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Abstract

Syntactic structure is an important compo-
nent of natural language text. Recent top-
performing models in Answer Sentence Selec-
tion (AS2) use self-attention and transfer learn-
ing, but not syntactic structure. Tree struc-
tures have shown strong performance in tasks
with sentence pair input like semantic related-
ness. We investigate whether tree structures
can boost performance in AS2. We introduce
the Tree Aggregation Transformer: a novel
recursive, tree-structured self-attention model
for AS2. The recursive nature of our model is
able to represent all levels of syntactic parse
trees with only one additional self-attention
layer. Without transfer learning, we establish
a new state of the art on the popular TrecQA
and WikiQA benchmark datasets. Addition-
ally, we evaluate our method on four Com-
munity Question Answering datasets, and find
that tree-structured representations have limi-
tations with noisy user-generated text. We con-
duct probing experiments to evaluate how our
models leverage tree structures across datasets.
Our findings show that the ability of tree-
structured models to successfully absorb syn-
tactic information is strongly correlated with a
higher performance in AS2.

1 Introduction

Motivation. Natural language text is character-
ized by structure. For instance, syntactic parse trees
decompose a sentence into syntactic groups, which
in turn are decomposed recursively until we get
to single-word spans. Therefore, syntactic parse
trees have a varying number of levels that can be
accurately represented by recursive model architec-
tures.

Tree-structured LSTM networks (Tai et al.,
2015) are the recursive extension of LSTM net-
works (Hochreiter and Schmidhuber, 1997), and
allow for syntactic trees to be represented hierarchi-
cally. Tree-LSTMs and bidirectional Tree-LSTMs
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Figure 1: Embedding a sentence with our proposed
recursive tree-structured self-attention using the corre-
sponding constituency parse tree. There is only one set
of parameters for the recursive self-attention.

(Teng and Zhang, 2017) do not represent sequence
position information, whereas the hybrid neural
inference networks (Chen et al., 2017a) represent
sequence position information separately from tree-
structured hierarchical information.

Tree-structured models have been applied to the
tasks of natural language inference (Chen et al.,
2017a), sentence pair similarity (Tai et al., 2015),
dependency parsing (Kiperwasser and Goldberg,
2016), and text embeddings (Mrini et al., 2019). In
this paper, we consider the problem of Answer Sen-
tence Selection (AS2), where the goal is to predict
for a question-sentence pair whether the sentence
contains an answer to the question. Given that tree-
structured models have performed strongly on a
task that takes a sentence pair as input — sentence
pair similarity, we hypothesize that tree structures
can help in AS2, another sentence pair task.

The most recent top-performing model archi-
tectures for Answer Sentence Selection have been
based on the self-attention transformer architec-
ture (Vaswani et al., 2017). Three of them (Lai
et al., 2019; Garg et al., 2019; Tran et al., 2020)
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use transfer learning on large AS2 datasets; another
one (Laskar et al., 2020) uses direct fine-tuning on
pre-trained transformer-based language encoders,
whereas all three use pre-trained BERT (Devlin
et al., 2019) and/or RoBERTa embeddings (Liu
et al., 2019).

Contribution. We investigate whether tree struc-
tures are useful for AS2. We introduce the Tree Ag-
gregation Transformer: a novel recursive and tree-
structured self-attention model for Answer Sen-
tence Selection. We use the syntactic parse trees of
questions and candidate answer sentences to model
them in a tree-structured way. We then form rep-
resentations for questions and candidate answers
using one additional self-attention layer in a recur-
sive, bottom-up fashion, as shown in Figure 1. We
learn syntactic embeddings to represent hierarchi-
cal order and phrase-level syntactic information.
We find in an ablation study that our learned syn-
tactic embeddings improve performance.

Without using AS2 datasets for transfer learning,
our model establishes a new state of the art for the
clean versions of TrecQA and WikiQA, two widely
used benchmark datasets in question answering and
AS2. Our tree-structured self-attention matches or
exceeds the state of the art — which is fine-tuning on
RoBERTa - on 2 out of 4 Community Question An-
swering (CQA) datasets. We conduct experiments
for 3 probing tasks to establish what information
our models leverage to increase performance, and
likewise what they fail to leverage when they do
not exceed baselines. We find that tree-structured
representations that successfully absorb the pro-
vided syntactic information consistently perform
better than baselines. Our probing task results sug-
gest that there is more work to be done for tree
structures to adapt to noisy user-generated text.

2 Related Work

Tree-structured Transformers. To the best of our
knowledge, our method is the first to introduce
tree self-attention to Answer Sentence Selection.
There is a growing body of work incorporating tree
structures in self-attention for a range of other NLP
tasks.

Nguyen et al. (2019) introduce a transformer-
based encoder-decoder that incorporates tree-
structured attention. The tree-structured attention is
accumulated hierarchically. A token in the tree has
as many representations as overall children, there-
fore it is first accumulated in a bottom-up fashion

(vertically), and then horizontally to compute a to-
ken’s representation. Their model is not recursive
and uses different parameters for each level. The
authors evaluate their model in machine translation
and text classification.

Sun et al. (2020) develop a tree-structured trans-
former encoder-decoder architecture for code gen-
eration. Here, the tree structure is based on the
code syntax. The model uses character-level em-
beddings as input.

Harer et al. (2019) introduce Tree-Transformer:
amodel with a tree convolution block for correction
of code and grammar. Wang et al. (2019) propose
a model of the same name, where the model learns
syntactic parse trees in an unsupervised manner.
The model uses up to 12 layers of non-recursive
self-attention on top of a pre-trained BERT.

Ahmed et al. (2019) introduce Constituency and
Dependency Tree Transformer models, largely in-
spired by the Constituency and Dependency Tree-
LSTM models (Tai et al., 2015) and RvNN models
(Socher et al., 2011, 2012, 2013). On 4 datasets
of semantic relatedness, natural language inference
and paraphrase identification, their transformer
models achieve performance on par with Tree-
LSTM models, and do not set a new state of the art.
The authors use two convolution layers to form a
parent representation from the corresponding chil-
dren. Their model does not learn an explicit syntac-
tic representation, and the authors do not analyze
the fluctuating results.

Answer Sentence Selection (AS2). The recent
state-of-the-art models in the AS2 task all use trans-
fer learning from large-scale datasets, and do not in-
corporate syntactic information. All of them use a
standard linear (or sequential) input format, where
the first input sentence is the question and the sec-
ond is the candidate answer.

Lai et al. (2019) introduce the Gated Self-
Attention Memory Network (GSAMN). It com-
bines gated attention (Dhingra et al., 2017; Tran
et al., 2017), memory networks (Sukhbaatar et al.,
2015) and self-attention (Vaswani et al., 2017) in
one model. The authors use transfer learning with
their Stack Exchange QA dataset.

Garg et al. (2019) propose the TandA method:
Transfer and Adapt. The method is simply fine-
tuning directly on a pre-trained BERT or RoOBERTa
model. The transfer step is transfer learning: fine-
tuning a large pre-trained BERT or RoOBERTa on
the ASNQ dataset: a large-scale answer sentence
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selection dataset extracted from Google’s Natural
Questions (Kwiatkowski et al., 2019). The second
step is to adapt the language model fine-tuned for
answer sentence selection to the smaller, target
benchmarks TrecQA and WikiQA.

Tran et al. (2020) build upon the work of Lai
et al. (2019). They propose to use a neural Turing
machine (Graves et al., 2014) as a controller for
the memory network, instead of the gated attention
that Lai et al. (2019) use. Like Garg et al. (2019),
they use the ASNQ dataset for transfer learning.

Laskar et al. (2020) achieve state-of-the-art re-
sults on a wide range of QA and CQA datasets
by directly fine-tuning on the target datasets, with-
out transfer learning from an external large-scale
dataset. They show results for two methods: the
first trains a self-attention layer while freezing pre-
trained language model layers, and the second di-
rectly fine-tunes on the language model.

3 Tree Aggregation Transformer for
Answer Sentence Selection

In the AS2 task, the input is a pair of sentences,
where the first one is the question and the second is
a candidate answer. This is a binary classification
problem on whether or not the candidate answer
sentence contains an answer to the question. We
therefore design our model to form a representa-
tion of the question and a representation of the
candidate answer, in a bottom-up tree aggregation
fashion.

Semantic and Syntactic Representation. We
define a token embedding in our input representa-
tion as the concatenation of a semantic embedding
and a syntactic embedding. The semantic embed-
ding is a projection of the token embedding from a
given pre-trained language model, whereas the syn-
tactic embedding contains information from part-
of-speech tags, syntactic categories, and the level
within the syntactic parse tree.

The syntactic embedding is the sum of three
learned embeddings. The first embedding repre-
sents the token’s tag — a part-of-speech tag if the
token is a word, or a syntactic category if the token
is a classification or separator token. The second
embedding represents the token’s level within the
tree, inherited from the head of the token’s con-
stituent span. Our recursive model allows to rep-
resent sentences with as many tree levels as the
corresponding syntax tree has. The third embed-
ding represents the position of a token within the

constituent span, as seen in the example in Figure 2.
This position embedding puts the token within its
span context, whereas the position embedding of
the semantic (language model) embedding puts the
token within the context of the question-sentence
pair.

More formally, given a token ¢, its language
model embedding x¢, its position index py, its part-
of-speech tag or syntactic category sy, and its tree
level [;, the token’s semantic embedding e and
syntactic embedding ng are as follows:

et = W1 xx¢ + by (D)

ny = Wy [E*[s] + EP [p)] + E'[1]] + b2 ()

where W1, W, by, bs are learned, and ES, EP
and E! are learned embedding layers, respectively
for the part-of-speech tag or syntactic category, the
position index, and the tree level.

Recursive Self-Attention. We add 1 layer of
recursive self-attention layer on top of the language
model layers. The recursive self-attention layer has
separate attention distributions ag and aj* for the
semantic embedding e¢ and syntactic embedding
Ng:

EL R

Ve
qy * K“)
Vdy,
where d,, and d. are the dimensions of the query
and key vectors for the semantic and syntactic em-
beddings respectively, and K€ and K" are the
learned matrices of key vectors of input tokens.

q¢ and qf are the query vectors for the token ¢,
such that:

ay = softmax (

“

ay’ = softmax <

q; = WQe e 5)
qp = W« ny (6)
where WQ:€ and W™ are learned.

The resulting vectors of and of* are computed
as:

of =e;+ W€« (al « V®) + b0 (7)

o =ng + WO (ag « V™) + bOm  (8)
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Figure 2: Input representation of an example question-sentence pair using Figure 3: Detailed example of re-

RoBERTa.

where V€ and V™ are the value vectors for the
input tokens, and WO, WOn 1HOe pOn are
learned. Finally, we apply separate position-wise
feed-forward layers to these output vectors.

Usually, self-attention includes residual dropout
over the attention-weighted value vectors. We
found in preliminary experiments that the perfor-
mance on the dev set improved when we omitted
dropout regularization. We omit dropout in both
self-attention and position-wise feed-forward layer.

The recursiveness of the self-attention allows the
model to re-use the same sets of parameters across
each tree level, instead of training new ones as in
previous work (Nguyen et al., 2019; Wang et al.,
2019).

Constituent Span Embedding. Each input sen-
tence is represented in a tree-structured fashion us-
ing its constituency parse tree. We use a pre-trained
parser, whose parameters are fixed, to produce the
trees before training time.

The constituent span is fed to the recursive self-
attention as a matrix of token vectors. This matrix
includes the embeddings of the words of the con-
stituent span, preceded by a first, start-of-sentence
embedding, and followed by an end-of-sentence
embedding. The start-of-sentence token is the clas-
sification token if the span is part of the question,
or a separator token if the span is part of the candi-
date sentence. Figure 3 shows how we compose a
constituent span embedding for ROBERTa models.

The constituent span embedding is the output
embedding of the first token. The first token em-
bedding obtains through the recursive self-attention

cursive tree aggregation.

an attention-weighted sum of all of the span’s token
embeddings. This creates a span-specific embed-
ding, conscious of the entire question-sentence pair
input as a result of the language model layers, but
focused on the tokens of a span as a result of the
recursive self-attention.

In using only one layer of recursive self-
attention, the first token embedding gets an
attention-weighted sum of value vectors that con-
tains token embeddings that did not go through a
layer of self-attention, and syntactic embeddings
that came directly out of the embedding layers.

Efficient Tree Aggregation. To obtain an aggre-
gate sentence embedding, we proceed by embed-
ding from the deepest level of the tree (the leaves)
to the root, as shown in Figure 3. The computa-
tions are done on the same two sets of self-attention
parameters.

To reduce training time, we compute the con-
stituent span embeddings one level at a time. For
instance, in Figure 2, we compute the NP, VP and
PP groups at once when computing the span em-
beddings at tree level 2.

We efficiently compute all span embeddings only
once, and keep all computed span embeddings, as
they will be used in the next level.

The sentence embedding is obtained from the
first token output of the computation at the root of
the tree, as shown in Figure 1.

Prediction. Finally, we concatenate the aggre-
gate embeddings for the question-sentence input
pair. Given the question’s aggregate semantic em-
bedding wg and aggregate syntactic embedding
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W, and the sentence’s aggregate semantic embed-
ding w¢ and aggregate syntactic embedding wf,
we obtain the prediction values as follows:

p(s|q) = softmax (W * tanh [wg; Wq; We; w:] + b)
®
where W and b are learned. We use binary cross-
entropy as our loss function.

Our model can optionally include a residual con-
nection, by adding the classification token embed-
ding output of the language model to the beginning
of the question-sentence pair vector. This residual
connection does not contain syntactic information,
and the classification token embedding is not pro-
jected in this case.

4 Experiments

4.1 Datasets

We evaluate our proposed Tree Aggregation
Transformer on six English-language benchmark
datasets for answer sentence selection. The first
two — TrecQA and WikiQA — are widely used
benchmarks in Question Answering (QA). The
other four — YahooCQA and SemEval 2015, 2016
and 2017 — are all from the Community Question
Answering (CQA) domain. We show the statistics
of these six datasets in Table 1.

TrecQA (Wang et al., 2007) is collected from
labeled sentences of the QA track of the Text RE-
trieval Conference (TREC). Over time, the dataset
has evolved into two versions: the raw version
includes all question-sentence pairs, whereas the
clean version excludes questions with only non-
relevant or only relevant candidate answers.

WikiQA (Yang et al., 2015) contains questions
originally sampled from Bing query logs, and
matched with candidate answer sentences from the
first paragraph of relevant Wikipedia articles. Like-
wise, it also has a raw and a clean version. Follow-
ing Lai et al. (2019); Tran et al. (2020), we evaluate
our method on the clean versions of TrecQA and
WikiQA.

YahooCQA (Tay et al., 2017) is a filtered and
pre-processed subset of the large-scale Yahoo! An-
swers Manner Questions dataset (Surdeanu et al.,
2008). The latter is based on the Yahoo! Answers
online forum.

SemEval 2015 CQA (Nakov et al., 2015) is the
challenge dataset of Subtask A of Task 3 of Se-
mEval 2015. It is based on the Qatar Living on-
line forum, and the goal is to predict the relevance

Number of Questions Number of Answers
Train | Dev | Test Train Dev Test
TrecQA Clean | 1,229 65 68 53417 | 1,117 | 1,442

WikiQA Clean 873 126 243 8,672 1,130 | 2,351

Dataset

YahooCQA 50,112 | 6,289 | 6,283 | 253,440 | 31,680 | 31,680
2015 | 2,600 | 300 329 16,541 | 1,645 | 1,976

SemEval | 2016 | 4,879 | 244 327 | 36,198 | 2,440 | 3,270
2017 | 4,879 | 244 293 | 36,198 | 2,440 | 2,930

Table 1: Statistics of the six benchmark datasets.

scores of candidate answers given a question. The
original subtask divides labels into three categories:
definitely relevant, potentially useful, and irrele-
vant. Following previous work (Sha et al., 2018;
Laskar et al., 2020), only definitely relevant candi-
date answers are marked as relevant in our binary
classification setting.

SemEval 2016 CQA (Nakov et al., 2016) corre-
sponds as well to Subtask A of Task 3 of SemEval
2016, about question-comment similarity. It is a
new dataset also based on the Qatar Living online
forum. The training set includes the training, de-
velopment and testing sets of the SemEval 2015
CQA, and two new training sets. The authors of
the dataset have described the first one as highly
reliable, and the second one as noisier.

SemEval 2017 CQA (Nakov et al., 2017) is the
latest version of the community question answering
task. The training and development sets are the
same as the 2016 version, but the testing set is
different.

In Figure 2, we show an example of question-
sentence pairs for a QA dataset and a CQA dataset.
The aim is to illustrate the difference in style and
length between formal (QA) and informal (CQA)
text.

4.2 Setup

The standard evaluation metrics in answer sentence
selection are Mean Average Precision (MAP) and
Mean Reciprocical Rank (MRR). Both metrics are
widely used in Information Retrieval (IR) and are
averaged per query — in this case per question. Our
model produces relevance scores going from 0 (ir-
relevant) to 1 (relevant) for each candidate answer,
and therefore produces a list of candidate answers
that can be ranked by relevance. Whereas MRR
scores how early a first relevant answer appears in
that candidate list, MAP scores the order in which
all candidate answers are listed for each question.
To produce parse trees, we use the NLTK part-
of-speech tagger (Loper and Bird, 2002) trained on
the part-of-speech tagset of the English Penn Tree-
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Dataset Question

Answer

WikiQA how are glacier caves formed ?

A glacier cave is a cave formed within the ice of a glacier .

SemEval Why people are crossing red signals on Doha Roads? I think
2016-2017 | signals are changing quickly than on Dubai roads and its hard
for the motorists to control their vehicles? Moreover; motorists
are bit panic fearing the penalties as per the new traffic law.

also 1 traffic lights here does not have standard options. some have
blinking green light; some chage to yellow right away then red. several
times alredy i found my self driving in the middle of the crossing in
red light luckily at the moment no fines. hehehe :) pykester

Table 2: Samples of question-sentence pairs from the training sets of WikiQA and SemEval 2016-2017 (both years
share the same training dataset). Here, the sentence contains an answer to the question.

.. SemEval CQA
Representation TrecQA WikiQA YahooCQA 2015 2016-2017
MAP | MRR | MAP | MRR | MAP | MRR | MAP | MRR | MAP | MRR
Semantic Only 0.932 | 0.958 | 0.892 | 0.001 | 0.929 | 0.929 | 0.947 | 0.959 | 0.911 | 0.950
Semantic + Syntactic | 0.946 | 0.961 | 0.898 | 0.912 | 0.933 | 0.933 | 0.945 | 0.962 | 0.914 | 0.957

Table 3: Ablation study on syntactic representations: Results for our Tree Aggregation Transformer with and
without learned syntactic embeddings for all of our benchmark dev sets, on ROBERTa Large.

bank (PTB) (Marcus et al., 1994), and the English-
language parser of Mrini et al. (2020), which is the
state of the art on the parse trees of the PTB.

4.3 Training Parameters

We use 1 layer of recursive self-attention for all
datasets. We use the residual connection described
in §3 for TrecQA only. For all our models, we
use either BERT large or RoBERTa large, so as to
match our baselines. Our recursive self-attention
layers have: 16 attention heads, a feed-forward di-
mension of 4096, and a hidden dimension of 2048.
We use half of the dimensions to encode seman-
tic information, and the rest to encode syntactic
information.

4.4 Ablation Study on Syntactic Embeddings

We perform an ablation study by removing the syn-
tactic embedding part of the input representation.
In this experiment, we are quantifying the added
value of the learned syntactic embeddings for span
position, part-of-speech tags and syntactic cate-
gories, and tree levels.

Our results on the dev sets are in Table 3. Se-
mEval 2016 and 2017 results are the same since
both have the same dev set. Across all AS2 datasets,
we notice that there is an advantage to learning
syntactic embeddings, as the sum of MRR and
MAP scores are higher for the variant that includes
learned syntactic embeddings. The advantage is
clearer for QA datasets, suggesting that formal lan-
guage tends to benefit more from learned syntactic
information. We use syntactic embeddings in our
next experiments.

4.5 Baselines

We conside five strong baselines, described in §2:

TrecQA WikiQA
Model MAP | MRR | MAP | MRR
Chen et al. (2017b) 0.781 | 0.851 | 0.721 | 0.731
Bian et al. (2017) 0.821 | 0.899 | 0.754 | 0.764
Tay et al. (2018) 0.784 | 0.865 | 0.712 | 0.727
Chen et al. (2018a) 0.823 | 0.889 | 0.736 | 0.745
Chen et al. (2018b) 0.841 | 0917 | 0.730 | 0.743
Sha et al. (2018) - - 0.746 | 0.758
Madabushi et al. (2018) 0.865 | 0.904 - -
Tymoshenko and Moschitti (2018) - - 0.762 | 0.776
Kamath et al. (2019) - - 0.700 | 0.716
Models using BERT Large
GSAMN (Lai et al., 2019)* 0914 | 0.957 | 0.857 | 0.872
TandA (Garg et al., 2019)* 0912 | 0.967 - -
Reg. Self-Attention (Laskar et al., 2020) | 0.789 | 0.887 | 0.714 | 0.731
Direct Fine-tuning (Laskar et al., 2020) 0.905 | 0.967 | 0.843 | 0.857
Our Tree Aggregation Transformer 0.917 | 0.961 | 0.851 | 0.868
Models using RoOBERTa Large
TandA (Garg et al., 2019)* 0.943 | 0.974 - -
Direct Fine-tuning (Laskar et al., 2020) 0.936 | 0.978 | 0.900 | 0.915
Our Tree Aggregation Transformer 0.950 | 0.985 | 0.906 | 0.920

Models using RoOBERTa Large and Evidence Memory
Evidence Memory (Tran et al., 2020)* ] 0.961 [ 0.993
Our Tree Aggregation Transformer | 0.970 | 0.995

0.936
0.941

0.952
0.958

Table 4: Our results in comparison with recent work on
the TrecQA and WikiQA benchmark datasets. * indi-
cates use of transfer learning on large-scale datasets.

(1) GSAMN (Lai et al.,, 2019): Gated Self-
Attention Memory Networks.
(2) TandA (Garg et al., 2019): the two-step Trans-
fer and Adapt method.
(3) Regular Self-Attention (Laskar et al., 2020):
a self-attention layer fine-tuned over frozen BERT
Large embeddings.
(4) Direct Fine-tuning (Laskar et al., 2020): di-
rectly fine-tuning on a pre-trained language model.
(5) Evidence Memory (Tran et al., 2020): the neu-
ral Turing machine as memory controller.
Baselines 1, 2, and 5 are available only on
TrecQA and/or WikiQA, whereas baselines 3 and
4 use the exact same datasets as we do.

4.6 Results and Discussion

The results of our experiments with the QA datasets
are in Table 4, and the results of our experiments
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with CQA datasets are in Table 5.

4.6.1 State of the Art in QA datasets

Our results in Table 4 establish a new state of the
art in TrecQA and WikiQA, two widely used bench-
mark datasets in answer sentence selection.

In TrecQA, our average of MAP and MRR
scores matches the one for TandA (Garg et al.,
2019) in BERT, without any transfer learning on a
large dataset. This shows that our model is able to
leverage the tree structure to increase performance
on relatively small datasets.

For the RoBERTa results in WikiQA, the added
value between the direct fine-tuning and our re-
cursive self-attention confirms that our model is
beneficial to formally written text, such as the one
found in Wikipedia.

The increase in performance compared to the
Evidence Memory models (Tran et al., 2020) when
we add our tree representation shows that our tree
aggregation method brings about a consistent and
robust added value for the QA datasets.

4.6.2 Limitations in CQA datasets

As shown in Table 5, our Tree Aggregation Trans-
former is able to establish a new state of the art
in SemEval 2015, and our BERT-based version
exceeds other BERT-based baselines. However,
our method scores below the state of the art in Ya-
hooCQA and SemEval 2016, and only manages to
match the MRR — but not the MAP — of the state
of the art in SemEval 2017.

Therefore, there is a contrast in the performance
of our recursive tree-structured self-attention be-
tween the QA and the CQA datasets. The differ-
ence lies in the style of the datasets, as questions
and sentences can be much longer in QA datasets
than in CQA datasets. On average, a training set
pair in QA has 32 words for WikiQA, and 39 words
in TrecQA, whereas a training set pair in CQA
has 78 words for SemEval 2015, 85 words for Se-
mEval 2016-2017, and 40 words for YahooCQA.
As shown in the example, CQA pairs may also have
spelling mistakes or lack coherent structure. Thus,
the informal writing style and larger text length of
CQA datasets may be decreasing the ability of our
model to leverage tree structures. Accordingly, we
see that our model achieves very competitive scores
for YahooCQA, and that it has a text length that is
very close to the QA datasets. The SemEval 2015
exception could be explained by the fact that the
2015 training dataset is less noisy than the 2016-

2017 training dataset, as pointed out by the authors
of the SemEval CQA datasets.

4.7 Do Tree Structures Improve
Performance?

We investigate how tree structures are leveraged
in the Answer Sentence Selection task across the
different datasets. We evaluate our tree-structured
representations and compare them with the corre-
sponding sequential representations, using three
probing tasks from Conneau et al. (2018).

4.7.1 Probing Tasks

The three probing tasks are as follows:

(1) Top Constituent Prediction. This task looks
to predict the top constituent sequence of the
question-sentence pair: the sequence of syntactic
categories immediately below the S (Sentence) syn-
tactic category. Following Conneau et al. (2018),
we define this task as a 20-way classification prob-
lem, where the first 19 classes are the 19 most popu-
lar top constituent sequences, and the last category
is for all the remaining top constituent sequences.

(2) Tree Depth Prediction. The tree depth is the
number of hops from the root node of the syntactic
tree to the lowest-level leaf nodes.

(3) Input Length Regression. This tasks inves-
tigates whether the embedding is aware of how
many words it contains. The length of the question-
sentence pair input is defined as the number of its
tokens — full words and punctuation symbols.

The first two tasks are syntactic, and investi-
gate whether our tree-structured representations
absorbed the syntactic category information that
we fed it — respectively syntactic categories and tree
levels — and whether that information was already
present in the sequential representations.

4.7.2 Probing Experiment Setup

In our probing experiments, we consider all six
datasets used both in our work and in Laskar et al.
(2020). We consider the sequential representa-
tion of a question-answer pair to be the classifi-
cation token embedding used for prediction in the
RoBERTa-based models of Laskar et al. (2020).
We take our own RoBERTa-based tree-structured
models (without evidence memory), where we con-
sider the tree-structured representation to be the
classification token embedding fed to the predic-
tion layer. The tree-structured and sequential repre-
sentations have the same number of dimensions.
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SemEval CQA

Model YahooCQA 2015 2016 ? 2017

MAP | MRR | MAP | MRR | MAP | MRR | MAP | MRR
Nakov et al. (2017) - - - - - - 0.884 | 0.928
Tay et al. (2018) 0.801 | 0.801 - - - - - -
Sha et al. (2018) - - - 0.801 | 0.872 - -
Models using BERT Large
Regular Self-Attention (Laskar et al., 2020) | 0.778 | 0.778 | 0.883 | 0.923 | 0.765 | 0.831 | 0.867 | 0.922
Direct Fine-tuning (Laskar et al., 2020) 0.951 | 0.951 | 0.935 | 0.961 | 0.866 | 0.927 | 0.921 | 0.963
Our Tree Aggregation Transformer 0.946 | 0.946 | 0.946 | 0.972 | 0.844 | 0.900 | 0.902 | 0.955
Models using RoBERTa Large
Direct Fine-tuning (Laskar et al., 2020) 0.955 | 0955 | 0.947 | 0.970 | 0.888 | 0.938 | 0.943 | 0.974
Our Tree Aggregation Transformer 0.949 | 0949 | 0961 | 0981 | 0.863 | 0.918 | 0.926 | 0.974

Table 5: Our results in comparison with recent work on the YahooCQA and SemEvalCQA benchmark datasets.

. . . SemEval Spearman’s p
Probing Task Representation TrecQA | WikiQA | YahooCQA 015 3016 017 MAP MRR
Top Constituent Tree-Structured 0.1573 0.1949 0.0354 0.2058 | 0.0674 | 0.1151 0.8214 | 0.9550
Prediction (F1 score) | Sequential 0.0475 0.0463 0.0364 0.0434 | 0.0505 | 0.0483 ’ .
Tree Depth Tree-Structured | 0.1568 0.1638 0.0354 0.1682 | 0.0621 | 0.1340 0.8214 | 09550
Prediction (F1 score) | Sequential 0.0481 0.0476 0.0354 0.0451 | 0.0523 | 0.0481 ' ’
Input Length Tree-Structured | 0.0266 0.0273 4.51e-06 0.0652 | 0.0989 | 0.0416 20,0360 | 0.1429
Regression (MSE) Sequential 0.0822 0.1200 4.14e-06 0.2915 | 0.3338 | 0.1484 ’ ’

Table 6: Results for three probing tasks comparing sequential (Laskar et al., 2020) and tree-structured (ours)
representations. In the last two columns, we show the Spearman correlation of the probing task and the AS2
performance differences between the tree-structured and sequential representations.

The probing model architecture is a simple MLP
with a layer of the same size as the input embed-
dings, a ReLU activation, and a prediction layer.
We train 36 probing models for each of the 36
combinations of a probing task, a dataset and a rep-
resentation type. The input embeddings are frozen,
so that the training does not change the weights of
the pre-trained AS2 models. All experiments are
trained for the same number of epochs, and use the
same train/dev/splits as AS2 experiments.

4.7.3 Probing Results and Discussion

Our probing experiment results are shown in Ta-
ble 6. We compute the Spearman correlations of
the added values of the tree-structured representa-
tions compared to the sequential representations
in each probing task with the same added value in
the AS2 task. We compute the added value of the
tree representation in a given task by subtracting
the performance of the sequential representations
(Laskar et al., 2020) from the performance of the
tree-structured representations (ours).

For the syntactic probing tasks (the first two),
the tree-structured representation gets an F1 score
about 3 to 4 times higher than the one obtained by
the sequential representation in 4 datasets: TrecQA,
WikiQA, and SemEval 2015 and 2017. These 4
datasets correspond to the ones in which our tree-

structured AS2 models set a new state of the art or
matched the performance of the fine-tuning base-
line of Laskar et al. (2020). In the other datasets,
the tree-structured representation’s F1 score is just
slightly higher than the sequential representation’s
F1 score, if not about the same. This shows that
when the tree-structured representations success-
fully absorb the syntactic information we fed it,
there is a consistent increase in performance in
the answer sentence selection task. The high cor-
relation values for both MAP and MRR confirm
that successfully absorbing syntactic information
is associated with higher performance in AS2. The
weakness of tree-structured representations in cer-
tain datasets may be due to the lack of general-
ization of syntactic parsers trained on the Penn
Treebank.

In the input length probing experiment, we ob-
serve that the mean-squared error (MSE) of the
tree-structured representations is consistently and
significantly lower than the one of the sequential
representations, except for YahooCQA. This shows
that the recursion of our tree-structured AS2 model
makes representations aware of the length of their
question-sentence pair, but the correlation values
show that this information does not necessarily help
in the AS2 task.
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5 Conclusions

We introduce the Tree Aggregation Transformer: a
novel, recursive and tree-structured self-attention
model for AS2. Our method embeds sentences
by aggregating word representations following the
corresponding parse tree. We show that our model
leverages tree structure and, through an ablation
study, that its learned syntactic embeddings in-
crease performance. Our method establishes a
new state of the art in the TrecQA and WikiQA
benchmark datasets with only one additional self-
attention layer. Our tree-structured self-attention
exceeds or matches the state of the art in 2 out of
4 CQA datasets, where text is informal and longer.
To investigate this mixed performance, we devise 3
probing tasks to examine what our tree-structured
representations learn compared to their sequential
counterparts. We find that there is a strong cor-
relation between a tree-structured model’s ability
to absorb syntactic information and its ability to
increase performance in the AS2 task compared to
baselines. Our findings suggest that there is more
work to be done for tree-structured representations
to adapt to noisy user-generated text.
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