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Abstract

Understanding privacy policies is crucial for
users as it empowers them to learn about the in-
formation that matters to them. Sentences writ-
ten in a privacy policy document explain pri-
vacy practices, and the constituent text spans
convey further specific information about that
practice. We refer to predicting the privacy
practice explained in a sentence as intent clas-
sification and identifying the text spans shar-
ing specific information as slot filling. In this
work, we propose PolicyIE, an English corpus
consisting of 5,250 intent and 11,788 slot an-
notations spanning 31 privacy policies of web-
sites and mobile applications. PolicyIE corpus
is a challenging real-world benchmark with
limited labeled examples reflecting the cost
of collecting large-scale annotations from do-
main experts. We present two alternative neu-
ral approaches as baselines, (1) intent classifi-
cation and slot filling as a joint sequence tag-
ging and (2) modeling them as a sequence-to-
sequence (Seq2Seq) learning task. The exper-
iment results show that both approaches per-
form comparably in intent classification, while
the Seq2Seq method outperforms the sequence
tagging approach in slot filling by a large mar-
gin. We perform a detailed error analysis to
reveal the challenges of the proposed corpus.

1 Introduction

Privacy policies inform users about how a service
provider collects, uses, and maintains the users’ in-
formation. The service providers collect the users’
data via their websites or mobile applications and
analyze them for various purposes. The users’ data
often contain sensitive information; therefore, the
users must know how their information will be
used, maintained, and protected from unauthorized
and unlawful use. Privacy policies are meant to
explain all these use cases in detail. This makes

∗Equal contribution. Listed by alphabetical order.

privacy policies often very long, complicated, and
confusing (McDonald and Cranor, 2008; Reiden-
berg et al., 2016). As a result, users do not tend
to read privacy policies (Commission et al., 2012;
Gluck et al.; Marotta-Wurgler, 2015), leading to un-
desirable consequences. For example, users might
not be aware of their data being sold to third-party
advertisers even if they have given their consent to
the service providers to use their services in return.
Therefore, automating information extraction from
verbose privacy policies can help users understand
their rights and make informed decisions.

In recent years, we have seen substantial efforts
to utilize natural language processing (NLP) tech-
niques to automate privacy policy analysis. In lit-
erature, information extraction from policy doc-
uments is formulated as text classification (Wil-
son et al., 2016a; Harkous et al., 2018; Zimmeck
et al., 2019), text alignment (Liu et al., 2014; Ra-
manath et al., 2014), and question answering (QA)
(Shvartzshanider et al., 2018; Harkous et al., 2018;
Ravichander et al., 2019; Ahmad et al., 2020). Al-
though these approaches effectively identify the
sentences or segments in a policy document rele-
vant to a privacy practice, they lack in extracting
fine-grained structured information. As shown in
the first example in Table 1, the privacy practice la-
bel “Data Collection/Usage” informs the user how,
why, and what types of user information will be
collected by the service provider. The policy also
specifies that users’ “username” and “icon or pro-
file photo” will be used for “marketing purposes”.
This informs the user precisely what and why the
service provider will use users’ information.

The challenge in training models to extract fine-
grained information is the lack of labeled examples.
Annotating privacy policy documents is expensive
as they can be thousands of words long and re-
quires domain experts (e.g., law students). There-
fore, prior works annotate privacy policies at the
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[We]Data Collector: First Party Entity may also [use]Action or display [your]Data Provider: user

[username]Data Collected: User Online Activities/Profiles and [icon or profile photo]Data Collected: User Online Activities/Profiles

on [marketing purpose or press releases]Purpose: Advertising/Marketing.
Privacy Practice. Data Collection/Usage

[We]Data Sharer: First Party Entity do [not]Polarity: Negation [sell]Action [your]Data Provider: user

[personal information]Data Shared: General Data to [third parties]Data Receiver: Third Party Entity.
Privacy Practice. Data Sharing/Disclosure

Table 1: Annotation examples from PolicyIE Corpus. Best viewed in color.

sentence level, without further utilizing the con-
stituent text spans to convey specific information.
Sentences written in a policy document explain
privacy practices, which we refer to as intent clas-
sification and identifying the constituent text spans
that share further specific information as slot filling.
Table 1 shows a couple of examples. This formu-
lation of information extraction lifts users’ burden
to comprehend relevant segments in a policy docu-
ment and identify the details, such as how and why
users’ data are collected and shared with others.

To facilitate fine-grained information extraction,
we present PolicyIE, an English corpus consisting
of 5,250 intent and 11,788 slot annotations over
31 privacy policies of websites and mobile appli-
cations. We perform experiments using sequence
tagging and sequence-to-sequence (Seq2Seq) learn-
ing models to jointly model intent classification and
slot filling. The results show that both modeling
approaches perform comparably in intent classifi-
cation, while Seq2Seq models outperform the se-
quence tagging models in slot filling by a large
margin. We conduct a thorough error analysis and
categorize the errors into seven types. We observe
that sequence tagging approaches miss more slots
while Seq2Seq models predict more spurious slots.
We further discuss the error cases by considering
other factors to help guide future work. We release
the code and data to facilitate research.1

2 Construction of PolicyIE Corpus

2.1 Privacy Policies Selection

The scope of privacy policies primarily depends
on how service providers function. For example,
service providers primarily relying on mobile appli-
cations (e.g., Viber, Whatsapp) or websites and ap-
plications (e.g., Amazon, Walmart) have different
privacy practices detailed in their privacy policies.

1https://github.com/wasiahmad/
PolicyIE

In PolicyIE, we want to achieve broad coverage
across privacy practices exercised by the service
providers such that the corpus can serve a wide
variety of use cases. Therefore, we go through the
following steps to select the policy documents.

Initial Collection Ramanath et al. (2014) intro-
duced a corpus of 1,010 privacy policies of the
top websites ranked on Alexa.com. We crawled
those websites’ privacy policies in November 2019
since the released privacy policies are outdated.
For mobile application privacy policies, we scrape
application information from Google Play Store us-
ing play-scraper public API2 and crawl their
privacy policy. We ended up with 7,500 mobile
applications’ privacy policies.

Filtering First, we filter out the privacy policies
written in a non-English language and the mobile
applications’ privacy policies with the app review
rating of less than 4.5. Then we filter out privacy
policies that are too short (< 2,500 words) or too
long (> 6,000 words). Finally, we randomly se-
lect 200 websites and mobile application privacy
policies each (400 documents in total).3

Post-processing We ask a domain expert (work-
ing in the security and privacy domain for more
than three years) to examine the selected 400 pri-
vacy policies. The goal for the examination is to
ensure the policy documents cover the four privacy
practices: (1) Data Collection/Usage, (2) Data
Sharing/Disclosure, (3) Data Storage/Retention,
and (4) Data Security/Protection. These four prac-
tices cover how a service provider processes users’
data in general and are included in the General
Data Protection Regulation (GDPR). Finally, we
shortlist 50 policy documents for annotation, 25 in
each category (websites and mobile applications).

2https://github.com/danieliu/
play-scraper

3We ensure the mobile applications span different appli-
cation categories on the Play Store.

https://github.com/wasiahmad/PolicyIE
https://github.com/wasiahmad/PolicyIE
https://github.com/danieliu/play-scraper
https://github.com/danieliu/play-scraper
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2.2 Data Annotation
Annotation Schema To annotate sentences in a
policy document, we consider the first four privacy
practices from the annotation schema suggested
by Wilson et al. (2016a). Therefore, we perform
sentence categorization under five intent classes
that are described below.
(1) Data Collection/Usage: What, why and how

user information is collected;
(2) Data Sharing/Disclosure: What, why and how

user information is shared with or collected
by third parties;

(3) Data Storage/Retention: How long and where
user information will be stored;

(4) Data Security/Protection: Protection mea-
sures for user information;

(5) Other: Other privacy practices that do not fall
into the above four categories.

Apart from annotating sentences with privacy
practices, we aim to identify the text spans in sen-
tences that explain specific details about the prac-
tices. For example, in the sentence “we collect per-
sonal information in order to provide users with a
personalized experience”, the underlined text span
conveys the purpose of data collection. In our anno-
tation schema, we refer to the identification of such
text spans as slot filling. There are 18 slot labels in
our annotation schema (provided in Appendix). We
group the slots into two categories: type-I and type-
II based on their role in privacy practices. While
the type-I slots include participants of privacy prac-
tices, such as Data Provider, Data Receiver, type-II
slots include purposes, conditions that characterize
more details of privacy practices. Note that type-I
and type-II slots may overlap, e.g., in the previous
example, the underlined text span is the purpose
of data collection, and the span “user” is the Data
Provider (whose data is collected). In general, type-
II slots are longer (consisting of more words) and
less frequent than type-I slots.

In total, there are 14 type-I and 4 type-II slots
in our annotation schema. These slots are associ-
ated with a list of attributes, e.g., Data Collected
and Data Shared have the attributes Contact Data,
Location Data, Demographic Data, etc. Table 1
illustrates a couple of examples. We detail the slots
and their attributes in the Appendix.

Annotation Procedure General crowdworkers
such as Amazon Mechanical Turkers are not suit-
able to annotate policy documents as it requires spe-
cialized domain knowledge (McDonald and Cra-

Dataset Train Test

# Policies 25 6
# Sentences 4,209 1,041
# Type-I slots 7,327 1,704
# Type-II slots 2,263 494
Avg. sentence length 23.73 26.62
Avg. # type-I slot / sent. 4.48 4.75
Avg. # type-II slot / sent. 1.38 1.38
Avg. type-I slot length 2.01 2.15
Avg. type-II slot length 8.70 10.70

Table 2: Statistics of the PolicyIE Corpus.

nor, 2008; Reidenberg et al., 2016). We hire two
law students to perform the annotation. We use
the web-based annotation tool, BRAT (Stenetorp
et al., 2012) to conduct the annotation. We write
a detailed annotation guideline and pretest them
through multiple rounds of pilot studies. The guide-
line is further updated with notes to resolve com-
plex or corner cases during the annotation process.4

The annotation process is closely monitored by a
domain expert and a legal scholar and is granted
IRB exempt by the Institutional Review Board
(IRB). The annotators are presented with one seg-
ment from a policy document at a time and asked
to perform annotation following the guideline. We
manually segment the policy documents such that a
segment discusses similar issues to reduce ambigu-
ity at the annotator end. The annotators worked 10
weeks, with an average of 10 hours per week, and
completed annotations for 31 policy documents.
Each annotator is paid $15 per hour.

Post-editing and Quality Control We compute
an inter-annotator agreement for each annotated
segment of policy documents using Krippendorff’s
Alpha (αK) (Klaus, 1980). The annotators are
asked to discuss their annotations and re-annotate
those sections with token-level αK falling below
0.75. An αK value within the range of 0.67 to 0.8
is allowed for tentative conclusions (Artstein and
Poesio, 2008; Reidsma and Carletta, 2008). After
the re-annotation process, we calculate the agree-
ment for the two categories of slots individually.
The inter-annotator agreement is 0.87 and 0.84 for
type-I and type-II slots, respectively. Then the ad-
judicators discuss and finalize the annotations. The
adjudication process involves one of the annotators,
the legal scholar, and the domain expert.

4We release the guideline as supplementary material.
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Joint intent and slot tagging
Input: [CLS] We may also use or display your username and icon or profile photo on marketing
purpose or press releases .
Type-I slot tagging output
Data-Collection-Usage B-DC.FPE O O B-Action O O B-DP.U B-DC.UOAP O B-DC.UOAP
I-DC.UOAP I-DC.UOAP I-DC.UOAP O O O O O O O
Type-II slot tagging output
Data-Collection-Usage O O O O O O O O O O O O O O B-P.AM I-P.AM I-P.AM I-P.AM I-P.AM O

Sequence-to-sequence (Seq2Seq) learning
Input: We may also use or display your username and icon or profile photo on marketing purpose
or press releases .
Output: [IN:Data-Collection-Usage [SL:DC.FPE We] [SL:Action use] [SL:DP.U your] [SL:DC.UOAP
username] [SL:DC.UOAP icon or profile photo] [SL:P.AM marketing purpose or press releases]]

Table 3: An example of input / output used to train the two types of models on PolicyIE. For brevity, we re-
placed part of label strings with symbols: DP.U, DC.FPE, DC.UOAP, P.AM represents Data-Provider.User, Data-
Collector.First-Party-Entity, Data-Collected.User-Online-Activities-Profiles, and Purpose.Advertising-Marketing.

Data Statistics & Format Table 2 presents the
statistics of the PolicyIE corpus. The corpus con-
sists of 15 and 16 privacy policies of websites and
mobile applications, respectively. We release the
annotated policy documents split into sentences.5

Each sentence is associated with an intent label,
and the constituent words are associated with a slot
label (following the BIO tagging scheme).

3 Model & Setup

PolicyIE provides annotations of privacy practices
and corresponding text spans in privacy policies.
We refer to privacy practice prediction for a sen-
tence as intent classification and identifying the
text spans as slot filling. We present two alterna-
tive approaches; the first approach jointly models
intent classification and slot tagging (Chen et al.,
2019), and the second modeling approach casts the
problem as a sequence-to-sequence learning task
(Rongali et al., 2020; Li et al., 2021).

3.1 Sequence Tagging

Following Chen et al. (2019), given a sentence
s = w1, . . . , wl from a privacy policy document
D, a special token (w0 = [CLS]) is prepended to
form the input sequence that is fed to an encoder.
The encoder produces contextual representations
of the input tokens h0, h1, . . . , hl where h0 and
h1, . . . , hl are fed to separate softmax classifiers

5We split the policy documents into sentences using UD-
Pipe (Straka et al., 2016).

to predict the target intent and slot labels.

y
i
= softmax(W T

i h0 + bi),
y
s
n = softmax(W T

s hn + bs), n ∈ 1, . . . l,

where Wi ∈ R
d×I

,Ws ∈ R
d×S

, br ∈ R
I and

bi ∈ R
I
, bs ∈ R

S are parameters, and I, S are
the total number of intent and slot types, respec-
tively. The sequence tagging model (composed of
an encoder and a classifier) learns to maximize the
following conditional probability to perform intent
classification and slot filling jointly.

P (yi, ys∣s) = p(yi∣s)
l

∏
n=1

p(ysn∣s).

We train the models end-to-end by minimizing
the cross-entropy loss. Table 3 shows an exam-
ple of input and output to train the joint intent and
slot tagging models. Since type-I and type-II slots
have different characteristics as discussed in § 2.2
and overlap, we train two separate sequential tag-
ging models for type-I and type-II slots to keep the
baseline models simple.6 We use BiLSTM (Liu
and Lane, 2016; Zhang and Wang, 2016), Trans-
former (Vaswani et al., 2017), BERT (Vaswani
et al., 2017), and RoBERTa (Liu et al., 2019) as
encoder to form the sequence tagging models.

Besides, we consider an embedding based base-
line where the input word embeddings are fed to
the softmax classifiers. The special token (w0 =

6Span enumeration based techniques (Wadden et al.,
2019; Luan et al., 2019) can be utilized to perform tagging
both types of slots jointly, and we leave this as future work.
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Model
# param

Intent F1
Type-I Type-II

(in millions) Slot F1 EM Slot F1 EM
Human - 96.5 84.3 56.6 62.3 55.6
Embedding 1.7 50.9±27.3 19.1±0.3 0.8±0.3 0.0±0.0 0.0±0.0
BiLSTM 8 75.9±1.1 40.8±0.9 7.6±0.9 3.9±3.0 10.0±2.7
Transformer 34.8 80.1±0.6 41.0±3.5 6.5±2.8 3.5±1.0 13.1±2.4
BERT 110 84.7±0.7 55.5±1.1 17.0±1.1 29.6±2.4 24.2±4.2
RoBERTa 124 84.5±0.7 54.2±1.9 14.3±2.4 29.8±1.7 24.8±1.4
Embedding w/ CRF 1.7 67.9±0.6 26.0±1.5 1.20±0.3 5.7±4.6 3.1±0.6
BiLSTM w/ CRF 8 76.7±1.4 45.1±1.2 9.2±0.9 26.8±2.2 18.1±2.0
Transformer w/ CRF 34.8 77.9±2.7 43.7±2.3 8.9±3.0 5.7±0.9 11.0±2.1
BERT w/ CRF 110 82.1±2.0 56.0±0.8 19.2±1.1 31.7±1.9 19.7±2.6
RoBERTa w/ CRF 124 83.3±1.6 57.0±0.6 18.2±1.2 34.5±1.3 27.7±3.9

Table 4: Test set performance of the sequence tagging models on PolicyIE corpus. We individually train and
evaluate the models on intent classification and type-I and type-II slots tagging and report average intent F1 score.

[CLS]) embedding is formed by applying aver-
age pooling over the input word embeddings. We
train WordPiece embeddings with a 30,000 token
vocabulary (Devlin et al., 2019) using fastText (Bo-
janowski et al., 2017) based on a corpus of 130,000
privacy policies collected from apps on the Google
Play Store (Harkous et al., 2018). We use the hid-
den state corresponding to the first WordPiece of a
token to predict the target slot labels.

Conditional Random Field (CRF) helps struc-
ture prediction tasks, such as semantic role labeling
(Zhou and Xu, 2015) and named entity recognition
(Cotterell and Duh, 2017). Therefore, we model
slot labeling jointly using a conditional random
field (CRF) (Lafferty et al., 2001) (only interactions
between two successive labels are considered). We
refer the readers to Ma and Hovy (2016) for details.

3.2 Sequence-to-Sequence Learning

Recent works in semantic parsing (Rongali et al.,
2020; Zhu et al., 2020; Li et al., 2021) formulate
the task as sequence-to-sequence (Seq2Seq) learn-
ing. Taking this as a motivation, we investigate
the scope of Seq2Seq learning for joint intent clas-
sification and slot filling for privacy policy sen-
tences. In Table 3, we show an example of encoder
input and decoder output used in Seq2Seq learn-
ing. We form the target sequences by following the
template: [IN:LABEL [SL:LABEL w1, . . . , wm]
. . . ]. During inference, we use greedy decoding and
parse the decoded sequence to extract intent and
slot labels. Note that we only consider text spans in
the decoded sequences that are surrounded by “[]”;
the rest are discarded. Since our proposed PolicyIE

corpus consists of a few thousand examples, instead
of training Seq2Seq models from scratch, we fine-
tune pre-trained models as the baselines. Specif-
ically, we consider five state-of-the-art models:
MiniLM (Wang et al., 2020), UniLM (Dong et al.,
2019), UniLMv2 (Bao et al., 2020), MASS (Song
et al.), and BART (Lewis et al., 2020).

3.3 Setup

Implementation We use the implementation of
BERT and RoBERTa from transformers API
(Wolf et al., 2020). For the Seq2Seq learning base-
lines, we use their public implementations.7,8,9 We
train BiLSTM, Transformer baseline models and
fine-tune all the other baselines for 20 epochs and
choose the best checkpoint based on validation per-
formance. From 4,209 training examples, we use
4,000 examples for training (∼95%) and 209 ex-
amples for validation (∼5%). We tune the learning
rate in [1e-3, 5e-4, 1e-4, 5e-5, 1e-5] and set the
batch size to 16 in all our experiments (to fit in one
GeForce GTX 1080 GPU with 11gb memory). We
train (or fine-tune) all the models five times with
different seeds and report average performances.

Evaluation Metrics To evaluate the baseline ap-
proaches, we compute the F1 score for intent classi-
fication and slot filling tasks.10 We also compute an
exact match (EM) accuracy (if the predicted intent
matches the reference intent and slot F1 = 1.0).

7https://github.com/microsoft/unilm
8https://github.com/microsoft/MASS
9https://github.com/pytorch/fairseq/

tree/master/examples/bart
10We use a micro average for intent classification.

https://github.com/microsoft/unilm
https://github.com/microsoft/MASS
https://github.com/pytorch/fairseq/tree/master/examples/bart
https://github.com/pytorch/fairseq/tree/master/examples/bart
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Model
# param

Intent F1
Type-I Type-II

(in millions) Slot F1 EM Slot F1 EM
Human - 96.5 84.3 56.6 62.3 55.6
MiniLM 33 83.9±0.3 52.4±1.5 19.8±1.6 40.4±0.4 27.9±1.6
UniLM 110 83.6±0.5 58.2±0.7 28.6±1.2 53.5±1.4 35.4±1.9
UniLMv2 110 84.7±0.5 61.4±0.9 29.9±1.2 53.5±1.5 33.5±1.5
MASS 123 81.8±1.2 54.1±2.5 21.3±2.0 44.9±1.2 25.3±1.3

BART
140 83.3±1.1 53.6±1.7 10.6±1.7 52.4±2.7 27.5±2.2
400 83.6±1.3 63.7±1.3 23.0±1.3 55.2±1.0 31.6±2.0

Table 5: Test set performance of the Seq2Seq models on PolicyIE corpus.

Human Performance is computed by consider-
ing each annotator’s annotations as predictions and
the adjudicated annotations as the reference. The
final score is an average across all annotators.

4 Experiment Results & Analysis

We aim to address the following questions.
1. How do the two modeling approaches perform

on our proposed dataset (§ 4.1)?
2. How do they perform on different intent and

slot types (§ 4.2)?
3. What type of errors do the best performing

models make (§ 4.3)?

4.1 Main Results
Sequence Tagging The overall performances of
the sequence tagging models are presented in Table
4. The pre-trained models, BERT and RoBERTa,
outperform other baselines by a large margin. Us-
ing conditional random field (CRF), the models
boost the slot tagging performance with a slight
degradation in intent classification performance.
For example, RoBERTa + CRF model improves
over RoBERTa by 2.8% and 3.9% in terms of type-
I slot F1 and EM with a 0.5% drop in intent F1
score. The results indicate that predicting type-II
slots is difficult compared to type-I slots as they dif-
fer in length (type-I slots are mostly phrases, while
type-II slots are clauses) and are less frequent in
the training examples. However, the EM accuracy
for type-I slots is lower than type-II slots due to
more type-I slots (∼4.75) than type-II slots (∼1.38)
on average per sentence. Note that if models fail to
predict one of the slots, EM will be zero.

Seq2Seq Learning Seq2Seq models predict the
intent and slots by generating the labels and spans
following a template. Then we extract the intent
and slot labels from the generated sequences. The
experiment results are presented in Table 5. To our

surprise, we observe that all the models perform
well in predicting intent and slot labels. The best
performing model is BART (according to slot F1
score) with 400 million parameters, outperforming
its smaller variant by 10.1% and 2.8% in terms of
slot F1 for type-I and type-II slots, respectively.

Sequence Tagging vs. Seq2Seq Learning It is
evident from the experiment results that Seq2Seq
models outperform the sequence tagging models
in slot filling by a large margin, while in intent
classification, they are competitive. However, both
the modeling approaches perform poorly in predict-
ing all the slots in a sentence correctly, resulting
in a lower EM score. One interesting factor is,
the Seq2Seq models significantly outperform se-
quence tagging models in predicting type-II slots.
Note that type-II slots are longer and less frequent,
and we suspect conditional text generation helps
Seq2Seq models predict them accurately. In com-
parison, we suspect that due to fewer labeled exam-
ples of type-II slots, the sequence tagging models
perform poorly on that category (as noted before,
we train the sequence tagging models for the type-I
and type-II slots individually).

Next, we break down RoBERTa (w/ CRF) and
BART’s performances, the best performing models
in their respective model categories, followed by
an error analysis to shed light on the error types.

4.2 Performance Breakdown

Intent Classification In the PolicyIE corpus,
38% of the sentences fall into the first four cat-
egories: Data Collection, Data Sharing, Data Stor-
age, Data Security, and the remaining belong to
the Other category. Therefore, we investigate how
much the models are confused in predicting the
accurate intent label. We provide the confusion
matrix of the models in Appendix. Due to an im-
balanced distribution of labels, BART makes many
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Intent labels Intent F1
Slot F1

Type-I Type-II
RoBERTa
Data Collection 74.1±1.1 59.8±0.8 28.9±2.7
Data Sharing 67.2±2.0 53.6±5.7 34.4±3.4
Data Storage 61.7±3.6 40.1±3.7 31.6±3.1
Data Security 68.9±2.9 53.9±4.9 21.9±2.5
BART
Data Collection 73.5±2.3 67.0±4.2 56.2±2.8
Data Sharing 70.4±2.7 61.2±1.6 53.5±3.4
Data Storage 63.1±4.7 56.2±8.2 64.9±2.5
Data Security 67.2±3.9 66.0±2.2 32.8±1.3

Table 6: Test performance of the RoBERTa and BART
model for each intent type.

incorrect predictions. We notice that BART is con-
fused most between Data Collection and Data Stor-
age labels. Our manual analysis reveals that BART
is confused between slot labels {“Data Collector”,
“Data Holder”} and {“Data Retained”, “Data Col-
lected”} as they are often associated with the same
text span. We suspect this leads to BART’s confu-
sion. Table 6 presents the performance breakdown
across intent labels.

Slot Filling We breakdown the models’ perfor-
mances in slot filling under two settings. First,
Table 6 shows slot filling performance under dif-
ferent intent categories. Among the four classes,
the models perform worst on slots associated with
the “Data Security” intent class as PolicyIE has
the lowest amount of annotations for that intent
category. Second, we demonstrate the models’
performances on different slot types in Figure 1.
RoBERTa’s recall score for “polarity”, “protect-
against”, “protection-method” and “storage-place”
slot types is zero. This is because these slot types
have the lowest amount of training examples in Pol-
icyIE. On the other hand, BART achieves a higher
recall score, specially for the “polarity” label as
their corresponding spans are short.

We also study the models’ performances on slots
of different lengths. The results show that BART
outperforms RoBERTa by a larger margin on longer
slots (see Figure 2), corroborating our hypothesis
that conditional text generation results in more ac-
curate predictions for longer spans.

4.3 Error Analysis

We analyze the incorrect intent and slot predictions
by RoBERTa and BART. We categorize the errors

0.0 0.2 0.4 0.6 0.8

action
condition

data-collected
data-collector

data-holder
data-protected
data-protector
data-provider
data-receiver
data-retained

data-shared
data-sharer

polarity
protect-against

protection-method
purpose

retention-period
storage-place

RoBERTa BART

Figure 1: Test set performance (Recall score) on Poli-
cyIE for the eighteen slot types.

0.0 0.2 0.4 0.6 0.8

2
3
4
5
6
7
8
9

10
[11-20]
[21-30]
[31-40]

50+

RoBERTa BART

Figure 2: Test set performance (Recall score) on Poli-
cyIE for slots with different length.

into seven types. Note that a predicted slot is con-
sidered correct if its’ label and span both match
(exact match) one of the references. We character-
ize the error types as follows.

1. Wrong Intent (WI): The predicted intent la-
bel does not match the reference intent label.

2. Missing Slot (MS): None of the predicted
slots exactly match a reference slot.

3. Spurious Slot (SS): Label of a predicted slot
does not match any of the references.

4. Wrong Split (WSp): Two or more predicted
slot spans with the same label could be merged
to match one of the reference slots. A merged
span and a reference span may only differ in
punctuations or stopwords (e.g., and).

5. Wrong Boundary (WB): A predicted slot
span is a sub-string of the reference span or
vice versa. The slot label must exactly match.
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+ [IN:data-collection-usage [SL:data-provider.third-party-entity third parties] [SL:action collect] [SL:data-
provider.user your] [SL:data-collected.data-general information] [SL:data-collector.first-party-entity us]]
− [IN:data-sharing-disclosure [SL:data-receiver.third-party-entity third parties] [SL:action share]
[SL:data-provider.user your] [SL:data-shared.data-general information] [SL:data-sharer.first-party-entity
us] [SL:condition where applicable] [SL:condition based on their own privacy policies]]
Error types: Wrong Intent (WI), Wrong Label (WL), Wrong Slot (WS), Spurious Slot (SS)

+ [. . . [SL:data-provider.third-party-entity third parties] [SL:condition it is allowed by applicable law or
according to your agreement with third parties]]
− [. . . [SL:condition allowed by applicable law or according to your agreement with third parties]]
Error types: Wrong Boundary (WB), Missing Slot (MS)

+ [. . . [SL:data-receiver.third-party-entity social media and other similar platforms] . . . ]
− [. . . [SL:data-receiver.third-party-entity social media] [SL:data-receiver.third-party-entity other similar
platforms] . . . ]
Error types: Wrong Split (WSp)

Table 7: Three examples showing different error types appeared in BART’s predictions. + and − indicates the
reference and predicted sequences, respectively. Best viewed in color.

Error RoBERTa BART
Wrong Intent 161 178
Spurious Slot 472 723
Missing Slot 867 517
Wrong Boundary 130 160
Wrong Slot 103 143
Wrong Split 32 27
Wrong Label 18 19
Total Slots 2,198 2,198
Correct Prediction 1,064 1,361
Total Errors 1,622 1,589
Total Predictions 2,686 2,950

Table 8: Counts for each error type on the test set of
PolicyIE using RoBERTa and BART models.

6. Wrong Label (WL): A predicted slot span
matches a reference, but the label does not.

7. Wrong Slot (WS): All other types of errors
fall into this category.

We provide one example of each error type in
Table 7. In Table 8, we present the counts for each
error type made by RoBERTa and BART models.
The two most frequent error types are SS and MS.
While BART makes more SS errors, RoBERTa
suffers from MS errors. While both the models
are similar in terms of total errors, BART makes
more correct predictions resulting in a higher Re-
call score, as discussed before. One possible way
to reduce SS errors is by penalizing more on wrong
slot label prediction than slot span. On the other
hand, reducing MS errors is more challenging as
many missing slots have fewer annotations than

others. We provide more qualitative examples in
Appendix (see Table 11 and 12) .

In the error analysis, we exclude the test exam-
ples (sentences) with the intent label “Other” and
no slots. Out of 1,041 test instances in PolicyIE,
there are 682 instances with the intent label “Other”.
We analyze RoBERTa and BART’s predictions on
those examples separately to check if the models
predict slots as we consider them as spurious slots.
While RoBERTa meets our expectation of perform-
ing highly accurate (correct prediction for 621 out
of 682), BART also correctly predicts 594 out of
682 by precisely generating “[IN:Other]”. Overall
the error analysis aligns with our anticipation that
the Seq2Seq modeling technique has promise and
should be further explored in future works.

5 Related Work

Automated Privacy Policy Analysis Automat-
ing privacy policy analysis has drawn researchers’
attention as it enables the users to know their
rights and act accordingly. Therefore, significant
research efforts have been devoted to understand-
ing privacy policies. Earlier approaches (Costante
et al., 2012) designed rule-based pattern matching
techniques to extract specific types of information.
Under the Usable Privacy Project (Sadeh et al.,
2013), several works have been done (Bhatia and
Breaux, 2015; Wilson et al., 2016a,b; Sathyendra
et al., 2016; Bhatia et al., 2016; Hosseini et al.,
2016; Mysore Sathyendra et al., 2017; Zimmeck
et al., 2019; Bannihatti Kumar et al., 2020). No-
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table works leveraging NLP techniques include text
alignment (Liu et al., 2014; Ramanath et al., 2014),
text classification (Wilson et al., 2016a; Harkous
et al., 2018; Zimmeck et al., 2019), and question an-
swering (QA) (Shvartzshanider et al., 2018; Hark-
ous et al., 2018; Ravichander et al., 2019; Ahmad
et al., 2020). Bokaie Hosseini et al. (2020) is the
most closest to our work that used named entity
recognition (NER) modeling technique to extract
third party entities mentioned in policy documents.

Our proposed PolicyIE corpus is distinct from
the previous privacy policies benchmarks: OPP-
115 (Wilson et al., 2016a) uses a hierarchical an-
notation scheme to annotate text segments with a
set of data practices and it has been used for multi-
label classification (Wilson et al., 2016a; Harkous
et al., 2018) and question answering (Harkous et al.,
2018; Ahmad et al., 2020); PrivacyQA (Ravichan-
der et al., 2019) frame the QA task as identifying
a list of relevant sentences from policy documents.
Recently, Bui et al. (2021) created a dataset by
tagging documents from OPP-115 for privacy prac-
tices and uses NER models to extract them. In
contrast, PolicyIE is developed by following se-
mantic parsing benchmarks, and we model the task
following the NLP literature.

Intent Classification and Slot Filling Voice as-
sistants and chat-bots frame the task of natural lan-
guage understanding via classifying intents and fill-
ing slots given user utterances. Several benchmarks
have been proposed in literature covering several
domains, and languages (Hemphill et al., 1990;
Coucke et al., 2018; Gupta et al., 2018; Upadhyay
et al., 2018; Schuster et al., 2019; Xu et al., 2020;
Li et al., 2021). Our proposed PolicyIE corpus is
a new addition to the literature within the security
and privacy domain. PolicyIE enables us to build
conversational solutions that users can interact with
and learn about privacy policies.

6 Conclusion

This work aims to stimulate research on automat-
ing information extraction from privacy policies
and reconcile it with users’ understanding of their
rights. We present PolicyIE, an intent classifica-
tion and slot filling benchmark on privacy policies
with two alternative neural approaches as baselines.
We perform a thorough error analysis to shed light
on the limitations of the two baseline approaches.
We hope this contribution would call for research
efforts in the specialized privacy domain from both

privacy and NLP communities.
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Broader Impact

Privacy and data breaches have a significant im-
pact on individuals. In general, security breaches
expose the users to different risks such as finan-
cial loss (due to losing employment or business
opportunities), physical risks to safety, and iden-
tity theft. Identity theft is among the most severe
and fastest-growing crimes. However, the risks
due to data breaches can be minimized if the users
know their rights and how they can exercise them
to protect their privacy. This requires the users
to read the privacy policies of websites they visit
or the mobile applications they use. As reading
privacy policies is a tedious task, automating pri-
vacy policy analysis reduces the burden of users.
Automating information extraction from privacy
policies empowers users to be aware of their data
collected and analyzed by service providers for
different purposes. Service providers collect con-
sumer data at a massive scale and often fail to pro-
tect them, resulting in data breaches that have led to
increased attention towards data privacy and related
risks. Reading privacy policies to understand users’
rights can help take informed and timely decisions
on safeguarding data privacy to mitigate the risks.
Developing an automated solution to facilitate pol-
icy document analysis requires labeled examples,
and the PolicyIE corpus adds a new dimension to
the available datasets in the security and privacy do-
main. While PolicyIE enables us to train models to
extract fine-grained information from privacy poli-
cies, the corpus can be coupled with other existing
benchmarks to build a comprehensive system. For
example, PrivacyQA corpus (Ravichander et al.,
2019) combined with PolicyIE can facilitate build-
ing QA systems that can answer questions with
fine-grained details. We believe our experiments
and analysis will help direct future research.
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Type-I slots Attributes

Action None

Data Provider (1) User (2) Third party entity

Data Collector (1) First party entity

Data Collected (1) General Data (2) Aggregated/Non-identifiable data (3) Contact data (4) Financial data
(5) Location data (6) Demographic data (7) Cookies, web beacons and other technologies
(8) Computer/Device data (9) User online activities/profiles (10) Other data

Data Sharer (1) First party entity

Data Shared (1) General Data (2) Aggregated/Non-identifiable data (3) Contact data (4) Financial data
(5) Location data (6) Demographic data (7) Cookies, web beacons and other technologies
(8) Computer/Device data (9) User online activities/profiles (10) Other data

Data Receiver (1) Third party entity

Data Holder (1) First party entity (2) Third party entity

Data Retained (1) General Data (2) Aggregated/Non-identifiable data (3) Contact data (4) Financial data
(5) Location data (6) Demographic data (7) Cookies, web beacons and other technologies
(8) Computer/Device data (9) User online activities/profiles (10) Other data

Storage Place None

Retention Period None

Data Protector (1) First party entity (2) Third party entity

Data Protected (1) General Data (2) Aggregated/Non-identifiable data (3) Contact data (4) Financial data
(5) Location data (6) Demographic data (7) Cookies, web beacons and other technologies
(8) Computer/Device data (9) User online activities/profiles (10) Other data

Protect Against Security threat

Type-II slots Attributes

Purpose (1) Basic service/feature (2) Advertising/Marketing (3) Legal requirement
(4) Service operation and security (5) Personalization/customization
(6) Analytics/research (7) Communications (8 Merge/Acquisition (9) Other purpose

Condition None

Polarity (1) Negation

Protection Method (1) General safeguard method (2) User authentication (3) Access limitation
(5) Encryptions (6) Other protection method

Table 9: Slots and their associated attributes. “None” indicates there are no attributes for the those slots.
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Privacy Practices
Data Data Data Data

Collection/Usage Sharing/Disclosure Storage/Retention Security/Protection
Type-I slots
Action 750 / 169 344 / 70 198 / 57 102 / 31
Data Provider 784 / 172 247 / 54 139 / 44 65 / 20
Data Collector 653 / 151 - - -
Data Collected 1833 / 361 - - -
Data Sharer - 288 / 54 - -
Data Shared - 541 / 110 - -
Data Receiver - 456 / 115 - -
Data Holder - - 192 / 59 -
Data Retained - - 291 / 119 -
Storage Place - - 70 / 21 -
Retention Period - - 101 / 17 -
Data Protector - - - 105 / 31
Data Protected - - - 119 / 34
Protect Against - - - 49 / 15
Type-II slots
Purpose 894 / 193 327 / 65 168 / 40 5 / 0
Condition 337 / 81 154 / 26 81 / 25 43 / 7
Polarity 50 / 15 21 / 1 22 / 1 18 / 5
Protection Method - - - 143 / 35
# of slots 5301 / 1142 2378 / 495 1262 / 383 649 / 178
# of sequences 919 / 186 380 / 83 232 / 61 103 / 29

Table 10: Privacy practices and the associated slots with their distributions. “X / Y” indicates there are X instances
in the train set and Y instances in the test set.
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Figure 3: Confusion matrix for intent classification
using the RoBERTa model.
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Figure 4: Confusion matrix for intent classification
using the BART model.



4416

Label Text

Ground truth

data-holder.first-party-entity We
action keep
data-retained.data-general records
retention-period.retention-period a period of no more than 6 years

RoBERTa
(P:1.0, R: 0.75)

3 data-holder.first-party-entity We
3 action keep
3 retention-period.retention-period a period of no more than 6 years

BART
(P:1.0, R: 1.0)

3 data-holder.first-party-entity We
3 action keep
3 data-retained.data-general records
3 retention-period.retention-period a period of no more than 6 years

Ground truth
data-collector.first-party-entity We
action access
data-collected.data-general information

RoBERTa
(P:0.0, R: 0.0)

7 data-sharer.first-party-entity We
7 data-shared.data-general information

BART
(P:0.0, R: 0.0)

7 data-sharer.first-party-entity We
7 action disclose
7 data-shared.data-general information

Ground truth

data-sharer.first-party-entity Marco Polo
data-receiver.third-party-entity third party
data-shared.data-general Personal Information
data-provider.user users
action transferred

RoBERTa
(P:0.6, R: 0.6)

7 data-receiver.third-party-entity Marco
7 data-sharer.first-party-entity our
3 data-receiver.third-party-entity third party
3 data-shared.data-general Personal Information
3 action transferred

BART
(P:0.83, R: 1.0)

3 data-sharer.first-party-entity Marco Polo
3 data-receiver.third-party-entity third party
3 data-shared.data-general Personal Information
7 data-sharer.first-party-entity us
3 data-provider.user users
3 action transferred

Ground truth

data-sharer.first-party-entity We
data-receiver.third-party-entity third parties
action provide
data-shared.data-general information

RoBERTa
(P:1.0, R: 1.0)

3 data-sharer.first-party-entity We
3 data-receiver.third-party-entity third parties
3 action provide
3 data-shared.data-general information

BART
(P:0.25, R: 0.25)

7 data-collector.first-party-entity We
7 data-provider.third-party-entity third parties
3 action provide
7 data-collected.data-general information

Table 11: Sample RoBERTa and BART predictions of Type-I slots. (3) and (7) indicates correct and incorrect
predictions, respectively. Precision (P) and recall (R) score is reported for each example in the left column.
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Ground truth
[Label] condition
[Text] you use our product and service or view the content provided by us

RoBERTa
(P:1.0, R: 1.0)

3
[Label] condition
[Text] you use our product and service or view the content provided by us

BART
(P:1.0, R: 1.0)

3
[Label] condition
[Text] you use our product and service or view the content provided by us

Ground truth

[Label] purpose.other
[Text] their own purposes
[Label] purpose.advertising-marketing
[Text ] inform advertising related services provided to other clients

RoBERTa
(P:0.0, R: 0.0)

7
[Label] None
[Text] None

BART
(P:1.0, R: 1.0)

3
[Label] purpose.other
[Text] their own purposes

3
[Label] purpose.advertising-marketing
[Text] inform advertising related services provided to other clients

Ground truth

[Label] purpose.personalization-customization
[Text] provide more tailored services and user experiences
[Label] purpose.basic-service-feature
[Text] remembering your account identity
[Label] purpose.service-operation-and-security
[Text] analyzing your account ’s security
[Label] purpose.analytics-research
[Text] analyzing your usage of our product and service
[Label] purpose.advertising-marketing
[Text] advertisement optimization ( helping us to provide you with more targeted advertisements
instead of general advertisements based on your information )

RoBERTa
(P:0.17, R: 0.2)

7
[Label] purpose.basic-service-feature
[Text] provide

7
[Label] purpose.other
[Text] purposes

7
[Label] purpose.analytics-research
[Text] remembering your account identity

7
[Label] purpose.analytics-research
[Text] analyzing your account ’s security

3
[Label] purpose.analytics-research
[Text] analyzing your usage of our product and service

7
[Label] purpose.advertising-marketing
[Text] advertisement optimization

BART
(P:0.43, R: 0.6)

3
[Label] purpose.personalization-customization
[Text] provide more tailored services and user experiences

7
[Label] purpose.service-operation-and-security
[Text] remembering your account identity

3
[Label] purpose.service-operation-and-security
[Text] analyzing your account ’s security

3
[Label] purpose.analytics-research
[Text] analyzing your usage of our product and service

7
[Label] purpose.advertising-marketing
[Text] advertisement optimization

7
[Label] purpose.advertising-marketing
[Text] provide you with more targeted advertisements instead of general advertisements

7
[Label] purpose.advertising-marketing
[Text] based on your information

Table 12: Sample RoBERTa and BART predictions of Type-II slots. (3) and (7) indicates correct and incorrect
predictions, respectively. Precision (P) and recall (R) score is reported for each example in the left column.


