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Abstract
Automatic extraction of product attribute val-
ues is an important enabling technology in
e-Commerce platforms. This task is usu-
ally modeled using sequence labeling archi-
tectures, with several extensions to handle
multi-attribute extraction. One line of pre-
vious work constructs attribute-specific mod-
els, through separate decoders or entirely sep-
arate models. However, this approach con-
strains knowledge sharing across different at-
tributes. Other contributions use a single multi-
attribute model, with different techniques to
embed attribute information. But sharing
the entire network parameters across all at-
tributes can limit the model’s capacity to cap-
ture attribute-specific characteristics. In this
paper we present AdaTag, which uses adap-
tive decoding to handle extraction. We param-
eterize the decoder with pretrained attribute
embeddings, through a hypernetwork and a
Mixture-of-Experts (MoE) module. This al-
lows for separate, but semantically correlated,
decoders to be generated on the fly for differ-
ent attributes. This approach facilitates knowl-
edge sharing, while maintaining the specificity
of each attribute. Our experiments on a real-
world e-Commerce dataset show marked im-
provements over previous methods.

1 Introduction

The product profiles on e-Commerce platforms are
usually comprised of natural texts describing prod-
ucts and their main features. Key product features
are conveyed in unstructured texts, with limited
impact on machine-actionable applications, like
search (Ai et al., 2017), recommendation (Kula,
2015), and question answering (Kulkarni et al.,
2019), among others. Automatic attribute value
extraction aims to obtain structured product fea-
tures from product profiles. The input is a textual

∗ Most of the work was done during an internship at
Amazon.

Figure 1: An example of the product profile on an e-
Commerce platform. It consists of a title, several infor-
mation bullets, and a product description.

sequence from the product profile, along with the
required attribute to be extracted, out of potentially
large number of attributes. The output is the corre-
sponding extracted attribute values. Figure 1 shows
the profile of a moisturizing cream product as an
example, which consists of a title, several infor-
mation bullets, and a product description. It also
shows the attribute values that could be extracted.

Most existing studies on attribute value extrac-
tion use neural sequence labeling architectures
(Zheng et al., 2018; Karamanolakis et al., 2020;
Xu et al., 2019). To handle multiple attributes,
one line of previous contributions develops a set
of “attribute-specific” models (i.e., one model per
attribute). The goal is to construct neural networks
with (partially) separate model parameters for dif-
ferent attributes. For example, one can construct
an independent sequence labeling model for each
attribute and make predictions with all the mod-
els collectively (e.g., the vanilla OpenTag model
(Zheng et al., 2018)). Instead of totally separate
models, one can also use different tag sets corre-
sponding to different attributes. These networks
can also share the feature encoder and use separate
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label decoders (Yang et al., 2017). However, the
explicit network (component) separation in these
contributions constrains knowledge-sharing across
different attributes. Exposure to other attributes can
help in disambiguating the values for each attribute.
And having access to the entire training data for all
attributes helps with the generic sequence tagging
task. Another line for multi-attribute extraction
contributions learns a single model for all attributes.
The model proposed by Xu et al. (2019), for ex-
ample, embeds the attribute name with the textual
sequence, to achieve a single “attribute-aware” ex-
traction model for all attributes. This approach
addresses the issues in the previous direction. How-
ever, sharing all the network parameters with all
attributes could limit the model’s capacity to cap-
ture attribute-specific characteristics.

In this paper we address the limitations of the
existing contribution lines, through adaptive de-
coder parameterization. We propose to generate
a decoder on the fly for each attribute based on
its embedding. This results in different but se-
mantically correlated decoders, which maintain
the specific characteristics for each attribute, while
facilitating knowledge-sharing across different at-
tributes. To this end, we use conditional random
fields (CRF) (Lafferty et al., 2001) as the decoders,
and parameterize the decoding layers with the at-
tribute embedding through a hypernetwork (Ha
et al., 2017) and a Mixture-of-Experts (MoE) mod-
ule (Jacobs et al., 1991). We further explore several
pretrained attribute embedding techniques, to add
useful attribute-specific external signals. We use
both contextualized and static embeddings for the
attribute name along with its potential values to
capture meaningful semantic representations.

We summarize our contributions as follows: (1)
We propose a multi-attribute value extraction model
with an adaptive CRF-based decoder. Our model
allows for knowledge sharing across different at-
tributes, yet maintains the individual characteris-
tics of each attribute. (2) We propose several at-
tribute embedding methods, that provide important
external semantic signals to the model. (3) We
conduct extensive experiments on a real-world e-
Commerce dataset, and show improvements over
previous methods. We also draw insights on the
behavior of the model and the attribute value ex-
traction task itself.

2 Background

2.1 Problem Definition

The main goal of the task is to extract the cor-
responding values for a given attribute, out of a
number of attributes of interest, from the text se-
quence of a product profile. Formally, given a
text sequence X = [x1, . . . , xn] in a product pro-
file, where n is the number of words, and a query
attribute r ∈ R, where R is a predefined set of
attributes, the model is expected to extract all text
spans from X that could be valid values for at-
tribute r characterizing this product. When there
are no corresponding values mentioned in X , the
model should return an empty set. For example,
for the product in Figure 1, given its title as X , the
model is expected to return (“Dry”, “Sensitive”) if
r =“SkinType”, and an empty set if r =“Color”.

Following standard approaches (Zheng et al.,
2018; Xu et al., 2019; Karamanolakis et al., 2020),
under the assumption that different values for an
attribute do not overlap in the text sequence, we
formulate the value extraction task as a sequence
tagging task with the BIOE tagging scheme. That
is, givenX and r, we want to predict a tag sequence
Y = [y1, . . . , yn], where yi ∈ {B, I,O,E} is the
tag for xi. “B”/“E” indicates the corresponding
word is the beginning/ending of an attribute value,
“I” means the word is inside an attribute value, and
“O” means the word is outside any attribute value.
Table 1 shows an example of the tag sequence for
attribute “Scent” of a shower gel collection, where
“orchid”, “cherry pie”, “mango ice cream” could be
extracted as the values.

X orchid / cherry pie / mango ice cream scent

Y B O B E O B I E O

Table 1: An example of the tag sequence for attribute
“Scent” annotated with the BIOE scheme.

2.2 BiLSTM-CRF Architecture

The BiLSTM-CRF architecture (Huang et al.,
2015) consists of a BiLSTM-based text encoder,
and a CRF-based decoder. This architecture has
been proven to be effective for the attribute value
extraction task (Zheng et al., 2018; Xu et al., 2019;
Karamanolakis et al., 2020). We build our AdaTag
model based on the BiLSTM-CRF architecture as
we find that the BiLSTM-CRF-based models gen-
erally perform better than their BiLSTM-based,
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BERT-based (Devlin et al., 2019) and BERT-CRF-
based counterparts, as shown in §5. We introduce
the general attribute-agnostic BiLSTM-CRF archi-
tecture, which our model is based on, in this sub-
section.

Given a text sequence X = [x1, . . . , xn]. We
obtain the sequence of word embeddings X =
[x1, . . . ,xn] using an embedding matrix Wword.
We get the hidden representation of each word by
feeding X into a bi-directional Long-Short Term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997) layer with hidden size dh:

[h1, . . . ,hn] = BiLSTM([x1, . . . ,xn]). (1)

We use a CRF-based decoder to decode the se-
quence of hidden representations while capturing
the dependency among tags (e.g., “I” can only be
followed by “E”). It consists of a linear layer and
a transition matrix, which are used to calculate
the emission score and the transition score for the
tag prediction respectively. Let V = [B, I,O,E]
be the vocabulary of all possible tags. We calcu-
late an emission score matrix P = [p1, . . . ,pn] ∈
R4×n, where Pij is the score for assigning the
i-th tag in V to xj . This is computed by feed-
ing [h1, . . . ,hn] into a linear layer with parame-
ters [W,b], specifically pi = Whi + b ∈ R4,
where W ∈ R4×dh and b ∈ R4. For a BIOE tag
sequence Y = [y1, . . . , yn], we get its index se-
quence Z = [z1, . . . , zn] where zi ∈ {1, 2, 3, 4} is
the index of yi in V . The score for an input text
sequence X to be assigned with a tag sequence Y
is calculated as:

s(X,Y ) = s(X,Z) =
n−1∑
i=1

Tzizi+1 +
n∑

i=1

Pzii,

(2)
where T ∈ R4×4 is the transition matrix of CRF,
such that Tij is the score of a transition from the
i-th tag to the j-th tag in V .

3 Method

3.1 Model Overview
The multi-attribute value extraction task can be
thought of as a group of extraction subtasks, corre-
sponding to different attributes. While all attributes
share the general knowledge about value extrac-
tion, each has its specificity. The key idea in our
proposed model is to dynamically adapt the param-
eters of the extraction model based on the specific
subtask corresponding to the given attribute. We

use a BiLSTM-CRF (Huang et al., 2015) archi-
tecture, where different subtasks, corresponding
to different attributes, share the same text encoder
to derive a contextualized hidden representation
for each word. Then the hidden representations
of the text sequence are decoded into a sequence
of tags with a CRF-based decoder, the parameters
of which are generated on the fly based on the at-
tribute embedding. In this setup, different subtasks
are trained jointly, and different decoders are cor-
related based on the attribute embedding. This fa-
cilitates a knowledge-sharing scheme across differ-
ent attributes. Intuitively, this can help with learn-
ing generic abilities like detecting value boundary,
which is at the core of the extraction process of any
attribute. At the same time, our model provides
each subtask with a customized decoder parameter-
ization, which improves the model’s capacity for
capturing attribute-specific knowledge.

Figure 2 presents our overall model architec-
ture, where we equip the BiLSTM-CRF architec-
ture with an adaptive CRF-based decoder. In §3.2,
we will introduce our adaptive CRF-based decoder
which is parameterized with the attribute embed-
ding. In §3.3, we will describe how to obtain pre-
trained attribute embeddings that can capture the
characteristics of different subtasks, so that “simi-
lar” attributes get “similar” decoding layers.

3.2 Adaptive CRF-based Decoder

In attribute value extraction, the model takes the
text sequence X with a query attribute r as input,
and is expected to predict Y based on both X and
r. To make the model aware of the query attribute,
we need to incorporate the attribute information
into some components of the BiLSTM-CRF archi-
tecture. The BiLSTM-based text encoder is respon-
sible for encoding the text sequence and obtain a
contextualized representation for each word, which
can be regarded as “understanding” the sentence.
The CRF-based decoder then predicts a tag for each
word based on its representation. Therefore, we
propose that all attributes share a unified text en-
coder so that the representation can be enhanced
through learning with different subtasks, and each
attribute has a decoder adapted to its correspond-
ing subtask, the parameters of which are generated
based on the attribute information.

As introduced in §2.2, a CRF-based decoder con-
sists of a linear layer and a transition matrix. The
linear layer takes hidden representations as input,
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Figure 2: Model architecture. AdaTag equips the BiLSTM-CRF architecture with an adaptive CRF-based decoder.

and predicts a tag distribution for each word inde-
pendently. It captures most of characteristics of
value extraction for a given attribute based on the
text understanding. More flexibility is needed to
model the specificity of different attributes. By
contrast, the transition matrix learns the depen-
dency among tags to avoid predicting unlikely tag
sequence. It only captures shallow characteristics
for the attribute based on its value statistics. For
example, the transition scores form “B” to other
tags largely depend on the frequent lengths of the
attribute values. If single-word values are men-
tioned more often, then “B” is more likely to be
followed by “O”. If two-word values dominate the
vocabulary, then “B” is more likely to be followed
by “E”. Attributes could be simply clustered based
on these shallow characteristics.

In this work we parameterize the CRF-based de-
coder with the attribute embedding r ∈ Rdr , where
dr is the dimension of the attribute embedding. For
the linear layer, we adopt a hypernetwork (Ha et al.,
2017) due to its high flexibility. For the transition
matrix, we develop a Mixture-of-Experts (Pahuja
et al., 2019) module to leverage the latent clustering
nature of attributes. We nevertheless experiment
with all 4 combinations of these methods in §5.3,
and this choice does the best.

Hypernetwork. The idea of hypernetworks (Ha
et al., 2017) is to use one network to generate the
parameters of another network. Such approach has
high flexibility when no constraint is imposed dur-
ing generation. We therefore use it to parameterize
the linear layer. In our model, we learn two dif-
ferent linear transformations that map the attribute
embedding to the parameters of the linear layer
(W ∈ R4×dh , b ∈ R4) in the CRF-based decoder:

W = Reshape(Ww
hyperr+ bw

hyper),

b = Reshape(Wb
hyperr+ bb

hyper).
(3)

Here Ww
hyper ∈ R4dh×dr , bw

hyper ∈ R4dh , Wb
hyper ∈

R4×dr , bb
hyper ∈ R4, and the Reshape operator

reshapes a 1-D vector into a matrix with the same
number of elements.

Mixture-of-Experts. The idea of Mixture-of-
Experts (Jacobs et al., 1991) is to have a group
of networks (“experts”) that jointly make decisions
with dynamically determined weights. Unlike pre-
vious approaches that combine each expert’s pre-
diction, we combine their parameters for gener-
ating the transition matrix. Let k be the number
of experts we use to parameterize the transition
matrix T ∈ R4×4 where k is a hyperparameter.
We introduce k learnable matrices T(1), . . . ,T(k)

for the k experts. Each expert’s matrix can be
understood as a cluster prototype and we employ
a linear gating network to compute the probabil-
ity of assigning the given attribute to each expert:
λ = Softmax(Wmoer + bmoe). Here Wmoe ∈
Rk×dr , bmoe ∈ Rk, λ = [λ1, . . . , λk] ∈ Rk

and
∑k

i=1 λi = 1. The parameters for the tran-
sition matrix for this attribute is calculated as:
T =

∑k
i=1 λiT

(i).

3.3 Pretrained Attribute Embeddings

The attribute embedding r plays a key role in de-
riving the attribute-specific decoding layers. There-
fore, the quality of the attribute embeddings is cru-
cial to the success of our parameterization method.
Good attribute embeddings are supposed to capture
the subtask similarities such that similar extraction
tasks use decoders with similar parameters. In this
work, we propose to use the attribute name and pos-
sible values as a proxy to capture the characteristics
of the value extraction task for a given attribute.
The attribute embeddings can therefore be directly
derived from the training data and loaded into the
attribute embedding layer as initialization.

For each attribute r, we first collect all the sen-
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tences from the training data that are annotated with
at least one value for r. We denote the collected
sentences with values as Dr = {(r̃, vi, Xi)}nr

i=1

where r̃ is the phrase representation of r (e.g., r̃ =
“Skin Type” if r = “SkinType”), vi is a span in
text sequence Xi that serves as the value for r, and
nr is the number of collected sentences. For each
(r̃, vi, Xi), we can calculate an attribute name em-
bedding rname

i and an attribute value embedding
rvalue
i in either a contextualized way or an uncon-

textualized way, which are detailed later. We pool
over all instances in Dr to get the final attribute
name embedding and attribute value embedding,
which are concatenated as the attribute embedding:
rname = 1

nr

∑nr
i=1 r

name
i , rvalue = 1

nr

∑nr
i=1 r

value
i ,

r = Concat(rname, rvalue).

Contextualized Embeddings. Taking the con-
text into consideration helps get embeddings that
can more accurately represent the semantics of the
word. Here we use the contextualized representa-
tions provided by BERT (Devlin et al., 2019) to
generate the embedding. We use BERT to encode
Xi and get vi’s phrase embedding (the averaged
embedding of each word in the phrase) as rvalue

i . By
replacing vi with “[BOA] r̃ [EOA]”1 and encod-
ing the modified sequence with BERT, we get the
phrase embedding for “[BOA] r̃ [EOA]” as rname

i .

Uncontextualized Embeddings. Static embed-
dings like Word2Vec (Mikolov et al., 2013) and
Glove (Pennington et al., 2014) can be more stable
to use under noisy contexts. We use Glove (50d)
to get the phrase embedding for vi as rvalue

i and the
phrase embedding for r̃ as rname

i .

3.4 Model Training

As we parameterize the CRF-based decoder
with the attribute embedding through MoE and
hypernetwork, the learnable parameters in our
model includes θencoder = {Wword,θbi-lstm},
θhyper = {Ww

hyper,b
w
hyper,W

b
hyper,b

b
hyper}, θmoe =

{Wmoe,bmoe, {T(i)}ki=1}. We freeze the attribute
embeddings Watt as it gives better performance,
which is also discussed in §5.3.

The whole model is trained end-to-end by max-
imizing the log likelihood of (X, r, Y ) triplets in
the training set, which is derived from Equation 2

1[BOA] and [EOA] are special tokens that are used to sepa-
rate the attribute name from context in the synthetic sentence.

as:

s(X, r, Y ) =
n∑

i=0

Tzizi+1 +
n∑

i=1

Pzii,

log p(Y | X, r) = log
s(X, r, Y )∑

Y ′∈V n s(X, r, Y ′)
,

(4)

where Vn is the set of all tag sequences of length n.
The log likelihood can be computed efficiently us-
ing the forward algorithm (Baum and Eagon, 1967)
for hidden Markov models (HMMs). At inference,
we adopt Viterbi algorithm (Viterbi, 1967) to get
the most likely Y given X and r in test set.

4 Experimental Setup

4.1 Dataset
To evaluate the effectiveness of our proposed
model, we build a dataset by collecting product
profiles (title, bullets, and description) from the
public web pages at Amazon.com.2

Following previous works (Zheng et al., 2018;
Karamanolakis et al., 2020; Xu et al., 2019), we ob-
tain the attribute-value pairs for each product using
the product information on the webpages by distant
supervision. We select 32 attributes with different
frequencies. For each attribute, we collect product
profiles that are labeled with at least one value for
this attribute. We further split the collected data
into training (90%) and development (10%) sets.

The annotations obtained by distant supervision
are often noisy so they cannot be considered as gold
labels. To ensure the reliability of the evaluation
results, we also manually annotated an additional
testing set covering several attributes. We randomly
selected 12 attributes from the 32 training attributes,
took a random sample from the relevant product
profiles for each attribute, and asked human anno-
tators to annotate the corresponding values. We
ensured that there is no product overlapping be-
tween training/development sets and the test set.

Putting together the datasets built for each indi-
vidual attribute, we end up with training and de-
velopment sets for 32 attributes, covering 333,857
and 40,008 products respectively. The test set has
12 attributes and covers 11,818 products. Table 2
presents the statistics of our collected dataset. Ta-
ble 3 shows the attribute distribution of the training

2While Xu et al. (2019) released a subset of their collected
data from AliExpress.com, their data has a long-tailed attribute
distribution (7650 of 8906 attributes occur less than 10 times).
It brings major challenges for zero-/few-shot learning, which
are beyond our scope.

https://www.amazon.com/
https://www.aliexpress.com/
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set. It clearly demonstrates the data imbalance is-
sue of the real-world attribute value extraction data.

Most of the attribute values are usually covered
in the title and bullets, since sellers would aim to
highlight the product features early on in the prod-
uct profile. The description, on the other hand,
can provide few new values complementing those
mentioned in the title and bullets, but significantly
increases the computational costs due to its length.
Therefore, we consider two settings for experi-
ments: extracting from the title only (“Title”) and
extracting from the concatenation of the title and
bullets (“Title + Bullets”).

Split # Attributes # Products Avg. # Words
(Title)

Avg. # Words
(Title+Bullets)

train 32 333,857 20.9 113.4
dev 32 40,008 21.0 113.7
test 12 11,818 20.5 120.0

Table 2: Statistics of our collected dataset.

# Products # Att. Examples

[10000, 50279] 12 Color, Flavor, SkinType, HairType
[1000, 10000) 10 ActiveIngredients, CaffeineContent
[100, 1000) 6 SpecialIngredients, DosageForm
[15, 100) 4 PatternType, ItemShape

Table 3: Frequencies of different attributes in the train-
ing set.

4.2 Evaluation Metrics
For each attribute, we calculate Precision/Recall/F1

based on exact string matching. That is, an ex-
tracted value is considered correct only if it ex-
actly matches one of the ground truth values for the
query attribute in the given text sequence. We use
Macro-Precision/Macro-Recall/Macro-F1 (denoted
as P/R/F1) as the aggregated metrics to avoid bias
towards high-resource attributes. They are calcu-
lated by averaging per-attribute metrics.

4.3 Compared Methods
We compare our proposed model with a series of
strong baselines for attribute value extraction.3

BiLSTM uses a BiLSTM-based encoder. Each
hidden representation is decoded independently
into a tag with a linear layer followed by soft-
max. BiLSTM-CRF (Huang et al., 2015) uses a
BiLSTM-based encoder and a CRF-based decoder,
as described in §2.2. Zheng et al. (2018) propose
OpenTag, which uses a self-attention layer between

3We discuss the sizes of different models in Appendix §A.

the BiLSTM-based encoder and CRF-based de-
coder for interpretable attribute value extraction.
However, we find the self-attention layer not help-
ful for the performance.4 We therefore only present
the results for BiLSTM-CRF in §5. BERT (Devlin
et al., 2019) and BERT-CRF replace the BiLSTM-
based text encoder with BERT.5

Note that these four methods don’t take the query
attribute as input. To make them work in our more
realistic setting with multiple (N ) attributes, we
consider two variants for each of them. (1) “N
tag sets”: We introduce one set of B/I/E tags for
each attribute, so that a tag sequence can be un-
ambiguously mapped to the extraction results for
multiple attributes. For example, the tag sequence
“B-SkinType E-SkinType O B-Scent” indicates that
the first two words constitutes a value for attribute
SkinType, and the last word is a value for Scent.
Only one model is needed to handle the extraction
for all attributes. (2) “N models”: We build one
value extraction model for each attribute — we’ll
train N models for this task.

The “N models” variant isolates the learning
of different attributes. To enable knowledge shar-
ing, other methods share the model components or
the whole model among all attributes: BiLSTM-
CRF-SharedEmb shares a word embedding layer
among all attributes. Each attribute has its own BiL-
STM layer and CRF-based decoder, which are in-
dependent from each other. BiLSTM-MultiCRF
(Yang et al., 2017) shares a BiLSTM-based text
encoder among all attributes. Each attribute has its
own CRF-based decoder. SUOpenTag (Xu et al.,
2019) encodes both the text sequence and the query
attribute with BERT and adopts a cross-attention
mechanism to get an attribute-aware representa-
tion for each word. The hidden representations are
decoded into a tags with a CRF-based decoder.

We also include AdaTag (Random AttEmb),
which has the same architecture as our model but
uses randomly initialized learnable attribute em-
beddings of the same dimension.

4.4 Implementation Details

We implement all models with PyTorch (Paszke
et al., 2019). For models involving BERT, we use
the bert-base-cased version. Other models
use pretrained 50d Glove (Pennington et al., 2014)

4We hypothesize that the improvement brought by the self-
attention module is dataset-specific.

5The hidden representation for each word is the average of
its subword representations.
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Methods Title Title + Bullets

P(%) R(%) F1(%) P(%) R(%) F1(%)

Group I: N tag sets

BiLSTM (N tag sets) 35.15 54.28 38.92 32.17 34.30 31.18
BiLSTM-CRF (N tag sets) 35.23 53.94 38.85 34.03 35.01 32.11
BERT (N tag sets) 33.52 50.48 36.29 31.41 30.62 28.26
BERT-CRF (N tag sets) 34.55 51.96 37.45 32.63 31.24 28.89

Group II: N models

BiLSTM (N models) 64.37 71.71 64.64 61.61 60.26 58.56
BiLSTM-CRF (N models) 63.94 72.14 64.78 62.07 61.46 59.19
BERT (N models) 55.34 72.86 58.48 53.35 61.27 54.37
BERT-CRF (N models) 54.29 72.79 57.49 49.25 59.33 50.49

Group III: shared components

BiLSTM-CRF-SharedEmb 63.77 72.50 64.62 58.95 60.58 57.66
BiLSTM-MultiCRF 64.48 72.04 64.81 60.64 62.75 59.78
SUOpenTag 63.62 71.67 64.76 61.57 60.48 59.62
AdaTag (Random AttEmb) 64.80 71.95 65.74 60.14 62.14 60.04
AdaTag (Our Model) 65.00 75.87 67.48 62.87 62.45 60.87

Table 4: Performance comparison on test set with 12
attributes (best in boldface and second best underlined).

embeddings as the initialization of the word em-
bedding matrix Wword. We choose dh = 200 as
the hidden size of the BiLSTM layer and 32 as
the batch size. BERT-based models are optimized
using AdamW (Loshchilov and Hutter, 2019) op-
timizer with learning rate 2e−5. Others use the
Adam (Kingma and Ba, 2015) optimizer with learn-
ing rate 1e−3. We perform early stopping if no
improvement in (Macro-) F1 is observed on the de-
velopment set for 3 epochs. For our model, we use
contextualized attribute embeddings as described
in §3.2 and freeze them during training. We set
k = 3 for MoE. We made choices based on the
development set performance.

5 Experimental Results

5.1 Overall Results

Table 4 presents the overall results using our dataset
under both “Title” and “Title + Bullets” settings.
Our model demonstrates great improvements over
baselines on all metrics except getting second best
recall under the “Title + Bullets” settings. The
comparisons demonstrate the overall effectiveness
of our model and pretrained attribute embeddings.

The “N tag sets” variants get much lower per-
formance than other methods, probably due to the
severe data imbalance issue in the training set (see
Table 3). All attributes share the same CRF-based
decoder, which could make learning biased towards
high-resource attributes. Note that introducing one
set of tags for each entity type is the standard ap-
proach for the Named Entity Recognition (NER)
task. Its low performance suggests that the attribute
value extraction task is inherently different from

Methods High-Resource Att. Low-Resource Att.

P(%) R(%) F1(%) P(%) R(%) F1(%)

BiLSTM-CRF (N models) 54.04 75.66 61.57 83.72 65.08 71.19
BiLSTM-MultiCRF 54.38 74.42 60.23 84.70 67.29 73.97
SUOpenTag 55.34 72.94 60.49 80.16 69.13 73.31
AdaTag (Our Model) 56.05 76.07 62.00 82.90 75.48 78.45

Table 5: Performance comparison on high-resource and
low-resource attributes.

standard NER.
Variants of “shared components” generally

achieve higher performance than the independent
modeling methods (“N models”), which demon-
strates the usefulness of enabling knowledge shar-
ing among different subtasks.

We also notice that BERT and BERT-CRF mod-
els get lower performance than their BiLSTM and
BiLSTM-CRF counterparts. The reason could be
the domain discrepancy between the corpora that
BERT is pretrained on and the product title/bullets.
The former consist of mainly natural language sen-
tences, while the latter are made up of integration
of keywords and ungrammatical sentences.

5.2 High- vs. Low-Resource Attributes

To better understand the gain achieved by joint
modeling, we further split the 12 testing attributes
into 8 high-resource attributes and 4 low-resource
attributes, based on the size of the training data with
1000 instances as the threshold. It is important
to point out that many factors (e.g., vocabulary
size, value ambiguity, and domain diversity), other
than the size of training data, can contribute to the
difficulty of modeling an attribute. Therefore, the
performance for different attributes is not directly
comparable.6

From results in Table 5, we can see that
our model gets a lot more significant improve-
ment from the independent modeling approach
(BiLSTM-CRF (N models)) on low-resource at-
tributes compared to high-resource attributes. This
suggests that low-resource attributes benefit more
from knowledge sharing, making our model de-
sirable in the real-world setting with imbalanced
attribute distribution.

5.3 Ablation Studies

Attribute Embeddings. We study different
choices of adopting pretrained attribute embed-

6Some low-resource attributes (e.g., BatteryCellCompo-
sition) have small value vocabulary and simple mentioning
patterns. Saturated performance on them pull up the metrics.
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dings. Specially, we experiment with contextu-
alized embeddings (BERTname+value) and uncontex-
tualized embeddings (Glovename+value) under the
“Title” setting. For given attribute embeddings, we
can either finetune them during training or freeze
them once loaded. We also experiment with at-
tribute name embeddings rname and attribute value
embeddings rvalue only to understand which infor-
mation is more helpful. The baseline is set as us-
ing randomly initialized learnable attribute embed-
dings. Table 6 shows the results. Comparing at-
tribute embeddings with the same dimension, we
find that freezing pretrained embeddings always
leads to performance gain over the random base-
line. This is because our parameterization methods
have high flexibility in generating the parameters
for the decoder. Using pretrained embeddings and
freezing them provides the model with a good start-
ing point and makes learning easier by reducing
the degree of freedom. BERTname (freeze) out-
performs BERTvalue (freeze), suggesting that the
attribute name is more informative in determining
the characteristics of the value extraction task on
our dataset, where the values labeled through dis-
tant supervision are noisy.

Attribute Embeddings Dimension P(%) R(%) F1(%)

Random 100 63.05 72.35 64.82
Glovename+value 100 64.12 70.51 63.89
Glovename+value (freeze) 100 64.47 73.11 65.53

Random 768 63.83 72.39 65.12
BERTname 768 62.01 73.94 64.89
BERTname (freeze) 768 64.90 74.31 66.60
BERTvalue 768 65.03 72.36 65.53
BERTvalue (freeze) 768 62.96 73.92 65.51

Random 1536 64.80 71.95 65.74
BERTname+value 1536 63.57 73.57 65.81
BERTname+value (freeze) 1536 65.00 75.87 67.48

Table 6: Performance (Title) with different choices for
deriving and adopting attribute embeddings.

Linear Layer Transition Matrix P(%) R(%) F1(%)

MoE MoE 42.28 65.80 47.94
hypernetwork hypernetwork 65.59 69.39 63.66

MoE hypernetwork 53.52 66.43 55.10
hypernetwork MoE 65.00 75.87 67.48

Table 7: Performance (Title) with different parameteri-
zation methods.

Decoder Parameterization. We study different
design choices for parameterizing the CRF-based
decoder. For designs involving MoE, we search
the number of experts (k) in [1, 2, 3, 4, 5] and adopt

Figure 3: Performance (Title) with different numbers
of training attributes. We use broken y-axis due to the
large gap in results between BiLSTM-CRF (N tag sets)
and other models.

the best one to present the results. We experiment
under the “Title” setting. From Table 7, we find
that parameterizing the linear layer with MoE leads
to much lower performance. This is reasonable
because the linear layer plays a much more impor-
tant role in the decoder while the transition matrix
acts more like a regularization to avoid bad tag se-
quences. MoE uses k matrices as basis and expects
to represent the parameters for any attribute as a
linear combination of the bases. That limits the ex-
pressiveness to capture complicated characteristics
of different attributes and will thus severely hurt the
performance. As for the transition matrix, model-
ing with MoE is a better choice. This is because the
transition matrix is more “structured” in the sense
that each of it element is expected to be either a big
number or a small number based on its semantics.
For example, the transition score for I→ E should
be much higher than I→ B. Hypernetwork is too
flexible to generate such “structured” parameters.

5.4 Effect of Number of Attributes

An important motivation of our model is that joint
modeling of different attributes can facilitate knowl-
edge sharing and improve the performance. Here
we study the performance of model improvement
along with increment of the number of jointly mod-
eled attributes. We experiment under the “Title”
setting. We start with training our model on 12
attributes that have test data. After that, we random
select 5, 10, 15, 20 attributes from the remaining
attributes, and add them to the joint training. The
evaluation results on 12 test attributes are presented
in Figure 3. While our model general demonstrates
greater improvement with joint modeling of more
attributes, other models’ performance fluctuate or
goes down. That also demonstrates the scalability
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of our model when new attributes keep emerging
in real-world scenarios.

6 Related Work

Attribute Value Extraction. OpenTag (Zheng
et al., 2018) formulates attribute value extraction as
a sequence tagging task, and proposes a BiLSTM-
SelfAttention-CRF architecture to address the prob-
lem. Xu et al. (2019) propose an “attribute-aware”
setup, by utilizing one set of BIO tags and attribute
name embedding with an attention mechanism, to
enforce the extraction network to be attribute com-
prehensive. Karamanolakis et al. (2020) addition-
ally incorporate the product taxonomy into a multi-
task learning setup, to capture the nuances across
different product types. Zhu et al. (2020) intro-
duce a multi-modal network to combine text and
visual information with a cross-modality attention
to leverage image rich information that is not con-
veyed in text. Wang et al. (2020) use a question
answering formulation to tackle attribute value ex-
traction. We adopt the extraction setup in our model
as most of previous contributions, using sequence
labeling architecture. But we utilize an adaptive
decoding approach, where the decoding network is
parameterized with the attribute embedding.

Dynamic Parameter Generation. Our model
proposes an adaptive-based decoding setup, pa-
rameterized with attribute embeddings through a
Mixture-of-Experts module and a hypernetwork.
Jacobs et al. (1991) first propose a system com-
posed of several different “expert” networks and
use a gating network that decides how to as-
sign different training instances to different “ex-
perts”. Alshaikh et al. (2020); Guo et al. (2018);
Le et al. (2016); Peng et al. (2019) all use do-
main/knowledge experts, and combine the predic-
tions of each expert with a gating network. Un-
like these works, we combine the weights of each
expert to parameterize a network layer given an
input embedding. Ha et al. (2017) propose the gen-
eral idea of generating the parameters of a network
by another network. The proposed model in Cai
et al. (2019) generates the parameters of an encoder-
decoder architecture by referring to the context-
aware and topic-aware input. Suarez (2017) uses
a hypernetwork to scale the weights of the main
recurrent network. Platanios et al. (2018) tackle
neural machine translation between multiple lan-
guages using a universal model with a contextual
parameter generator.

7 Conclusion

In this work we propose a multi-attribute value
extraction model that performs joint modeling of
many attributes using an adaptive CRF-based de-
coder. Our model has a high capacity to derive
attribute-specific network parameters while facili-
tating knowledge sharing. Incorporated with pre-
trained attribute embeddings, our model shows
marked improvements over previous methods.
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A Number of Model Parameters

Methods # Parameters

BiLSTM (N tag sets) 0.6k ·N+ 6M
BiLSTM-CRF (N tag sets) 9 ·N2 + 0.6k ·N+ 6M
BiLSTM/BiLSTM-CRF (N models) 6M ·N
BiLSTM-CRF-SharedEmb 0.1M ·N+ 6M
BiLSTM-MultiCRF 2k ·N+ 6M
AdaTag 8M

Table 8: Numbers of parameters for BiLSTM-based
models with N attributes.

In our main experiment (Table 4), the numbers
of parameters (M = 1, 000, 000; k = 1, 000) for
BiLSTM-based models with N attributes are listed
in Table 8. BERT (bert-base-cased) itself
has 110M parameters, making BERT-based mod-
els generally much larger.

For our AdaTag, the weights for the hypernet-
work (Ww

hyper ∈ R4dh×dr ) have (4× 200)× 1536
parameters. The number can be reduced by insert-
ing a middle layer with fewer neurons.


