freebase

2https://www.wikidata.org

https://developers.google.com/freebase
https://developers.google.com/freebase
https://www.wikidata.org
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5.2 Compared Methods

We compare the following methods in experiments.
Relation Translation is a simple method that
maps source relations to target relations with con-
ditional probability P (r′ | r) similar to Eq. 9. For
an entity pair (s, o), the predicted target relations
are {arg maxr′ P (r′|r) | r ∈ Ks,o}.
Universal Schema (E-model) (Riedel et al., 2013)
learns entity and relation embeddings through ma-
trix factorization, which cannot generalize to un-
seen entities. It is a local model that scores each
integrated extraction independently.
Rowless Universal Schema (Verga et al., 2017) is
a local model which improves over the E-model by
eliminating entity-specific parameters, thus gener-
alizing to unseen entities.
OpenKI (Zhang et al., 2019) is a local model that
addresses the ambiguity of source relations by us-
ing neighbor relations for more context.
CoRI is our collective two-stage relation integra-
tion model trained with Alg. 1.
CoRI + DA is our model where the training data
is augmented by pseudo parallel data with Alg. 2.
To verify the necessity of retrieval-based pseudo
data selection, we also compare with a random DA
baseline where we select K random entity pairs.
CoRI + KGE is another approach to exploit the un-
matched KG with KG embeddings (KGE) trained
on the entire target KG in an unsupervised manner.
We initialize the embeddings of target relations av-
eraged by A(.) in Eq. 7 with TransE (Bordes et al.,
2013) embeddings trained on the target graph.

5.3 Implementation Details

We uniformly use 32-dimension embeddings for
all relations, and AdamW (Loshchilov and Hutter,
2019) optimizer with learning rate 0.01 and epsilon
10-8. The ratio γ in Eq. 4 is set to 10. We sample at
most 30 neighbor source relations to handle entity
pairs with too many neighbor relations. We use
T = 5 folds in Alg. 1 to train our collective model.
We retrieve top K = 5 entity pairs in pseudo data
selection, adding about 20K and 12K entity pairs
to the two datasets in Tab. 2, respectively. We use
BM25 (Robertson and Zaragoza, 2009) implemen-
tation in ElasticSearch3 in pseudo data selection.
We use the KGE released by OpenKE.4 Our model
is trained with 32 CPU cores and a single 2080Ti
GPU, and it takes 1-2 hours to converge.

3https://www.elastic.co/
4https://github.com/thunlp/OpenKE

CoRI
CoRI + DA

(a) ReVerb + Freebase

CoRI
CoRI + DA

(b) ReVerb + Wikidata

Figure 4: Precision-recall curves of best three methods.

6 Experimental Results

We aim to answer the following questions: (1) Is
CoRI superior to local models? (2) Is CoRI robust
w.r.t. varying size of training and testing data? (3)
Is unmatched KG useful for CoRI? Is our parallel
data augmentation approach the best choice?

6.1 Main Results

In Tab. 3, we show results comparing all methods
on both datasets. Our observations are as follows.
Collective inference is beneficial. Among the
baselines, OpenKI generally performs best because
it leverages neighbor relations besides middle rela-
tions between entity pairs, without relying on entity
parameters. Even without data augmentation, CoRI
outperforms OpenKI by a large margin, improving
AUC from .677 to .708 and from .716 to .746 on
the two datasets, respectively, which demonstrates
the effectiveness of collective inference.
Data augmentation further improves the per-
formance. By comparing CoRI with CoRI + DA
(retrieval), we observe that data augmentation fur-
ther improves AUC from .708 to .748 and from .746
to .780, respectively, which indicates that using un-
matched KG can effectively augment the training of
the collective model. We plot the precision-recall
curves of the best three approaches in Fig. 4. It
demonstrates the superiority of our methods across
the whole spectrum.
Generalization on unseen entities is necessary.
Among the baselines, the E-model uses entity-
specific parameters, hindering it from generalizing
to unseen entities and making it less competitive.

6.2 Effectiveness of Pseudo Data Selection

As shown in Tab. 3, both KGE, random, and
retrieval-based data augmentation approaches per-
form better than CoRI (without DA), indicating
the effectiveness of using the unmatched KG. Our
retrieval-based DA outperforms the random coun-

https://www.elastic.co/
https://github.com/thunlp/OpenKE
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Datasets ReVerb + Freebase ReVerb + Wikidata

Metrics AUC Prec = 0.8 Prec = 0.9 Prec = 0.95 AUC Prec = 0.8 Prec = 0.9 Prec = 0.95
Rec F1 Rec F1 Rec F1 Rec F1 Rec F1 Rec F1

Translation .571 .590 .679 .100 .180 .067 .125 .604 .595 .683 .088 .160 .042 .080
E-model .205 .014 .027 .010 .020 .005 .010 .214 - - - - - -
Rowless .593 .473 .594 .372 .526 .186 .310 .647 .511 .624 .381 .536 .266 .416
OpenKI .677 .553 .654 .449 .599 .314 .472 .716 .605 .689 .511 .652 .407 .570

CoRI .708 .590 .679 .494 .638 .381 .544 .746 .641 .712 .558 .689 .461 .621
+ KGE .711 .597 .684 .514 .654 .418 .581 .763 .662 .725 .596 .717 .520 .672
+ DA (random) .734 .616 .696 .518 .658 .395 .558 .774 .678 .734 .606 .724 .521 .673
+ DA (retrieval) .748 .636 .708 .539 .674 .421 .583 .780 .685 .738 .613 .729 .529 .680

Table 3: Main experimental results. The best results are in bold, and the best external baselines are underlined.
CoRI outperforms the best baseline OpenKI by a large margin, and parallel data augmentation (DA) further im-
proves its performance. “-” indicates that the precision was not achieved.

terpart, which confirms the superiority of similarity-
based data augmentation in choosing substructures
that cover domains relevant to the original parallel
data. Our DA approach outperforms KGE, demon-
strating the necessity of selectively using the un-
used KG to avoid discrepancies with the parallel
data.
Different Numbers of Pseudo Data Entity Pairs.
In Fig. 5, we compare the performance of DA w.r.t.
different numbers of retrieved entity pairs K. We
observe that K=5 yields better performance than
K=1. However, further increasing K hurts the per-
formance, which is probably due to pseudo entity
pairs with lower similarity to the parallel data caus-
ing a domain shift. This validates the necessity of
selectively using pseudo parallel data.

6.3 Impacts of Data Size on CoRI

Due to its collective nature, one may wonder about
CoRI’s performance w.r.t. other training and testing
data sizes. We analyze these factors in this section.
Our observations are similar on both datasets, so
we only report the results on ReVerb + Freebase.
Varying Size of Training Data. In Fig. 6a, we
compare CoRI (without DA) with OpenKI by vary-
ing the portion of the parallel data for training from
20% (used in our main results in Tab. 3) to 80%.
We observe that using more training data improves
the performance, as shown by the increasing trends
w.r.t. all metrics. Our method outperforms OpenKI
in all settings, demonstrating that our method is
effective in both high- and low-resource settings.
Varying % of Accessible Neighbor Entity Pairs.
Our collective framework is special in its collective
inference stage, where the collective model refines
the candidate prediction of an entity pair by con-
sidering its neighbor entity pairs’ candidates. We

hypothesize that the more neighbor entity pairs the
collective model has access to, the better perfor-
mance it should achieve. For example, if we use
a portion of 50%, candidate predictions for only
half of the neighbor entity pairs rather than the en-
tire Γl will be used in Eq. 7. We vary the portion
from 25% to 100% (used in our main experiments
in Tab. 3). As shown in Fig. 6b, even accessing
25% can make CoRI outperform OpenKI. As the
percentage increases, CoRI continues to improve,
while OpenKI remains the same because it is local,
i.e., not using candidate predictions.

6.4 Case Study

In Fig. 7, we show two cases from ReVerb + Free-
base where CoRI corrects the mistakes of OpenKI
in the collective inference stage. In the first case,
the source relation “is in” between “Iowa” and
“Mahaska County” is extracted but in the wrong
direction. OpenKI just straightforwardly predicts
containedby based on the surface form, but
fails to leverage the neighbor relations to infer that
Iowa is a larger geographical area. With the col-
lective model, CoRI is able to use the other two
candidate predictions of containedby to flip the
wrong prediction to contains.

In the second case, a prediction is needed be-
tween “Bily Joel” and “Columbia”. Here the source
relation “was in” and the object entity “Columbia”
are both ambiguous, which can refer to geograph-
ical containment with a place or membership to
a company. OpenKI makes no prediction due to
the ambiguity, while CoRI makes the right predic-
tion music label by collectively working on the
other entity pairs, where all predictions coherently
indicate that “Columbia” is a music company.
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Figure 5: Performance of data
augmentation with different num-
bers of retrieved pairs K.
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Figure 6: CoRI (bars without filling) vs. OpenKI (solid bars) on ReVerb + Free-
base. CoRI consistently outperforms OpenKI by a large margin. Larger improve-
ments are achieved when candidates of more neighbor entity pairs are accessed.
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USA

was in

∅

Figure 7: Two cases from ReVerb + Freebase with
predictions in this font. The wrong predictions of
OpenKI is corrected by our collective model.

7 Related Work

Relation integration has been studied by both the
database (DB) and the NLP communities. The
DB community formulates it as schema matching
that aligns the schemas of two tables, e.g., match-
ing columns of an is in table to those of another
subarea of table (Rahm and Bernstein, 2001;
Cafarella et al., 2008; Kimmig et al., 2017). Such
table-level alignment is valid since all rows in an
is in table should have the same semantics, i.e.,
being geographical containment or not. However,
in open IE, predictions should be made at the en-
tity pair level because of the ambiguous nature of
source relations. Putting all extracted “is in” entity
pairs into one table to conduct schema matching
is problematic from the first step since the entity
pairs may have different ground truths.

The NLP community, on the other hand, investi-
gates the problem at the entity pair level. Besides
manually designed rules (Soderland et al., 2013),
most works leverage the link structure between en-
tities and relations. Universal schema (Riedel et al.,
2013) learns embeddings of entities and middle re-
lations between entity pairs through decomposing
their co-occurrence matrix. However, the entity
embeddings make it not generalize to unseen enti-
ties. Other methods (Toutanova et al., 2015; Verga
et al., 2016, 2017; Gupta et al., 2019) also exploit

middle relations, but eliminate entity parameters.
Zhang et al. (2019) moves one step further by ex-
plicitly considering neighbor relations, leveraging
more context from the local link structure. Some
works (Weston et al., 2013; Angeli et al., 2015) di-
rectly minimize the distance between embeddings
of relations sharing the same entity pairs. Yu et al.
(2017) further leverage compositional representa-
tions of entity names instead of using free parame-
ters to deal with unseen entities at test time.

There are also works on Open IE canonicaliza-
tion that cluster source relations. Some use entity
pairs as clustering signals (Yates and Etzioni, 2009;
Nakashole et al., 2012; Galárraga et al., 2014),
while others use lexical features or side informa-
tion (Min et al., 2012; Vashishth et al., 2018). How-
ever, the clusters are not finally aligned to relations
in target KGs, different from our problem.

The two-stage collective inference framework
has been explored in other problems like entity
linking (Cucerzan, 2007; Guo et al., 2013; Shen
et al., 2012), where candidate entities are gener-
ated for each mention independently, and collec-
tively ranked based on their compatibility in the
second stage. In machine translation, an effective
approach to leverage monolingual corpus in the tar-
get language is to back-translate it to the source lan-
guage to augment the limited parallel corpus (Sen-
nrich et al., 2016). The above works inspired us
to use collective inference for relation integration
and leverage the unmatched KG for data augmen-
tation. Another approach to perform collective
inference is to solve learning problem with con-
straints, such as integer linear programming (Roth
and Yih, 2004), posterior regularization (Ganchev
et al., 2010), and conditional random fields (Laf-
ferty et al., 2001). Comparing to our approach,
these methods usually involve heavy computation,
or are hard to optimize. Examining the perfor-
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mance of these methods is an interesting future
direction. Besides, we also adopted ideas of se-
lecting samples from out-domain data similar to
in-domain samples (Xu et al., 2020; Du et al., 2020)
to select our pseudo parallel data.

8 Conclusion

In this paper, we proposed CoRI, a collective infer-
ence approach to relation integration. To the best of
our knowledge, this is the first work exploring this
idea. We devised a two-stage framework, where
the candidate generation stage employs existing lo-
cal models to make candidate predictions, and the
collective inference stage refines the candidate pre-
dictions by enforcing global coherence. Observing
that the target KG is rich in substructures indicating
the desired global coherence, we further proposed
exploiting the unmatched KG by selectively synthe-
sizing pseudo parallel data to augment the training
of our collective model. Our solution significantly
outperforms all baselines on two datasets, indicat-
ing the effectiveness of our approaches.
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