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Abstract

Recently, many studies are emerging towards
building a retrieval-based dialogue system
that is able to effectively leverage background
knowledge (e.g., documents) when conversing
with humans. However, it is non-trivial to
collect large-scale dialogues that are naturally
grounded on the background documents,
which hinders the effective and adequate
training of knowledge selection and response
matching. To overcome the challenge, we
consider decomposing the training of the
knowledge-grounded  response  selection
into three tasks including: 1) query-passage
matching task; 2) query-dialogue history
matching task; 3) multi-turn response
matching task, and joint learning all these
tasks in a unified pre-trained language model.
The former two tasks could help the model
in knowledge selection and comprehension,
while the last task is designed for matching
the proper response with the given query and
background knowledge (dialogue history). By
this means, the model can be learned to select
relevant knowledge and distinguish proper
response, with the help of ad-hoc retrieval
corpora and a large number of ungrounded
multi-turn dialogues. Experimental results
on two benchmarks of knowledge-grounded
response selection indicate that our model can
achieve comparable performance with several
existing methods that rely on crowd-sourced
data for training.

1 Introduction

Along with the very recent prosperity of artificial
intelligence empowered conversation systems in
the spotlight, many studies have been focused on
building human-computer dialogue systems (Wen
etal., 2017; Zhang et al., 2020) with either retrieval-
based methods (Wang et al., 2013; Wu et al., 2017;
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Whang et al., 2020) or generation-based meth-
ods (Li et al., 2016; Serban et al., 2016; Zhang et al.,
2020), which both predict the response with only
the given context. In fact, unlike a person who may
associate the conversation with the background
knowledge in his or her mind, the machine can
only capture limited information from the query
message itself. As a result, it is difficult for a
machine to properly comprehend the query, and to
predict a proper response to make it more engaging.
To bridge the gap of the knowledge between the
human and the machine, researchers have begun to
simulating this motivation by grounding dialogue
agents with background knowledge (Zhang et al.,
2018; Dinan et al., 2019; Li et al., 2020), and lots
of impressive results have been obtained.

In this paper, we consider the response selection
problem in knowledge-grounded conversion and
specify the background knowledge as unstructured
documents that are common sources in practice.
The task is that given a conversation context and
a set of knowledge entries, one is required 1):
to select proper knowledge and grasp a good
comprehension of the selected document materials
(knowledge selection); 2): to distinguish the true
response from a candidate pool that is relevant and
consistent with both the conversation context and
the background documents (knowledge matching).

While there exists a number of knowledge
documents on the Web, it is non-trivial to collect
large-scale dialogues that are naturally grounded
on the documents for training a neural response
selection model, which hinders the effective and
adequate training of knowledge selection and re-
sponse matching. Although some benchmarks built
upon crowd-sourcing have been released by recent
works (Zhang et al., 2018; Dinan et al., 2019), the
relatively small training size makes it hard for the
dialogue models to generalize on other domains or
topics (Zhao et al., 2020). Thus, in this work, we
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focus on a more challenging and practical scenario,
learning a knowledge-grounded conversation agent
without any knowledge-grounded dialogue data,
which is known as zero-resource settings.

Since knowledge-grounded dialogues are un-
available in training, it raises greater challenges
for learning the grounded response selection model.
Fortunately, there exists a large number of unstruc-
tured knowledge (e.g., web pages or wiki articles),
passage search datasets (e.g., query-passage pairs
coming from ad-hoc retrieval tasks) (Khattab and
Zaharia, 2020) and multi-turn dialogues (e.g.,
context-response pairs collected from Reddit) (Hen-
derson et al., 2019), which might be beneficial to
the learning of knowledge comprehension, knowl-
edge selection and response prediction respectively.
Besides, in multi-turn dialogues, the background
knowledge and conversation history (excluding
the latest query) are symmetric in terms of the
information they convey, and we assume that the
dialogue history can be regarded as another format
of background knowledge for response prediction.

Based on the above intuition, in this paper, we
consider decomposing the training of the grounded
response selection task into several sub-tasks, and
joint learning all those tasks in a unified model. To
take advantage of the recent breakthrough on pre-
training for natural language tasks, we build the
grounded response matching models on the basis
of a pre-trained language model (PLMs) (Devlin
et al., 2019; Yang et al., 2019), which are trained
with large-scale unstructured documents from the
web. On this basis, we further train the PLMs
with query-passage matching task, query-dialogue
history matching task, and multi-turn response
matching task jointly. The former two tasks could
help the model not only in knowledge selection
but also in knowledge (and dialogue history)
comprehension, while the last task is designed for
matching the proper response with the given query
and background knowledge (dialogue history). By
this means, the model can be learned to select rele-
vant knowledge and distinguish proper responses,
with the help of a large number of ungrounded
dialogues and ad-hoc retrieval corpora. During
the testing stage, we first utilize the trained model
to select proper knowledge, and then feed the
query, dialogue history, selected knowledge, and
the response candidate into our model to calculate
the final matching degree. Particularly, we design
two strategies to compute the final matching score.

In the first strategy, we directly concatenate the
selected knowledge and dialogue history as a
long sequence of background knowledge and feed
into the model. In the second strategy, we first
compute the matching degree between each query-
knowledge and the response candidates, and then
integrate all matching scores.

We conduct experiments with benchmarks of
knowledge-grounded dialogue that are constructed
by crowd-sourcing, such as the Wizard-of-
Wikipedia Corpus (Dinan et al., 2019) and
the CMU_DoG Corpus (Zhou et al., 2018a).
Evaluation results indicate that our model achieves
comparable performance on knowledge selection
and response selection with several existing
models trained on crowd-sourced benchmarks.

Our contributions are summarized as follows:

* To the best of our knowledge, this is the first
exploration of knowledge-grounded response
selection under the zero-resource setting.

* We propose decomposing the training of
the grounded response selection models into
several sub-tasks, so as to empower the model
through these tasks in knowledge selection
and response matching.

* We achieve a comparable performance of re-
sponse selection with several existing models
learned from crowd-sourced training sets.

2 Related Work

Early studies of retrieval-based dialogue focus on
single-turn response selection where the input of a
matching model is a message-response pair (Wang
et al., 2013; Ji et al., 2014; Wang et al., 2015).
Recently, researchers pay more attention to multi-
turn context-response matching and usually adopt
the representation-matching-aggregation paradigm
to build the model. Representative methods in-
clude the dual-LSTM model (Lowe et al., 2015),
the sequential matching network (SMN) (Wu
et al., 2017), the deep attention matching network
(DAM) (Zhou et al., 2018b), interaction-over-
interaction network (Iol) (Tao et al., 2019) and
multi-hop selector network (MSN) (Yuan et al.,
2019). More recently, pre-trained language mod-
els (Devlin et al., 2019; Yang et al., 2019) have
shown significant benefits for various NLP tasks,
and some researchers have tried to apply them
on multi-turn response selection. Vig and Ramea
(2019) exploit BERT to represent each utterance-
response pair and fuse these representations to
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calculate the matching score; Whang et al. (2020)
and Xu et al. (2020) treat the context as a long
sequence and conduct context-response matching
with BERT. Besides, Gu et al. (2020a) integrate
speaker embeddings into BERT to improve the
utterance representation in multi-turn dialogue.

To bridge the gap of the knowledge between the
human and the machine, researchers have investi-
gated into grounding dialogue agents with unstruc-
tured background knowledge (Ghazvininejad et al.,
2018; Zhang et al., 2018; Dinan et al., 2019). For
example, Zhang et al. (2018) build a persona-based
conversation data set that employs the interlocu-
tor’s profile as the background knowledge; Zhou
et al. (2018a) publish a data where conversations
are grounded in articles about popular movies;
Dinan et al. (2019) release another document-
grounded data with Wiki articles covering a wide
range of topics. Meanwhile, several retrieval-
based knowledge-grounded dialogue models are
proposed, such as document-grounded matching
network (DGMN) (Zhao et al., 2019) and dually
interactive matching network (DIM) (Gu et al.,
2019) which let the dialogue context and all knowl-
edge entries interact with the response candidate
respectively via the cross-attention mechanism.
Gu et al. (2020b) further propose to pre-filter the
context and the knowledge and then use the filtered
context and knowledge to perform the matching
with the response. Besides, with the help of gold
knowledge index annotated by human wizards,
Dinan et al. (2019) consider joint learning the
knowledge selection and response matching in a
multi-task manner or training a two-stage model.

3 Model

In this section, we first formalize the knowledge-
grounded response matching problem and then
introduce our method from preliminary to response
matching with PLMs to details of three pre-training
tasks.

3.1 Problem Formalization

We first describe a standard knowledge-grounded
response selection task such as Wizard-of-
Wikipedia. Suppose that we have a knowledge-
grounded dialogue data set D = {k;, ¢;, 7y, yi}f\il
where k; = {pi1,p2,...,p, } represents a
collection of knowledge with p; the j-th
knowledge entry (a.k.a., passage) and [j is the
number of entries; ¢; = {u1, ua, ...,y } denotes

multi-turn dialogue context with u; the j-th turn
and [, is the number of dialogue turns. It should
be noted that in this paper we denote the latest
turn vy, as dialogue query g;, and dialogue context
except for query is denoted as h; = ¢;/{q;}. i
stands for a candidate response. y; = 1 indicates
that r; is a proper response for ¢; and k;, otherwise
y; = 0. N is the number of samples in data set.
The goal knowledge-grounded dialogue is to learn
a matching model g(k, ¢, ) from D, and thus for
any new (k,c,r), g(k,c,r) returns the matching
degree between r and (k,c). Finally, one can
collect the matching scores of a series of candidate
responses and conduct response ranking.
Zero-resource grounded response selection then
is formally defined as follows. There is a standard
multi-turn dialogue dataset D, = {g;, h;, ri}f\;l
and an ad-hoc retrieval dataset D, = {q;, p;, z; } M,
where ¢; is a query and p; stands a candidate
passage, z; = 1 indicates that p; is a relevant
passage for g;, otherwise z; = 0. Our goal is to
learn a model g(k, h,q,r) from D, and D), and
thus for any new input (k, h, g, ), our model can
select proper knowledge k from k and calculate the
matching degree between r and (/;:, q,h).

3.2 Preliminary: Response Matching with
PLMs

Pre-trained language models have been widely used
in many NLP tasks due to the strong ability of
language representation and understanding. In this
work, we consider building a knowledge-grounded
response matching model with BERT.
Specifically, given a query ¢, a dialogue
history h = {u,ug,...,un,} where u;
is the ¢-th turn in the history, a response
candidate » = {ry,ro,...,r. } with [, words,
we concatenate all sequences as a single
consecutive tokens sequence with special
tokens, which can be represented as x =
{lcLs],u1, [SEP], ..., [SEP],u,, [SEP], ¢, [SEP],
r,[SEP]}. [CLS] and [SEP] are classification
symbol and segment separation symbol
respectively.  For each token in z, BERT
uses a summation of three kinds of embeddings,
including WordPiece embedding (Wu et al., 2016),
segment embedding, and position embedding.
Then, the embedding sequence of z is fed into
BERT, giving us the contextualized embedding
sequence {Fc1sy, E2,...,E; }. FEicrs) is an
aggregated representation vector that contains the
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Wep === Wei,

Dialogue History
or Knowledge

[Query] [Response]
U, | [SEP] q [SEP] n 7,  [SEP]
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Figure 1: The overall architecture of our model.

semantic interaction information between the query,
history, and response candidate. Finaly, F/[c1s; is
fed into a non-linear layer to calculate the final
matching score, which is formulated as:

g(h,q,7) = o(Wa2 - tanh(W1 Ejcrs) +b1) + b2) (1)

where Wy oy and by oy is training parameters for
response selection task, o is a sigmoid function.
In knowledge-grounded dialogue, each dialogue
is associated with a large collection of knowledge
entries k = {p1,p2,...,p, }'. The model is
required to select m(m > 1) knowledge entries
based on semantic relevance between the query
and each knowledge, and then performs the
response matching with the query, dialogue history
and the highly-relevant knowledge. Specifically,
we denote k = (p1,...,Dm) as the selected
knowledge entries, and feed the input sequence
x = {[cLs], p1,[SEP],...,[SEP], Pm, [SEP], u,
[SEP],...,[SEP],u,, [SEP],q, [SEP], T, [SEP]}
to BERT. The final matching score g(/%,h,q, T)
can be computed based on [CLS] representation.

3.3 Pre-training Strategies

On the basis of BERT, we further jointly train
it with three tasks including 1) query-passage
matching task; 2) query-dialogue history match-
ing task; 3) multi-turn response matching task.
The former two tasks could help the model in
knowledge selection and knowledge (and dialogue
history) comprehension, while the last task is
designed for matching the proper response with the
given query and background knowledge (dialogue

!The scale of the knowledge referenced by each dialogue
usually exceeds the limitation of input length in PLMs.

history). By this means, the model can be learned
to select relevant knowledge and distinguish the
proper response, with the help of a large number of
ungrounded dialogues and ad-hoc retrieval corpora.

3.3.1 Query-Passage Matching

Although there exist a huge amount of conversation
data on social media, it is hard to collect sufficient
dialogues that are naturally grounded on knowledge
documents. Existing studies (Dinan et al., 2019)
usually extract the relevant knowledge before the
response matching or jointly train the knowledge
retrieval and response selection in a multi-task
manner. However, both methods need in-domain
knowledge-grounded dialogue data (with gold
knowledge label) to train, making the model hard
to generalize to a new domain. Fortunately, the
ad-hoc retrieval task (Harman, 2005; Khattab and
Zaharia, 2020) in the information retrieval area
provides a potential solution to simulate the process
of knowledge seeking. To take advantage of
the parallel data in the ad-hoc retrieval task, we
consider incorporating the query-passage matching
task, so as to help the knowledge selection and
knowledge comprehension for our task.

Given a query-passage pair (q,p), we first
concatenate the query ¢ and the passage p as a
single consecutive token sequence with special
tokens separating them, which is formulated as:

S = {[CLS] ,wi...,wﬁp, [SEP],wi,... ,wf,q} 2)
where w}, w? denotes the i-th and j-th token of
knowledge entry p and query q respectively. For

each token in S{¥, token, segment and position
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embeddings are summated and fed into BERT.
It is worth noting that here we set the segment
embedding of the knowledge to be the same as
the dialogue history. Finally, we feed the output
representation of [CLS] Ef g, into a MLP to
obtain the final query-passage matching score
9(q, p). The loss function of each training sample
for query-passage matching task is defined by

Lo(q,p" 015 Pny)
e9(@p™) 3)

= — log( 5 -
ed(apt) 4 ij:1 e9(@r;)

where pT stands for the positive passage for g, p;
is the j-th negative passage and J, is the number
of negative passage.

3.3.2 Query-Dialogue History Matching

In multi-turn dialogues, the conversation history
(excluding the latest query) is a piece of supple-
mentary information for the current query and
can be regarded as another format of background
knowledge during the response matching. Besides,
due to the natural sequential relationship between
dialogue turns, the dialogue query usually shows
a strong semantic relevance with the previous
turns in the dialogue history. Inspired by such
characteristics, we design a query-dialogue history
matching task with the multi-turn dialogue context,
so as to enhance the capability of the model to
comprehend the dialogue history with the given
dialogue query and to rank relevant passages with
these pseudo query-passage pairs.

Specifically, we first concatenate the
dialogue history into a long sequence. The
task requires the model to predict whether a
query ¢ = {w{,...,w}, } and a dialogue history
sequence h = {w{, ..., wl! } are consecutive and
relevant. We concatenate two sequences into a
single consecutive sequence with [SEP] tokens,

h

g :{[CLS],w?,...,wnh, [SEP],wi,...,wh } (4

For each word in S, token, segment and position
embeddings are summated and fed into BERT.
Finally, we feed E?QL 57 into a MLP to obtain the
final query-history matching score g(q,h). The
loss function of each training sample for query-
history matching task is defined by

La(q, b by s hny)
e9(@:h™) 5)

= — log( _
ed(a:h ™) 4 Zj};l e9(@h;)

where h™ stands for the true dialogue history for g,
h; is the j-th negative dialogue history randomly
sampled from the training set and dy, is the number
of sampled dialogue history.

3.3.3 Multi-turn Response Matching

The above two tasks are designed for empowering
the model to knowledge or history comprehension
and knowledge selection. In this task, we aim at
training the model to match reasonable responses
based on dialogue history and query. Since
we treat the dialogue history as a special form
of background knowledge and they share the
same segment embeddings in the PLMs, our
model can acquire the ability to identify the
proper response with either dialogue history or
the background knowledge through the multi-turn
response matching task.

Specifically, we format the multi-turn dialogues
as query-history-response triples and requires the
model to predict whether a response candidate
r = {w},...,wy, }isappropriate for a given query
g = {w{,...,wi,} and a concatenated dialogue
history sequence h = {w?, ..., wl }. Concretely,
we concatenate three input sequences into a single
consecutive tokens sequence with [SEP] tokens,

Sh" = {[cLs],wt,...,wh, , [SEP],

q q T s
wl?"'awnq7 [SEPJawlw'wwnr}

(6)

Similarly, we feed an embedding sequence of
which each entry is a summation of token, segment
and position embeddings into BERT. Finally, we
feed E'25 5, into a MLP to obtain the final response
matching score g(h, q, 7).

The loss function of each training sample for
multi-turn response matching task is defined by

Er(h7q,r+7rf,...,rg7.)

ed(har™) 7
- lOg( + n (h,q,r>) )
eg(h,q,rt) 4 Zl;] eI\ T

where r7T is the true response for a given ¢ and
h, i is the j-th negative response candidate
randomly sampled from the training set and 9, is
the number of negative response candidate.

3.3.4 Joint Learning

We adopt a multi-task learning manner and define
the final objective function as:

Efinal = Ep + Eh + Er (8)

In this way, all tasks are jointly learned so that
the model can effectively leverage two training
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corpus and learn to select relevant knowledge and
distinguish the proper response.

3.4 Calculating Matching Score

After learning model from D, and D, we first
rank {p;}"*, according to g(q, k;) and then select
top m knowledge entries {pi,...,pmn} for the
subsequent response matching process. Here
we design two strategies to compute the final
matching score g(k, h,q,r). In the first strategy,
we directly concatenate the selected knowledge and
dialogue history as a long sequence of background
knowledge and feed into the model to obtain the
final matching score, which is formulated as,

gk hg,7) =gP1 @ ... D pm ®c,q,1)  (9)

where @ denotes the concatenation operation.

In the second strategy, we treat each selected
knowledge entry and the dialogue history equally
as the background knowledge, and compute the
matching degree between each query, background
knowledge, and the response candidates with the
trained model. Consequently, the matching score
is defined as an integration of a set of knowledge-
grounded response matching scores, formulated as,

g(k,h,q,r) = g(h,q,T)Jrig(lg;é)g(pi,q,r) (10)

where m is the number of selected knowledge
entries. We name our model with the two strategies
as PTKGC.,; and PTKGCs, respectively. We
compare the two learning strategies through empir-
ical studies, as will be reported in the next section.

4 Experiments

4.1 Datasets and Evaluation Metrics

Training Set. We adopt MS MARCO passage
ranking dataset (Nguyen et al., 2016) built on
Bing’s search for query-passage matching task.
The dataset contains 8.8M passages from Web
pages gathered from Bing’s results to real-world
queries and each passage contains an average of
55 words. Each query is associated with sparse
relevance judgments of one (or very few) passage
marked as relevant. The training set contains about
500k pairs of query and relevant passage, and
another 400M pairs of query and passages that
have not been marked as relevant, from which the
negatives are sampled in our task.

For the query-dialogue history matching task
and multi-turn response matching task, we use the
multi-turn dialogue corpus constructed from the
Reddit (Dziri et al., 2018). The dataset contains
more than 15 million dialogues and each dialogue
has at least 3 utterances. After the pre-processing,
we randomly sample 2.28M/20K dialogues as the
training/validation set. For each dialogue session,
we regard the last turn as the response, the last
but one as the query, and the rest as the positive
dialogue history. The negative dialogue histories
are randomly sampled from the whole dialogue set.
On average, each dialogue contains 4.3 utterances,
and the average length of the utterances is 42.5.

Test Set. We tested our proposed method on
the Wizard-of-Wikipedia (WoW) (Dinan et al.,
2019) and CMU_DoG (Zhou et al., 2018a). Both
datasets contain multi-turn dialogues grounded on
a set of background knowledge and are built with
crowd-sourcing on Amazon Mechanical Turk. In
WoW, the given knowledge collection is obtained
from Wikipedia and covers a wide range of topics
or domains, while in CMU_DoG, the underlying
knowledge focuses on the movie domain. Unlike
CMU_DoG where the golden knowledge index
for each turn is unknown, the golden knowledge
index for each turn is provided in WoW. Two
configurations (e.g., test-seen and test-unseen) are
provided in WoW. Following existing works (Dinan
et al., 2019; Zhao et al., 2019), positive responses
are true responses from humans and negative ones
are randomly sampled. The ratio between positive
and negative responses is 1 : 99 for WoW and
1 : 19 for CMU_DoG. More details of the two
benchmarks are shown in Appendix A.1.

Evaluation Metrics. Following previous works
on knowledge-grounded response selection (Gu
et al., 2020b; Zhao et al., 2019), we also employ
recall n at k R,, @k (where n = 100 for WoW and
n = 20 for CMU_DoG and k& = {1,2,5}) as the
evaluation metrics.

4.2 Implementation Details

Our model is implemented by PyTorch (Paszke
et al., 2019). Without loss of generality, we select
English uncased BERT},s. (110M) as the matching
model. During the training, the maximum lengths
of the knowledge (a.k.a., passage), the dialogue
history, the query, and the response candidate were
set to 128, 120 60, and 40. Intuitively, the last
tokens in the dialogue history and the previous
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Test Seen Test Unseen

Models
R@]l R@2 R@5 R@] R@2 R@5
IR Baseline 17.8 - - 14.2
BoW MemNet 71.3 - - 33.1
Two-stage Transformer  84.2 - - 63.1
Transformer MemNet 87.4 - - 69.8

DIM (Gu et al., 2019) 83.1 91.1 957 603 778 923
FIRE (Guetal., 2020b) 88.3 953 97.7 683 845 951

PTKGCat 857 946 982 655 820 947
PTKGCsep 89.5 96.7 989 69.6 858 963

Table 1: Evaluation results on the test set of WoW.

tokens in the query and response candidate are
more important, so we cut off the previous tokens
for the context but do the cut-off in the reverse
direction for the query and response candidate if
the sequences are longer than the maximum length.
We set a batch size of 32 for multi-turn response
matching and query-dialogue history matching,
and 8 for query-document matching in order to
train these tasks jointly under the circumstance of
training examples inequality. We set 6, = 6, 0}, =
1 and 6, = 12 for the query-passage matching,
the query-dialogue history matching and the multi-
turn response matching respectively. Particularly,
the negative dialogue histories are sampled from
other training instances in a batch. The model is
optimized using Adam optimizer with a learning
rate set as be — 6. The learning rate is scheduled
by warmup and linear decay. A dropout rate of 0.1
is applied for all linear transformation layers. The
gradient clipping threshold is set as 10.0. Early
stopping on the corresponding validation data is
adopted as a regularization strategy. During the
testing, we vary the number of selected knowledge-
entries m € {1,...,15} and set m = 2 for
PTKGC,,; and set m = 14 for PTKGCs,p because
they achieve the best performance.

4.3 Baselines

Since the characteristics of the two data sets
are different (only WoW provides the golden
knowledge label), we compare the proposed model
with the baselines on both data sets individually.

Baselines on WoW. 1) IR Baseline (Dinan et al.,
2019) uses simple word overlap for response
selection; 2) BoW MemNet (Dinan et al., 2019)
is a memory network where knowledge entries are
embedded via bag-of-words representation, and the
model learns the knowledge selection and response
matching jointly; 3) Transformer MemNet (Dinan
et al., 2019) is an extension of BoW MemNet,

Models R@l R@2 R@5
Starspace (Wu et al., 2018) 50.7 645 803
BoW MemNet (Zhang et al., 2018) 51.6 658 814
KV Profile Memory (Zhang et al., 2018) 56.1 699 824
Transformer MemNet (Mazaré et al., 2018) 60.3 744 874
DGMN (Zhao et al., 2019) 65.6 783 912
DIM (Gu et al., 2019) 78.7 89.0 97.1
FIRE (Gu et al., 2020b) 81.8 908 974
PTKGC.at 61.6 735 86.1
PTKGCqep 66.1 77.8 88.7
Table 2: Evaluation results on the test set of
CMU _DoG.

and the dialogue history, response candidate and
knowledge entries are encoded with Transformer
encoder (Vaswani et al., 2017) pre-trained on a
large data set. 4) Two-stage Transformer (Dinan
et al.,, 2019) trains two separately models for
knowledge selection and response retrieval respec-
tively. A best-performing model on the knowledge
selection task is used for the dialogue retrieval task.

Baselines on CMU_DoG 1) Starspace (Wu
et al., 2018) selects the response by the cosine
similarity between a concatenated sequence of
dialogue context, knowledge, and the response
candidate represented by StarSpace (Wu et al.,
2018); 2) BoW MemNet (Zhang et al., 2018)
is a memory network with the bag-of-words
representation of knowledge entries as the
memory items; 3) KV Profile Memory (Zhang
et al,, 2018) is a key-value memory network
grounded on knowledge profiles; 4) Transformer
MemNet (Mazaré et al., 2018) is similar to BoW
MemNet and all utterances are encoded with a
pre-trained Transformer; 5) DGMN (Zhao et al.,
2019) lets the dialogue context and all knowledge
entries interact with the response candidate
respectively via the cross-attention; 6) DIM (Gu
et al., 2019) is similar to DGMN and all utterance
are encoded with BiLSTMs; 7) FIRE (Gu et al.,
2020b) first filters the context and knowledge and
then use the filtered context and knowledge to
perform the iterative response matching process.

4.4 Evaluation Results

Performance of Response Selection. Table 1
and Table 2 report the evaluation results of re-
sponse selection on WoW and CMU _DoG where
PTKGC.at and PTKGCge, represent the final
matching score computed with the first strategy
(Equation 9) and the second strategy (Equation
10) respectively. We can see that PTKGCs,p is
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Wizard of Wikipedia

CMU DoG
Models Test Seen Test Unseen
R@! R@2 R@5 R@l R@ R@5 R@l R@2 R@5
PTKGCep 895 967 989 69.6 858 963 661 778 887
PTKGC,ep (q) 706 797 868 559 708 834 473 588 1750
PTKGC,ep (q+h) 849 939 978 649 817 943 595 723 86.1
PTKGC..p (q+k) 895 964 986 67.0 840 960 627 738 848
PTKGCoepn—1 856 944 979 667 828 943 604 125 860
PTKGCaepn=i - £p 847 935 975 634 805 940 587 708 856
PTKGCoepn—i - Ln 849 937 976 655 817 941 594 714 853
Table 3: Ablation study.
Models Wizard Seen Wizard Unseen dialogues come from the open domain. Thus, our
R@l R@2 R@5 Rel Re2 R@S model may not select proper knowledge entries
fg'som. 223 and can not well recognize the semantics clues for
aseline 5.8 - - 7.6 . . . .
BoW MemNet 230 - -89 response matching due to the domain shift. Despite
Transformer 22.5 - - 12.2 . .
Transformer (w/ pretrain)  25.5 - _ 30 this, PTKGCsep can still show better performance
Our Model 20 312 488 231 321 507 than several existing models, such as Transformer
Our Model - £, 128 226 452 133 233 455 MemNet and DGMN, though PTKGCsep dOCS not
Our Model - £, 212 299 476 227 312 492

Table 4: The performance of knowledge selection on
the test sets of WoW data. All baselines come from
Dinan et al. (2019). The details for all baselines are
shown in Appendix A.2.

consistently better than PTKGC,¢ over all metrics
on two data sets, demonstrating that individually
representing each knowledge-query-response triple
with BERT can lead to a more optimal matching
signal than representing a single long sequence.
Our explanation to the phenomenon is that there is
information loss when a long sequence composed
of the knowledge and dialogue history passes
through the deep architecture of BERT. Thus, the
earlier different knowledge entries and dialogue
history are fused together, the more information
of dialogue history or background knowledge will
be lost in matching. Particularly, on the WoW,
in terms of R@1, our PTKGCge, achieves a
comparable performance with the existing state-
of-the-art models that are learned from the crowd-
sourced training set, indicating that the model
can effectively learn how to leverage external
knowledge feed for response selection through the
proposed pre-training approach.

Notably, we can observe that our PTKGCgep
performs worse than DIM and FIRE on the
CMU _DoG. Our explanation to the phenomenon
is that the dialogue and knowledge in CMU_DoG
focus on the movie domain while our train data
including ad-hoc retrieval corpora and multi-turn

access any training examples in the benchmarks.

Performance of Knowledge Selection. We also
assess the ability of models to predict the knowl-
edge selected by human wizards in WoW data.
The results are shown in Table 4. We can find
that the performance of our method is comparable
with various supervised methods trained on the
gold knowledge index. In particular, on the test-
seen, our model is slightly worse than Transformer
(w/ pretrain), while on the test-unseen, our model
achieves slightly better results. The results demon-
strate the advantages of our pretraining tasks and
the good generalization ability of our model.

4.5 Discussions

Ablation Study. We conduct a comprehensive
ablation study to investigate the impact of different
inputs and different tasks. First, we remove the
dialogue history, knowledge, and both of them from
the model, which is denoted as PTKGCyep(q+k),
PTKGC;ep(q+h) and PTKGCgep(q) respectively.
According to the results of the first four rows
in Table 3, we can find that both the dialogue
history and knowledge are crucial for response
selection as removing anyone will generally cause
a performance drop on the two data. Besides, the
background knowledge is more critical for response
selection as removing the background knowledge
causes more significant performance degradation
than removing the dialogue history.

Then, we remove each training task individ-
ually from PTKGCgep, and denote the models
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Wizard Seen Wizard Unseen

Models
R@l R@2 R@5 R@1 R@2 R@5
PTKGCsep (q+h) 849 939 978 649 817 943
PTKGCsep (q+h) -Ly, 84.1 937 977 643 819 938
PTKGCsep (q+h) -£; 834 935 979 609 802 935

PTKGCsep (q+h) -Lp-L, 832 938 97.6 609 80.1 938

Table 5: Ablation study of our model without
considering the grounded knowledge.

as PTKGCgep-X, where X € {L;, £y} meaning
query-passage matching task and query-dialogue
history matching task respectively. Table 4 shows
the ablation results of knowledge selection. We
can find that both tasks are useful in the learning of
knowledge selection, and query-passage matching
plays a dominant role since the performance of
knowledge selection drops dramatically when the
task is removed from the pre-training process. The
last two rows in Table 3 show the ablation results
of response selection. We report the ablation
results when only 1 knowledge is provided since
the knowledge recalls for different ablated models
and the full model are very close when m is large
(m = 14). We can see that both tasks are helpful
and the performance of response selection drops
more when removing the query-passage matching
task. Particularly, £, plays a more important role
and the performance on test-unseen of WoW drops
more obvious when removing each training task.

To further investigate the impact of our pre-
training tasks on the performance of the multi-
turn response selection (without considering the
grounded knowledge), we conduct an ablation
study and the results are shown in Table 5. We
can observe that the performance of the response
matching model (no grounded knowledge) drops
obviously when removing one of the pretraining
tasks or both tasks. Particularly, the query-passage
matching task contributes more to the response
selection.

The impact of the number of selected knowl-
edge. We further study how the number of se-
lected knowledge (m) influences the performance
of PTKGCgep. Figure 2 shows how the per-
formance of our model changes with respect to
different numbers of selected knowledge. We
observe that the performance increases mono-
tonically until the knowledge number reaches a
certain value, and then stable when the number
keeps increasing. The results are rational because
more knowledge entries can provide more useful

0.90

0.895 0.895
—e— Seen 3 0894

0.892 0.8
0.889 0.891

==
0.89 Unseen 0885 0.887

Ri00@1
o
[+
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\

0.70- 0.696 0.696 =
0.690 0692

0.688
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The number of selected knowledge (m)

Figure 2: The performance of response selection across
different number of selected knowledge.

information for response matching, but when the
knowledge becomes enough, the noise will be
brought to matching.

5 Conclusion

In this paper, we study response matching in
knowledge-grounded conversations under a zero-
resource setting. In particular, we propose decom-
posing the training of the knowledge-grounded
response selection into three tasks and joint train all
tasks in a unified pre-trained language model. Our
model can be learned to select relevant knowledge
and distinguish proper response, with the help
of ad-hoc retrieval corpora and amount of multi-
turn dialogues. Experimental results on two
benchmarks indicate that our model achieves a
comparable performance with several existing
methods trained on crowd-sourced data. In the
future, we would like to explore the ability of our
proposed method in retrieval-augmented dialogues.
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A Appendices
A.1 Details of Test Sets

. Wizard of Wikipedia CMU_DoG
Statistics
Test Seen  Test Unseen Test
Avg. # turns 9.0 9.1 12.4
Avg, # words per turn 16.4 16.1 18.1
Avg. # knowledge entries 60.8 61.0 31.8
Avg. # words per knowledge 36.9 37.0 27.0

Table 6: The statistics of test sets of two benchmarks.

We tested our proposed method on the Wizard-
of-Wikipedia (WoW) (Dinan et al., 2019) and
CMU _DoG (Zhou et al., 2018a). Both datasets
contain multi-turn dialogues grounded on a set of
background knowledge and are built with crowd-
sourcing on Amazon Mechanical Turk.

In the WoW dataset, one of the paired speakers
is asked to play the role of a knowledgeable expert
with access to the given knowledge collection ob-
tained from Wikipedia, while the other of a curious
learner. The dataset consists of 968 complete
knowledge-grounded dialogues for testing. It is
worth noting that the golden knowledge index for
each turn is available in the dataset. Response
selection is performed at every turn of a complete
dialogue, which results in 7512 for testing in total.
Following the setting of the original paper, positive
responses are true responses from humans and
negative ones are randomly sampled. The ratio
between positive and negative responsesis 1 : 99 in
testing sets. Besides, the test set is divided into two
subsets: Test Seen and Test Unseen. The former
shares 533 common topics with the training set,
while the latter contains 58 new topics uncovered
by the training or validation set.

The CMU_DoG data contains knowledge-
grounded human-human conversations where the
underlying knowledge comes from wiki articles
and focuses on the movie domain. Similar to
Dinan et al. (2019), the dataset was also built in two
scenarios. In the first scenario, only one worker
can access the provided knowledge collections,
and he/she is responsible for introducing the
movie to the other worker; while in the second
scenario, both workers know the knowledge and
they are asked to discuss the content. Different
from WoW, the golden knowledge index for each
turn is unknown for both scenarios. Since the
data size for an individual scenario is small, we
merge the data of the two scenarios following
the setting with Zhao et al. (2019). Finally, there

are 537 dialogues for testing. We evaluate the
performance of the response selection at every turn
of a dialogue, which results in 6637 samples for
testing. We adopted the version shared in Zhao
et al. (2019), where 19 negative candidates were
randomly sampled for each utterance from the
same set. More details about the two benchmarks
can be seen in Table 6.

A.2 Baselines for Knowledge Selection

To compare the performance of knowledge selec-
tion, we choose the following baselines from Dinan
et al. (2019) including (1) Random: the model
randomly selects a knowledge entry from a set of
knowledge entries; (2) IR Baseline: the model uses
simple word overlap between the dialogue context
and the knowledge entry to select the relevant
knowledge; (3) BoW MemNet: the model is based
on memory network where each memory item
is a bag-of-words representation of a knowledge
entry, and the gold knowledge labels for each
turn are used to train the model; (4) Transformer:
the model trains a context-knowledge matching
network based on Transformer architecture; (5)
Transformer (w/ pretrain): the model is similar to
the former model, but the transformer is pre-trained
on Reddit data and fine-tuned for the knowledge
selection task.

A.3 Results of Low-Resource Setting

Wizard Seen Wizard Unseen
R@]1 R@2 R@5 R@1 R@2 R®@5
0% 89.5 967 989 69.6 858 96.3

10% 90.8 97.1 994 732 869 9638
50% 915 971 993 739 879 969
100% 922 976 994 743 881 97.1

Ration (t)

Table 7: Evaluation results of our model in the low-
resource setting on the Wizard of Wikipedia data.

As an additional experiment, we also evaluate
the proposed model for a low-resource setting. We
randomly sample ¢ € {10%,50%, 100%} portion
of training data from WoW, and use the data to fine-
tune our model. The results are shown in Table 7.
We can find that with only 10% training data,
our model can significantly outperform existing
models, indicating the advantages of our pre-
training tasks. With 100% training data, our model
can achieve 2.7% improvement in terms of R@1
on the test-seen and 4.7% improvement on the test-
unseen.
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