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Abstract

Although neural models have achieved com-
petitive results in dialogue systems, they have
shown limited ability in representing core se-
mantics, such as ignoring important entities.
To this end, we exploit Abstract Meaning
Representation (AMR) to help dialogue mod-
eling. Compared with the textual input, AMR
explicitly provides core semantic knowledge
and reduces data sparsity. We develop an
algorithm to construct dialogue-level AMR
graphs from sentence-level AMRs and explore
two ways to incorporate AMRs into dialogue
systems. Experimental results on both dia-
logue understanding and response generation
tasks show the superiority of our model. To
our knowledge, we are the first to leverage
a formal semantic representation into neural
dialogue modeling.

1 Introduction

Dialogue systems have received increasing re-
search attention (Wen et al., 2015; Serban et al.,
2017; Bao et al., 2020), with much recent work
focusing on social chats (Ritter et al., 2011; Li
et al., 2017) and task-oriented dialogues (Wen et al.,
2017; Dinan et al., 2019). There are two salient
subtasks in dialogue modeling, namely dialogue
understanding (Choi et al., 2018; Reddy et al.,
2019; Yu et al., 2020) and response generation (Li
et al., 2017; Budzianowski et al., 2018). The former
refers to understanding of semantic and discourse
details in a dialogue history, and the latter concerns
making a fluent, novel and coherent utterance.

The current state-of-the-art methods employ
neural networks and end-to-end training (Sutskever
et al., 2014; Bahdanau et al., 2015) for dialogue
modeling. For instance, sequence-to-sequence
models have been used to encode a dialogue history,
before directly synthesizing the next utterance
(Vinyals and Le, 2015; Wen et al., 2017; Bao et al.,

Dialogue History:
…
SPEAKER-1 : Recently, I’ve been obsessed with 
horror films.   
SPEAKER-2 : Oh, how can you be infatuated with 
horror films? They’re so scary .   
SPEAKER-1 : Yeah, you are right I used to not 
watch horror films, but after seeing Silence of the 
Lamb with Mike last month, I fell in love with them. 
SPEAKER-2 : It’s amazing. But if I were you, I 
wouldn't have the courage to watch the first one.   
SPEAKER-1 : But it's really exciting .
Ground-Truth:
Maybe, but I would rather watch romance, science 
fiction, crime or even disaster movie instead of a 
horror picture…
Transformer:
Great. I’m looking forward to it. I just can’t keep
away from the food that I saw.

Figure 1: A conversation from DailyDialog. Some
important contents are marked with squares.

2020). Despite giving strong empirical results,
neural models can suffer from spurious feature
associations in their neural semantic representation
(Poliak et al., 2018; Kaushik et al., 2020), which
can lead to weak robustness, inducing irrelevant
dialogue states (Xu and Sarikaya, 2014; Sharma
et al., 2019; Rastogi et al., 2019) and generating
unfaithful or irrelevant text (Maynez et al., 2020;
Niu and Bansal, 2020). As shown in Figure 1,
the baseline Transformer model pays attention
to the word “lamb” but ignores its surrounding
context, which has important contents (marked
with squares) that indicate its true meaning, thereby
giving an irrelevant response that is related to
food. Intuitively, such issues can be alleviated
by having a structural representation of semantic
information, which treats entities as nodes and
builds structural relations between nodes, making
it easy to find the most salient context. Explicit
structures are also more interpretable compared to
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neural representation and have been shown useful
for information extraction (Strubell et al., 2018;
Sun et al., 2019; Li et al., 2020; Bai et al., 2021;
Sachan et al., 2021), summarization (Liu et al.,
2015; Hardy and Vlachos, 2018; Liao et al., 2018)
and machine translation (Marcheggiani et al., 2018;
Song et al., 2019a).

We explore AMR (Banarescu et al., 2013) as
a semantic representation for dialogue histories
in order to better represent conversations. As
shown in the central block of Figure 2, AMR is
one type of sentential semantic representations,
which models a sentence using a rooted directed
acyclic graph, highlighting its main concepts (e.g.
“mistake”) and semantic relations (e.g., “ARG0”1),
while abstracting away function words. It can
thus potentially offer core concepts and explicit
structures needed for aggregating the main content
in dialogue. In addition, AMR can also be useful
for reducing the negative influence of variances in
surface forms with the same meaning, which adds
to data sparsity.

Existing work on AMR parsing focuses on the
sentence level. However, as the left block of
Figure 2 shows, the semantic structure of a dialogue
history can consist of rich cross-utterance co-
reference links (marked with squares) and multiple
speaker interactions. To this end, we propose an
algorithm to automatically derive dialogue-level
AMRs from utterance-level AMRs, by adding
cross-utterance links that indicate speakers, identi-
cal mentions and co-reference links. One example
is shown in the right block of Figure 2, where newly
added edges are in color. We consider two main
approaches of making use of such dialogue-level
AMR structures. For the first method, we merge
an AMR with tokens in its corresponding sentence
via AMR-to-text alignments, before encoding the
resulting structure using a graph Transformer (Zhu
et al., 2019). For the second method, we separately
encode an AMR and its corresponding sentence,
before leveraging both representations via feature
fusion (Mangai et al., 2010) or dual attention (Cal-
ixto et al., 2017).

We verify the effectiveness of the proposed
framework on a dialogue relation extraction
task (Yu et al., 2020) and a response generation
task (Li et al., 2017). Experimental results show
that the proposed framework outperforms previous

1Please refer to PropBank (Kingsbury and Palmer, 2002;
Palmer et al., 2005) for more details.

methods (Vaswani et al., 2017; Bao et al., 2020;
Yu et al., 2020), achieving the new state-of-the-art
results on both benchmarks. Deep analysis and hu-
man evaluation suggest that semantic information
introduced by AMR can help our model to better
understand long dialogues and improve the coher-
ence of dialogue generation. One more advantage
is that AMR is helpful to enhance the robustness
and has a potential to improve the interpretability
of neural models. To our knowledge, this is
the first attempt to leverage the AMR semantic
representation into neural networks for dialogue un-
derstanding and generation. Our code is available
at https://github.com/muyeby/AMR-Dialogue.

2 Constructing Dialogue AMRs

Figure 2 illustrates our method for constructing a
dialogue-level AMR graph from multiple utterance-
level AMRs. Given a dialogue consisting multiple
utterances, we adopt a pretrained AMR parser (Cai
and Lam, 2020) to obtain an AMR graph for
each utterance. For utterances containing multiple
sentences, we parse them into multiple AMR
graphs, and mark them belonging to the same
utterance. We construct each dialogue AMR graph
by making connections between utterance AMRs.
In particular, we take three strategies according
to speaker, identical concept and co-reference
information.

Speaker We add a dummy node and connect it to
all root nodes of utterance AMRs. We add speaker
tags (e.g., SPEAKER1 and SPEAKER2) to the edges
to distinguish different speakers. The dummy node
ensures that all utterance AMRs are connected so
that information can be exchanged during graph
encoding. Besides, it serves as the global root node
to represent the whole dialogue.

Identical Concept There can be identical men-
tions in different utterances (e.g. “possible” in the
first and the forth utterances in Figure 2), resulting
in repeated concept nodes in utterance AMRs. We
connect nodes corresponding to the same non-
pronoun concepts by edges labeled with SAME2.
This type of connection can further enhance cross-
sentence information exchange.

Inter-sentence Co-reference A major challenge
for dialogues understanding is posed by pronouns,

2Compared with co-reference, identical concept relations
can connect different words which share the same meaning
e.g.〈could,might〉 , 〈fear, afraid〉.

https://github.com/muyeby/AMR-Dialogue
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Figure 2: Dialogue AMR graph construction process. Step 1: parse raw-text utterance into utterance AMR graphs;
Step 2: connect utterance AMR graphs into a dialogue AMR graph.

which are frequent in conversations (Grosz et al.,
1995; Newman et al., 2008; Quan et al., 2019). We
conduct co-reference resolution on dialogue text
using an off-to-shelf model3 in order to identify
concept nodes in utterance AMRs that refer to
the same entity. For example, in Figure 2, “I”
in the first utterance, and “sir” in the second
utterance refer to the same entity, SPEAKR1. We
add edges labeled with COREF between them,
starting from later nodes to earlier nodes (later and
earlier here refer to the temporal order of ongoing
conversation), to indicate their relation4.

3 Baseline System

We adopt a standard Transformer (Vaswani et al.,
2017) for dialogue history encoding. Typically, a
Transformer encoder consists of L layers, taking
a sequence of tokens (i.e., dialogue history) S =
{w1, w2, ..., wN}, where wi is the i-th token and
N is the sequence length, as input and produces
vectorized word representations {hl1, hl2, ..., hlN}
iteratively, l ∈ [1, ..., L]. Overall, a Transformer
encoder can be written as:

H = SeqEncoder(emb(S)), (1)

where H = {hL1 , hL2 , ..., hLn}, and emb denotes
a function that maps a sequence of tokens into
the corresponding embeddings. Each Transformer
layer consists of two sub-layers: a self-attention
sub-layer and a position-wise feed forward network.
The former calculates a set of attention scores:

αij = Attn(hi, hj). (2)

3https://github.com/huggingface/neuralcoref
4For simplicity, we omit the coreference links between the

second and third utterance for display.

which are used to update the hidden state of wi:

hli =
∑N

j=1
αij(W

V hl−1j ), (3)

where W V is a parameter matrix.
The position-wise feed-forward (FFN) layer

consists of two linear transformations:

FFN(h) =W2ReLU(W1h+ b1) + b2, (4)

where W1,W2, b1, b2 are model parameters.

3.1 Dialogue Understanding Task
We take the dialogue relation extraction task (Yu
et al., 2020) as an example. Given a dialogue
history S and an argument (or entity) pair (a1, a2),
the goal is to predict the corresponding relation
type r ∈ R between a1 and a2.

We follow a previous dialogue relation extrac-
tion model (Chen et al., 2020) to feed the hidden
states of a1 and a2 (denoted as ha1 , ha2) into a
classifier to obtain the probability of each relation
types:

Prel = softmax(W3[ha1 ;ha2 ] + b3), (5)

where W3 and b3 are model parameters. The k-th
value of Prel is the conditional probability of k-th
relation inR.

Given a training instance 〈S, a1, a2, r〉, the local
loss is:

` = −logP (r|S, a1, a2; θ), (6)

where θ denotes the set of model parameters. In
practice, we use BERT (Devlin et al., 2019) for
calculating ha1 and ha2 , which can be regarded
as pre-trained initialization of the Transformer
encoder.
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Figure 3: AMR for dialogue modeling. (a) Using AMR to enrich text representation. (b,c) Using AMR
independently.

3.2 Dialogue Response Generation Task

Given a dialogue history S , we use a standard auto-
regressive Transformer decoder (Vaswani et al.,
2017) to generate a response Y = {y1, y2, ..., y|Y|}.
At time step t, the previous output word yt−1 is
firstly transformed into a hidden state st by a self-
attention layer as Equations 2 and 3. Then an
encoder-decoder attention mechanism is applied to
obtain a context vector from encoder output hidden
states{hL1 , hL2 , . . . , hLN}:

α̂ti = Attn(st, h
L
i ),

ct =
∑N

i=1
α̂tih

L
i ,

(7)

The obtained context vector ct is then used to
calculate the output probability distribution for the
next word yt over the target vocabulary5:

Pvoc = softmax(W4ct + b4), (8)

where W4, b4 are trainable model parameters. The
k-th value of Pvoc is the conditional probability of
k-th word in vocabulary given a dialogue.

Given a dialogue history-response pair {S,Y},
the model minimizes a cross-entropy loss:

` = −
|Y |∑
t=1

logPvoc(yt|yt−1, ..., y1,S; θ), (9)

where θ denotes all model parameters.

4 Proposed Model

Our model takes a dialogue history S and the
corresponding dialogue AMR as input. Formally,

5Similar to the encoder, there is also multi-head attention,
a position-wise feed-forward layer and residual connections,
which we omit in the equations.

an AMR is a directed acyclic graph G = 〈V, E〉,
where V denotes a set of nodes (i.e. AMR concepts)
and E (i.e. AMR relations) denotes a set of labeled
edges. An edge can be further represented by a
triple 〈ni, rij , nj〉, meaning that the edge is from
node ni to nj with label rij .

We consider two main ways of making use
of dialogue-level AMRs. The first method (Fig-
ure 3(a)) uses AMR semantic relations to enrich
a textual representation of the dialogue history.
We project AMR nodes onto the corresponding
tokens, extending Transformer by encoding se-
mantic relations between words. For the second
approach, we separately encode an AMR and its
sentence, and use either feature fusion (Figure 3(b))
or dual attention (Figure 3(c)) to incorporate their
embeddings.

4.1 Graph Encoding

We adopt a Graph Transformer (Zhu et al., 2019) to
encode an AMR graph, which extends the standard
Transformer (Vaswani et al., 2017) for modeling
structural input. AL-layer graph Transformer takes
a set of node embeddings {n1,n2, ...,nM} and a
set of edge embeddings {rij |i ∈ [1, ...,M ], j ∈
[1, ...,M ]} as input6 and produces more abstract
node features {hl1, hl2, ..., hlM} iteratively, where
l ∈ [1, ..., L]. The key difference between a
graph Transformer and a standard Transformer is
the graph attention layer. Compared with self-
attention layer (Equation 2), the graph attention
layer explicitly considers graph edges when updat-
ing node hidden states. For example, give an edge
〈ni, rij , nj〉, the attention score α̂ij is calculated

6If there is no relation between ni and nj , rij=“None”
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as:

α̂ij =
exp(êij)∑M

m=1 exp (êim)
,

êij =
(WQhl−1i )T (WKhl−1j +WRrij)√

d
,

(10)

where WR is a transformation matrix, rij is the
embedding of relation rij , d is hidden state size,
and {h01, h02, ..., h0M} = {n1,n2, ...,nM}. The
hidden state of ni is then updated as:

hli =
∑M

j=1
αij(W

V hl−1j +WRrij), (11)

where W V is a parameter matrix. Overall, given
an input AMR graph G = 〈V, E〉, the graph
Transformer encoder can be written as

H = GraphEncoder(emb(V),emb(E)),
(12)

where H = {hL1 , hL2 , ..., hLM} denotes top-layer
graph encoder hidden states.

4.2 Enriching Text Representation
We first use the JAMR aligner (Flanigan et al.,
2014) to obtain a node-to-word alignment, then
adopt the alignment to project the AMR edges onto
text with following rules:

r̂ij =


ri′j′ , if A(ni′) = wi,A(nj′) = wj ,

Self, if i = j,

None, otherwise,
(13)

where A is a one-to-K alignment (K ∈
[0, . . . , N ]). In this way, we obtain a projected
graph G′ = 〈V ′, E ′〉, where V ′ represents the set of
input words {w1, w2, ..., wN} and E ′ denotes a set
of word-to-word semantic relations.

Inspired by previous work on AMR graph
modeling (Guo et al., 2019; Song et al., 2019b;
Sun et al., 2019), we adopt a hierarchical encoder
that stacks a sequence encoder and a graph encoder.
A sequence encoder (SeqEncoder) transforms a
dialogue history into a set of hidden states:

HS = SeqEncoder(emb(S)). (14)

A graph encoder incorporates the projected
relations features into HS :

H Ŝ = GraphEncoder(HS ,emb(E ′)), (15)

In addition, we add a residual connection be-
tween graph adapter and sequence encoder to fuse

word representations before and after refinement
(as shown in Figure 3(b)):

HF = LayerNorm(HS +H Ŝ). (16)

where LayerNorm denotes the layer normaliza-
tion (Ba et al., 2016). We name the hierarchical
encoder as Hier, which can be used for both
dialogue understanding and dialogue response
generation.

4.3 Leveraging both Text and Structure Cues
We consider integrating both text cues and AMR
structure cues for dialogue understanding and
response generation, using a dual-encoder network.
First, a sequence encoder is used to transform a
dialogue history S into a text memory (denoted
as HS = {hS1 , hS2 , ..., hSN}) using Equation 1.
Second, the AMR graph G is encoded into graph
memory (denoted as HG = {hG1 , hG2 , ..., hGM}) by
a graph Transformer encoder using Equation 12.

For dialogue understanding (Figure 3(b)) and
dialogue response generation (Figure 3(c)), slightly
different methods of feature integration are used
due to their different nature of outputs.
Dialogue Understanding. Similar to Section 4.2,
we first use the JAMR aligner to obtain a node-to-
word alignment A. Then we fuse the word and
AMR node representations as follows:

ĥi =

{
f(hSi , h

G
j ), if ∃j, A(nj) = wi,

f(hSi , h∅), otherwise,
(17)

where h∅ is the vector representation of the dummy
node (see Figure 2), f is defined as:

h = LayerNorm(h1 + h2). (18)

The fused word representations are then fed into a
classifier for relation prediction (Equation 5).
Dialogue Response Generation. We replace the
standard encoder-decoder attention (Equation 7)
with a dual-attention mechanism (Song et al.,
2019a). In particular, given a decoder hidden state
st at time step t, the dual-attention mechanism
calculates a graph context vector cSt and a text
context vector cGt , simultaneously:

α̂ti = Attn(st, h
S
i ),

α̂tj = Attn(st, h
G
j ),

cSt =
∑N

i=1
α̂tih

S
i ,

cGt =
∑M

j=1
α̂tjh

G
j ,

(19)
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Model
data-v1 data-v2

dev test dev test
F1(δ) F1c(δ) F1(δ) F1c(δ) F1(δ) F1c(δ) F1(δ) F1c(δ)

AGGCN† 46.6(-) 40.5(-) 46.2(-) 39.5 (-) - - - -
LSR† 44.5(-) - 44.4(-) - - - - -
DHGAT† 57.7(-) 52.7(-) 56.1(-) 50.7(-) - - - -
BERT 60.6(1.2) 55.4(0.9) 58.5(2.0) 53.2(1.6) 59.4 (0.7) 54.7(0.8) 57.9(1.0) 53.1(0.7)
BERTs 63.0(1.5) 57.3(1.2) 61.2(0.9) 55.4(0.9) 62.2(1.3) 57.0(1.0) 59.5(2.1) 54.2(1.4)

BERTc 66.8(0.9) 60.9(1.0) 66.1(1.1) 60.2(0.8) 66.2(0.9) 60.5(1.1) 65.1(0.8) 59.8(1.2)
Hier 68.2(0.8) 62.2(0.7) 67.0(0.9) 61.3(0.6) 68.0(0.6) 62.2(0.4) 66.7(0.3) 61.0(0.4)
Dual 68.3(0.6) 62.2(0.2) 67.3(0.4) 61.4(0.2) 68.2(0.5) 62.3(0.4) 67.1(0.4) 61.1(0.5)

Table 1: Performance on DialogRE, where δ denotes the standard deviation computed from 5 runs, and † indicates
results reported by Chen et al. (2020).

and the final context vector ĉt is calculated as:

ct =W c[cSt ; c
G
t ] + bc, (20)

where W c and bc are model parameters.
We name the dual-encoder model as Dual.

5 Dialogue Understanding Experiments

We evaluate our model on DialogRE (Yu et al.,
2020), which contains totally 1,788 dialogues,
10,168 relational triples and 36 relation types in
total. On average, a dialogue in DialogRE contains
4.5 relational triples and 12.9 turns. We report
experimental results on both original (v1) and
updated (v2) English version.7

5.1 Settings

We adopt the same input format and hyper-
parameter settings as Yu et al. (2020) for
the proposed model and baselines. In par-
ticular, the input sequence is constructed as
[CLS]d[SEP]a1[SEP]a2[SEP], where d de-
notes the dialogue, and a1 and a2 are the two
associated arguments. In the BERT model of Yu
et al. (2020), only the hidden state of the [CLS]
token is fed into a classifier for prediction, while
our baseline (BERTc) additionally takes the hidden
states of a1 and a2. All hyperparameters are se-
lected by prediction accuracy on validation dataset
(See Table 6 for detailed hyperparameters).
Metrics Following previous work on DialogRE,
we report macro F1 score on relations in both the
standard (F1) and conversational settings (F1c; Yu
et al., 2020). F1c is computed over the first few
turns of a dialogue where two arguments are first
mentioned.

7https://dataset.org/dialogre/

5.2 Main Results

Table 1 shows the results of different systems on
DialogRE. We compare the proposed model with
two BERT-based approches, BERT and BERTs.
Based on BERT, BERTs (Yu et al., 2020) high-
lights speaker information by replacing speaker
arguments with special tokens. For complete-
ness, we also include recent methods, such as
AGGCN (Guo et al., 2019), LSR (Nan et al., 2020)
and DHGAT (Chen et al., 2020). BERTc and Hier,
Dual represent our baseline and the proposed
models, respectively.

By incorporating speaker information, BERTs

gives the best performance among the previous
system. Our BERTc baseline outperforms BERTs

by a large margin, as BERTc additionally considers
argument representations for classification. Hier
significantly (p < 0.01)8 outperforms BERTc in all
settings, with 1.4 points of improvement in terms
of F1 score on average. A similar trend is observed
under F1c. This shows that semantic information in
AMR is beneficial to dialogue relation extraction,
since AMR highlights core entities and semantic
relations between them. Dual obtains slightly
better results than Hier, which shows effect of
separately encoding a semantic structure.

Finally, the standard deviation values of both
Dual and Hier are lower than the baselines.
This indicates that our approaches are more robust
regarding model initialization.

5.3 Impact of Argument Distance

We split the dialogues of the DialogRE (v2) devset
into five groups by the utterance-based distance
between two arguments. As shown in Figure 4,
Dual gives better results than BERTc except when

8We use pair-wised t-test.

https://dataset.org/dialogre/
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Figure 4: The performance of BERTc (Baseline) and
Dual (Ours) regarding argument distances.

the argument distance is less than 5. In particular,
Dual surpasses BERTc by a large margin when
the arguments distance is greater than 20. The
comparison indicates that AMR can help a model to
better handle long-term dependencies by improving
the entity recall. In addition to utterance distance,
we also consider word distance and observe a
similar trend (as shown in Appendix 7).

5.4 Case Study

Figure 5 shows a conversation between a manager
and an employee who might have taken a leave.
The baseline model incorrectly predicts that the
relation between two interlocutors is parent and
child. It might be influenced by the last sentence
in the conversation, assuming that it is a dialogue
between family members. However, the proposed
model successful predicts the interlocutors’ re-
lation, suggesting it can extract global semantic
information in the dialogue from a comprehensive
perspective.

6 Response Generation Experiments

We conduct experiments on the DailyDialog bench-
mark (Li et al., 2017), which contains 13,119 daily
multi-turn conversations. On average, the number
of turns for each dialogue is 7.9, and each utterance
has 14.6 tokens.

6.1 Settings

We take Transformer as a baseline. Our hyperpa-
rameters are selected by word prediction accuracy
on validation dataset. The detailed hyperparame-
ters are given in Appendix (See Table 6).
Metric We set the decoding beam size as 5
and adopt BLEU-1/2/3/4 (Papineni et al., 2002)
and Distinct-1/2 (Li et al., 2016) as automatic
evaluation metrics. The former measures the n-
gram overlap between generated response and

Dialogue :
SPEAKER-1: A new place for a new Ross. I'm 
gonna have you and all the guys from work over 
once it's y'know, furnished.
SPEAKER-2: I must say it's nice to see you back on 
your feet.
SPEAKER-1: Well I am that. And that whole rage 
thing is definitely behind me.
SPEAKER-2: I wonder if its time for you to rejoin 
our team at the museum?
SPEAKER-1: Oh Donald that-that would be great. I 
am totally ready to come back to work. I…What? No! 
Wh-What are you doing?!!  GET OFF MY 
SISTER!!!!!!!!!!!!!
Ground-Truth: per:boss(S1, S2)
Baseline: per:parent(S1, S2)
Ours: per:boss(S1, S2)

Figure 5: Case study for dialogue relation extraction.

Model BLEU-1/2/3/4 Distinct-1/2

Seq2Seq† 33.6/26.8/-/- 3.0/12.8
iVAEMI 30.9/24.9/-/- 2.9/25.0
PLATO w/o L†[ 40.5/32.2/-/- 4.6/24.6
PLATO†[ 39.7/31.1/-/- 5.3/29.1

Transformer 38.3/31.7/29.1/27.8 5.8/30.5
Hier 41.3/35.4/33.2/32.1 6.5/32.3
Dual 40.8/35.0/32.7/31.5 6.6/33.0

Table 2: Performance on DailyDialog. Results marked
with † are from Bao et al. (2020). Models marked with
[ requires external corpus for pretraining.

the target response while the latter assesses the
generation diversity, which is defined as the number
of distinct uni- or bi-grams divided by the total
amount of generated words. In addition, we also
conduct human evaluation. Following Bao et al.
(2020), we ask annotators who study linguistics to
evaluate model outputs from four aspects, which
are fluency, coherence, informativeness and overall
performance. The scores are in a scale of {0, 1, 2}.
The higher, the better.

6.2 Automatic Evaluation Results

Table 2 reports the performances of the previous
state-of-the-art methods and proposed models on
the DailyDialog testset. For the previous methods,
PLATO and PLATO w/o L are both Transformer
models pre-trained on large-scale conversational
data (8.3 million samples) and finetuned on Dai-
lyDialog. For completeness, we also report other
systems including Seq2Seq (Vinyals and Le, 2015)
and iVAEMI (Fang et al., 2019).
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Model Fluency Coherence Inf. Overall

Transformer 1.76 0.86 1.40 0.66
Hier 1.86 1.04 1.48 0.82
Dual 1.88 1.04 1.52 0.84

Table 3: Human evaluation results on DailyDialog. Inf.
stands for Informativeness.

Among the previous systems, PLATO and
PLATO w/o L report the best performances. Our
Transformer baseline is highly competitive in terms
of BLEU and Distinct scores. Compared with the
Transformer baseline, both Dual and Hier show
better numbers regarding BLEU and Distinct, and
the gains of both models are significant (p < 0.01).
This indicates that semantic information in AMR
graphs is useful for dialogue response generation.
In particular, the gains come from better recall
of the important entities and their relations in a
dialogue history, which can leads to generating a
more detailed response.

6.3 Human Evaluation Results
We conduct human evaluation on randomly se-
lected 50 dialogues and corresponding generated
responses of the baseline and our models. As
shown in Table 3, the Transformer baseline gives
the lowest scores, while Dual sees the highest
scores from all aspects. Our main advantage is on
the Coherence, meaning that AMRs are effective on
recalling important concepts and relations. As the
result, it makes it easier for our models to generate
coherent replies. Examples are shown in Figure 8
in Appendix. Comparatively, all systems achieve
high scores regarding Fluency, suggesting that this
aspect is not the current bottleneck for response
generation.

7 Analysis

This section contains analysis concerning the ef-
fects of graph features, dialogue length and model
robustness. We use Dual model for experiments
since it gives slightly better results than Hier.

7.1 Ablation on AMR graph
Table 4 shows the results of our best performing
models on the two datasets regarding different con-
figurations on the dialogue AMR graphs. We report
the average F1 score for DialogRE and the BLEU-
1/Distinct-1 score for DailyDialog. First, using
utterance-level AMR improves the text baseline
by 1.2 points and 1.5 points with regard to F1 and

Setting DialogRE (v2) DailyDialog

Dialog-AMR(Dual) 68.2 38.2/5.9
-Speaker 67.5 37.7/5.7
-Ident. concept 68.0 37.9/5.8
-Coref 67.8 37.4/5.6

Utter-AMR 67.4 36.9/5.6
Text 66.2 35.4/5.5

Table 4: Ablation study on the development sets of both
DialogRE (v2) and DailyDialog.

<4 [4,8) [8,12) [12, 16] >16
Dialogue Length (# Utterances)

30

40

50

60

70

Baseline(DU)
Ours(DU)
Baseline(RG)
Ours(RG)

Figure 6: Devset performance against dialogue lengths.

BLEU-1 scores, respectively. This indicates that
the semantic knowledge in formal AMR is helpful
for dialogue modeling.

Second, our manually added relations (in Sec-
tion 2) also leads to improvements, ranging from
0.5 to 1.0 in BLEU-1 score. The speaker relation is
the most important for dialogue relation extraction,
a possible reason is that DialogRE dataset mainly
focus on person entities. Also, co-reference rela-
tions help the most in dialogue response generation.
The identical concept relations give least improve-
ments among three relations. Finally, combining
all relations to build a Dialog-AMR graph achieves
best performance on both datasets.

7.2 Impact of Dialogue Length

We group the devset of DialogRE (v2) and Daily-
Dialog into five groups according to the number
of utterances in a dialogue. Figure 6 summarizes
the performance of the baseline and the proposed
model on dialogue understanding (DU) and re-
sponse generation (RG) tasks. In dialogue under-
standing, our model gives slightly better F1 scores
than the baseline when a dialogue has smaller than
12 utterance. The performance improvement is
more significant when modeling a long dialogue.
This confirms our motivation that AMR can help
to understand long dialogues. In dialogue response
generation, our model consistently outperforms
the Transformer baseline by a large margin on
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Model Original Paraphrased

Baseline 100 94.50
Ours 100 98.50

Table 5: F1 on original and paraphrased testsets.

dialogues of different lengths, still with more
improvements on larger dialogues. Overall, these
results are consistent with Table 1 and 2, showing
that AMR can provide useful semantic information
and alleviate the issue of long-range dependency.

7.3 Robustness Against Input
Recent studies show that neural network-based
dialog models lack robustness (Shalyminov and
Lee, 2018; Einolghozati et al., 2019). We select 100
instances from the testset of DialogRE (v2) where
both baseline and our model gives true prediction,
before paraphrasing the source dialogues manually
(see appendix B.3 for paraphrasing guidelines.).

Results on the paraphrased dataset are given
in Table 5. The performance of baseline model
drop from 100 to 94.5 on paraphrased dataset. By
contrast, the result of our model reaches 98.5, 4
points higher than baseline. This confirms our
assumption that AMR can reduce data sparsity, thus
improve the robustness of neural models.

8 Related Work

Semantic Parsing for Dialogue Some previous
work builds domain-specified semantic schema
for task-oriented dialogues. For example, in the
PEGASUS (Zue et al., 1994) system, a sentence
is first transformed into a semantic frame and then
used for travel planing. Wirsching et al. (2012)
use semantic features to help a dialogue system
perform certain database operations. Gupta et al.
(2018) represent task-oriented conversations as se-
mantic trees where intents and slots are tree nodes.
They solve intent classification and slot-filling task
via semantic parsing. Cheng et al. (2020) design
a rooted semantic graph that integrates domains,
verbs, operators and slots in order to perform
dialogue state tracking. All these structures are
designed for specified task only. In contrast, we
investigate a general semantic representation for
the modeling of everyday conversations.

Constructing AMRs beyond Sentence Level
There are a few attempts to construct AMRs
beyond the sentence level. Liu et al. (2015) con-
struct document-level AMRs by merging identical

concepts of sentence-level AMRs for abstractive
summerization, and Liao et al. (2018) further
extend this approach to multi-document summer-
ization. O’Gorman et al. (2018) manually annotate
co-reference information across sentence AMRs.
We focus on creating conversation-level AMRs to
facilitate information exchange more effectively
for dialogue modeling.

Bonial et al. (2020) adapt AMRs on dialogues by
enriching the standard AMR schema with dialogue
acts, tense and aspect, and they construct a dataset
consisting of 340 dialogue AMRs. However, they
propose theoretical changes in the schema for
annotating AMRs, while we explore empirical
solutions that leverage existing AMRs of the
standard schema on dialogues.

AMR Parsing and Encoding Our work is also
related to AMR parsing (Flanigan et al., 2014;
Konstas et al., 2017a; Lyu and Titov, 2018; Guo and
Lu, 2018; Zhang et al., 2019; Cai and Lam, 2020)
and AMR encoding (Konstas et al., 2017b; Song
et al., 2018; Zhu et al., 2019; Song et al., 2020;
Zhao et al., 2020; Bai et al., 2020). The former task
makes it possible to use automatically-generated
AMRs for downstream applications, while the latter
helps to effectively exploit structural information
in AMRs. In this work, we investigate AMRs for
dialogue representation and combine AMRs with
text for dialogue modeling.

9 Conclusion

We investigated the feasibility of using AMRs
for dialogue modeling, describing an algorithm
to construct dialogue-level AMRs automatically
and exploiting two ways to incorporate AMRs
into neural dialogue systems. Experiments on
two benchmarks show advantages of using AMR
semantic representations model on both dialogue
understanding and dialogue response generation.
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madan, and Milica Gašić. 2018. MultiWOZ - a
large-scale multi-domain Wizard-of-Oz dataset for
task-oriented dialogue modelling. In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 5016–5026,
Brussels, Belgium. Association for Computational
Linguistics.

Deng Cai and Wai Lam. 2020. AMR parsing via
graph-sequence iterative inference. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1290–1301, On-
line. Association for Computational Linguistics.

Iacer Calixto, Qun Liu, and Nick Campbell. 2017.
Doubly-attentive decoder for multi-modal neural
machine translation. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1913–
1924, Vancouver, Canada. Association for Computa-
tional Linguistics.

Hui Chen, Pengfei Hong, Wei Han, Navonil Majumder,
and Soujanya Poria. 2020. Dialogue relation ex-
traction with document-level heterogeneous graph
attention networks. CoRR, abs/2009.05092.

Jianpeng Cheng, Devang Agrawal, Héctor
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Figure 7: Performance against argument word distance.

A Model parameters

Table 6 lists all model hyperparameters used for
experiments. In particular, we share the word
vocabulary of encoder and decoder for response
generation. We implement our baselines and pro-
posed model based on Pytorch. The preprocessed
data and source code will be released at https:
//github.com/muyeby/AMR-Dialogue.

B More Experimental Results

B.1 Impact of Argument Distance

In addition to utterance distance used in Figure 4,
we also consider word-based distance as a metric
to measure argument distance. Figure 7 shows F1
scores of baseline and our model on 5 groups of test
instances. It can be seen that our model gives better
results than baseline system among all distances
longer than 30. In particular, our model surpass
baseline by 8 points when argument distance is
longer than 120.

Dialogue History:
…
SPEAKER-1 : We have new room rates, sir. Will 
that be acceptable to you?   
SPEAKER-2 : Well , it depends on the price, of 
course. What is it?    
SPEAKER-2 : It's $ 308 a night.   
SPEAKER-1 : I have no problem with that.   
SPEAKER-2 : Great! Would you prefer smoking or 
nonsmoking?   
SPEAKER-1 : Definitely nonsmoking. I can't handle 
that smell.
Ground-Truth: Now, is a queen-size bed okay?
Transformer: I’m sorry, sir. I’ll be fine.
Ours: That’ll be nonsmoking. Now, do you prefer a 
single queen-size bed?

Figure 8: Case study for dialogue response generation.

B.2 Case Study for Dialogue Response
Generation

Figure 8 represents a conversation between a
hotel service and a guest who wants to book a
room, along with its ground-truth response and
model-generated responses. We can observe that
Transformer’s output is general and not consistent
with dialogue history. While proposed models’
outputs can capture the core information “room”
from the history, and are more relevant to the topic.
Besides, the output given by proposed model is
semantically similar to the ground-truth output, but
using novel words to response, indicating that the
model not only captures the simple dependency
between input and output sentences, but also learns
deep semantic information of the dialogue history.

B.3 Paraphrasing Guidelines
We ask annotators to paraphrase the dialogues
following 3 guidelines:

• do not change the original meaning.
• paraphrase the sentence by using different

lexicon and syntax structures.
• paraphrase the dialogue as much as they can.
We also ask a judge to evaluate whether the

paraphrased dialogue (sentences) convey the same
meaning of the original ones.

https://github.com/muyeby/AMR-Dialogue
https://github.com/muyeby/AMR-Dialogue


4445

Setting DialogRE DailyDialog

Sequence Encoder

Dropout 0.1 0.1
Encoder Layers 12 4
Attention Heads 12 8
Embedding Size 768 512

Hidden Layer size 768 512
Word Vocabulary size 31k 16k

Feed-Forward Layer size 3072 1024
Number of parameters 110M 38M

Graph Encoder
(Hier)

Dropout 0.1 0.1
Encoder Layers 2 2
Attention Heads 8 8

Hidden Layer size 512 512
Relation Embedding size 64 64
Feed-Forward Layer size 1024 1024

Number of parameters 4M 4M

Graph Encoder
(Dual)

Dropout 0.1 0.1
Encoder Layers 3 4
Attention Heads 8 8

Hidden Layer Size 512 512
Relation Embedding Size 64 64
Concept Vocabulary Size 5.2k 10k
Feed-Forward Layer Size 1024 1024

Number of parameters 11M 20M

Others

Optimizer Adam Adam
Batch Size 48 20

Learning Rate 3e-5 1e-4
Training Epoch 30 200
Decoder Layers - 4
Training Device Tesla V100 Tesla V100
Training Time 120min 48h

Table 6: Hyperparameters of our models on DialogRE and DailyDialog.


