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Abstract

Hierarchical text classification is an important
yet challenging task due to the complex struc-
ture of the label hierarchy. Existing methods
ignore the semantic relationship between text
and labels, so they cannot make full use of
the hierarchical information. To this end, we
formulate the text-label semantics relationship
as a semantic matching problem and thus pro-
pose a hierarchy-aware label semantics match-
ing network (HiMatch). First, we project text
semantics and label semantics into a joint em-
bedding space. We then introduce a joint em-
bedding loss and a matching learning loss to
model the matching relationship between the
text semantics and the label semantics. Our
model captures the text-label semantics match-
ing relationship among coarse-grained labels
and fine-grained labels in a hierarchy-aware
manner. The experimental results on vari-
ous benchmark datasets verify that our model
achieves state-of-the-art results.

1 Introduction

Hierarchical text classification (HTC) is widely
used in Natural Language Processing (NLP), such
as news categorization (Lewis et al., 2004) and sci-
entific paper classification (Kowsari et al., 2017).
HTC is a particular multi-label text classification
problem, which introduces hierarchies to organize
label structure. As depicted in Figure 1, HTC mod-
els predict multiple labels in a given label hierarchy,
which generally construct one or multiple paths
from coarse-grained labels to fine-grained labels in
a top-down manner (Aixin Sun and Ee-Peng Lim,
2001). Generally speaking, fine-grained labels are
the most appropriate labels for describing the input
text. Coarse-grained labels are generally the parent
nodes of coarse- or fine-grained labels, expressing
a more general concept. The key challenges of
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HTC are to model the large-scale, imbalanced, and
structured label hierarchy (Mao et al., 2019).

Input Text: "Global debt is set to reach $200 trillion ..."

Label Hierarchy

Root Coarse-grained Labels

Society
Fine-grained Labels

Economics

Debt Revenue

Figure 1: An hierarchical text classification example
tagged with labels Economics and Debt from coarse-
grained label to fine-grained label.

Existing work in HTC has introduced various
methods to use hierarchical information in a holis-
tic way. To capture the holistic label correlation
features, some researchers proposed a hierarchy-
aware global model to exploit the prior probabil-
ity of label dependencies through Graph Convolu-
tion Networks (GCN) and TreeLSTM (Zhou et al.,
2020). Some researchers also introduced more la-
bel correlation features such as label semantic sim-
ilarity and label co-occurrence (Lu et al., 2020).
They followed the traditional way to transform
HTC into multiple binary classifiers for every label
(Fiirnkranz et al., 2008). However, they ignored
the interaction between text semantics and label se-
mantics (Fiirnkranz et al., 2008; Wang et al., 2019),
which is highly useful for classification (Chen et al.,
2020). Hence, their models may not be sufficient
to model complex label dependencies and provide
comparable text-label classification scores (Wang
etal., 2019).

A natural strategy for modeling the interaction
between text semantics and label semantics is to in-
troduce a text-label joint embedding by label atten-
tion (Xiao et al., 2019) or autoencoders (Yeh et al.,
2017). Label attention-based methods adopted a
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self-attention mechanism to identify label-specific
information (Xiao et al., 2019). Autoencoder-based
methods extended the vanilla Canonical Correlated
Autoencoder (Yeh et al., 2017) to a ranking-based
autoencoder architecture to produce comparable
text-label scores (Wang et al., 2019). However,
these methods assume all the labels are indepen-
dent without fully considering the correlation be-
tween coarse-grained labels and fine-grained labels,
which cannot be simply transferred to HTC models
(Zhou et al., 2020).

In this paper, we formulate the interaction be-
tween text and label as a semantic matching prob-
lem and propose a Hierarchy-aware Label Seman-
tics Matching Network (HiMatch). The principal
idea is that the text representations should be se-
mantically similar to the target label representa-
tions (especially fine-grained labels), while they
should be semantically far away from the incor-
rect label representations. First, we adopt a text
encoder and a label encoder (shown in Figure 2)
to extract textual semantics and label semantics,
respectively. Second, inspired by the methods of
learning common embeddings (Wang et al., 2019),
we project both textual semantics and label seman-
tics into a text-label joint embedding space where
correlations between text and labels are exploited.
In this joint embedding space, we introduce a joint
embedding loss between text semantics and target
label semantics to learn a text-label joint embed-
ding. After that, we apply a matching learning
loss to capture text-label matching relationships in
a hierarchy-aware manner. In this way, the fine-
grained labels are semantically closest to the text
semantics, followed by the coarse-grained labels,
while the incorrect labels should be semantically
far away from the text semantics. Hence, we pro-
pose a hierarchy-aware matching learning method
to capture different matching relationships through
different penalty margins on semantic distances. Fi-
nally, we employ the textual representations guided
by the joint embedding loss and matching learning
loss to perform the hierarchical text classification.

The major contributions of this paper are:

1. By considering the text-label semantics match-
ing relationship, we are the first to formulate HTC
as a semantic matching problem rather than merely
multiple binary classification tasks.

2. We propose a hierarchy-aware label semantics

matching network (HiMatch), in which we intro-
duce a joint embedding loss and a matching learn-

ing loss to learn the text-label semantics matching
relationship in a hierarchy-aware manner.

3. Extensive experiments (with/without BERT)
on various datasets show that our model achieves
state-of-the-art results.

2 Related Work

2.1 Hierarchical Text Classification

Hierarchical text classification is a particular multi-
label text classification problem, where the classi-
fication results are assigned to one or more nodes
of a taxonomic hierarchy. Existing state-of-the-art
methods focus on encoding hierarchy constraint
in a global view such as directed graph and tree
structure. Zhou et al. (2020) proposed a hierarchy-
aware global model to exploit the prior probability
of label dependencies. Lu et al. (2020) introduced
three kinds of label knowledge graphs, i.e., tax-
onomy graph, semantic similarity graph, and co-
occurrence graph to benefit hierarchical text clas-
sification. They regarded hierarchical text clas-
sification as multiple binary classification tasks
(Fiirnkranz et al., 2008). The limitation is that these
models did not consider the interaction of label se-
mantics and text semantics. Therefore, they failed
to capture complex label dependencies and can not
provide comparable text-label classification scores
(Wang et al., 2019), which leads to restricted per-
formance (Chen et al., 2020). Hence, it is crucial
to exploit the relationship between text and label
semantics, and help the model distinguish target
labels from incorrect labels in a comparable and
hierarchy-aware manner. We perform matching
learning in a joint embedding of text and label to
solve these problems in this work.

2.2 Exploit Joint Embedding of Text and
Label

To determine the correlation between text and label,
researchers proposed various methods to exploit
a text-label joint embedding such as (Xiao et al.,
2019) or Autoencoder (Yeh et al., 2017). In the
field of multi-label text classification, Xiao et al.
(2019) proposed a Label-Specific Attention Net-
work (LSAN) to learn a text-label joint embedding
by label semantic and document semantic. Wang
et al. (2019) extended vanilla Canonical Correlated
AutoEncoder (Yeh et al., 2017) to a ranking-based
autoencoder architecture to produce comparable
label scores. However, they did not fully con-
sider label semantics and holistic label correlation
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Figure 2: The overall architecture of the proposed model. Firstly, the text encoder and label encoder extract the
text semantics and label semantics, respectively. Then text semantics and label semantics are projected into a joint
embedding space. Joint embedding loss encourages the text semantics to be similar to the target label semantics.
By introducing matching learning loss, fine-grained labels semantics (Debt) is semantically closest to the text
semantics, followed by coarse-grained labels (Economics), while other incorrect labels semantics is semantically
far away from text semantics (Revenue, Society). The relative order is d; < do < d3 < dy4, where d represents the

metric distances in joint embedding.

among fine-grained labels, coarse-grained labels,
and incorrect labels. In addition, we can not simply
transfer these multi-label classification methods to
HTC due to the constraint of hierarchy (Zhou et al.,
2020).

3 Proposed Method

In this section, we will describe the details about
our Hierarchy-aware Label Semantics Matching
Network. Figure 2 shows the overall architecture
of our proposed model.

3.1 Text Encoder

In the HTC task, given the input sequence x5y =
{z1,...,x,}, the model will predict the label y =
{y1, ..., yx.} where n is the number of words and
k is the number of label sets. The label with
a probability higher than a fixed threshold (0.5)
will be regarded as the prediction result. The se-
quence of token embeddings is firstly fed into a
bidirectional GRU layer to extract contextual fea-
ture H = {hy,...,h,}. Then, CNN layers with
top-k max-pooling are adopted for generating key
n-gram features " € RFEXdenn where d,y,y, indicates
the output dimension of the CNN layer.

Following the previous work (Zhou et al., 2020),
we further introduce a hierarchy-aware text feature
propagation module to encode label hierarchy in-
formation. We define a hierarchy label structure

as a directed graph G = (V,}, %, ﬁ), where V;

indicates the set of hierarchy structure nodes. %
are built from the top-down hierarchy paths repre-
senting the prior statistical probability from parent
nodes to children nodes. are built from the
bottom-up hierarchy paths representing the con-
nection relationship from children nodes to parent
nodes. The feature size of graph adjacency matrix
+— Fand — Eis € R*¥k where k is the num-
ber of label sets. Text feature propagation module
firstly projects text features 7" to node inputs V; by a
linear transformation Wp,.,; € REXdennxdi \yhere
d; represents the hierarchy structure node dimen-
sion from text feature. Then a Graph Convolution
Network (GCN) is adopted to explicitly combine
text semantics with prior hierarchical information

%andﬁ:
St:a(%-wwglJrﬁ.m.WgQ) )

where o is the activation function ReLU.
Wg1, Wy € R%*d: are the weight matrix of GCN.
Sy is the text representation aware of prior hierar-
chy paths.

3.2 Label Encoder

In the HTC task, the hierarchical label structure can
be regarded as a directed graph G = <V, %, E)
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where V; indicates the set of hierarchy structure
nodes with label representation. The graph G in
label encoder shares the same structure % and
with the graph in text encoder. Given the total
label set y = {y1, ..., yr} as input, we create label
embeddings V; € R% by averaging of pre-trained
label embeddings first. Then GCN could be utilized
as label encoder:

Sl:a(ﬁwwgﬁﬁ-wwm) 2)

where o is the activation function ReLU.
W3, Wya € R4 are the weight matrix of GCN.
S is the label representation aware of prior hierar-
chy paths. It must be noted that the weight matrix
and input representation of the label encoder are
different with those in the text encoder.

3.3 Label Semantics Matching
3.3.1 Joint Embedding Learning

In this section, we will introduce the methods of
learning a text-label joint embedding and hierarchy-
aware matching relationship. For joint embedding
learning, firstly, we project text semantics .S; and
label semantics S into a common latent space as
follows:

Py = FFN¢ (St) 3)
®; = FFN, (5) “4)

where FFN; and FFN; are independent two-layer
feedforward neural networks. ®;, ®; € R% rep-
resent text semantics and label semantics in joint
embedding space, respectively. d,, indicates the
dimension of joint embedding.

In order to align the two independent seman-
tic representations in the latent space, we employ
the mean squared loss between text semantics and
target labels semantics:

Liomt = Y ||@: = oF| (5)
pEP(y)

where P(y) is target label sets. Ly aims to
minimize the common embedding loss between
input text and target labels.

3.3.2 Hierarchy-aware Matching Learning

Based on the text-label joint embedding loss, the
model only captures the correlations between text
semantics and target labels semantics, while corre-
lations among different granular labels are ignored.

Root

Economics
(Coarse-grained
Target Label)

Society
(Other Incorrect Label)

Debt
(Fine-grained
Target Label)

Revenue
(Incorrect Sibling
Label) Large Semantic

"Global Debt
is set to..."

Distance Margin

Figure 3: Illustration of hierarchy-aware margin. Tar-
get labels are colored yellow. Each colored line repre-
sent the matching operation between text and different
labels. The two vertical axes for semantic matching
distance and penalty margin are on the right. The se-
mantic matching distance can be sorted by the order of
dy (fine-grained target labels) < d (coarse-grained tar-
get labels) < d3 (incorrect sibling labels) < dy (other
incorrect labels). We introduce penalty margins ~ to
model the relative matching relationships.

In the HTC task, it is expected that the matching re-
lationship between text semantics and fine-grained
labels should be the closest, followed by coarse-
grained labels. Text semantics and incorrect labels
semantics should not be related.

Insight of these, we propose a hierarchy-aware
matching 10ss L;,qsch to incorporate the correla-
tions among text semantics and different labels se-
mantics. Ly,qtcr, aims to penalize the small seman-
tic distance between text semantics and incorrect
labels semantics with a margin ~:

£match = max (07 D ((I)t7 Qf) -D ((I)t7 Q?) + ’Y)
(6)

where <I>f represents target labels semantics and
7" represents incorrect labels semantics. We use
L2-normalized euclidean distance for metric D and
~ is a margin constant for margin-based triplet loss.
We take the average of all the losses between every
label pairs as the margin loss.

Hierarchy-aware Margin Due to the large
label sets in the HTC task, it is time-consuming to
calculate every label’s matching loss. Therefore,
we propose hierarchy-aware sampling to alleviate
the problem. Specifically, we sample all parent la-
bels (coarse-grained labels), one sibling label, and
one random incorrect label for every fine-grained
label to obtain its negative label sets n € N (y). It
is also unreasonable to assign the same margin for
different label pairs since the label semantics sim-
ilarity is quite different in a large structured label
hierarchy. Our basic idea is that the semantics re-
lationship should be closer if two labels are closer
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in the hierarchical structure. Firstly, the text se-
mantics should match fine-grained labels the most,
which is exploited in joint embedding learning.
Then we regard the pair with the smallest semantic
distance (d;) as a positive pair and regard other text-
label matching pairs as negative pairs. As depicted
in the schema figure 3, compared with the posi-
tive pair, the semantics matching distance between
text and coarse-grained target labels (d3) should be
larger. The incorrect sibling labels have a certain
semantic relationship with the target labels. Hence,
the semantics matching distance between text and
the incorrect sibling labels of fine-grained labels
(d3) should be further larger, while the semantics
matching distance between text and other incorrect
labels (d4) should be the largest. We introduce
hierarchy-aware penalty margins vy, ¥2, 3, V4 to
model the comparable relationship. The penalty
margin is smaller if we expect the semantic match-
ing distance to be smaller. We neglect v; because
the matching relationships between text semantics
and fine-grained labels are exploited in joint em-
bedding learning. 9,73, v4 are penalty margins
compared with the matching relationships between
text semantics and fine-grained labels semantics.
We introduce two hyperparameters «, 3 to measure
different matching relationships of ~:

Y=oy =07 =7 (7

where 0 < aw < 8 < 1. The proposed loss captures
the relative semantics similarity rankings among
target labels and incorrect labels in a hierarchy-
aware manner.

3.4 Classification Learning and Objective
Function

We find that it is easier to overfit for classification
learning if we perform classification learning in
the text-label joint embedding directly. Hence, we
use the text semantics representation .S; guided by
joint embedding loss and matching learning loss
to perform classification learning. .S; is fed into a
fully connected layer to get the label probability ¢
for prediction.

The overall objective function includes a cross-
entropy category loss, joint embedding loss and
hierarchy-aware matching loss:

L= 'Ccls (y, ?)) + Alﬁjoint + )\2£match (8)

where y and ¢ are the ground-truth label and output
probability, respectively. A, Ao are the hyperpa-
rameters for balancing the joint embedding loss and

Dataset |IL|  Depth Avg(|L;]) Train Val  Test
RCV1-V2 103 4 3.24 20833 2316 781265
WOS 141 2 2 30070 7518 9397
EURLEX-57K 4271 5 5 45000 6000 6000
Table 1: Statistics of three datasets for hierarchical

multi-label text classification. |L|: Number of tar-
get classes. Depth: Maximum level of hierarchy.
Avg(|L;|): Average Number of classes per sample.
Train/Val/Test: Size of train/validation/test set.

matching learning loss. We minimize the above
function by gradient descent during training.

4 Experiment

4.1 Experiment Setup

Datasets To evaluate the effectiveness of our
model, we conduct experiments on three widely-
studied datasets for hierarchical multi-label text
classification. Statistics of these datasets are listed
in Table 1. RCV1-V2 (Lewis et al., 2004) is a
news categorization corpora, and WOS (Kowsari
et al., 2017) includes abstracts of published papers
from Web of Science. EURLEX57K is a large hi-
erarchical multi-label text classification (LMTC)
dataset that contains 57k English EU legislative
documents, and is tagged with about 4.3k labels
from the European Vocabulary (Chalkidis et al.,
2019). The label sets are split into zero-shot labels,
few-shot labels, and frequent labels. Few-shot la-
bels are labels whose frequencies in the training
set are less than or equal to 50. Frequent labels
are labels whose frequencies in the training set are
more than 50. The label setting is the same as pre-
vious work (Lu et al., 2020). In EURLEX57K, the
corpora are only tagged with fine-grained labels,
and the parent labels of fine-grained labels are not
tagged as the target labels.

Evaluation Metric On RCV1-V2 and WOS
datasets, we measure the experimental results by
Micro-F1 and Macro-F1. Micro-F1 takes the over-
all precision and recall of all the instances into
account, while Macro-F1 equals the average F1-
score of labels. We report the results of two rank-
ing metrics on large hierarchical multi-label text
classification dataset EURLEX-57K, including Re-
call@5 and nDCG@5. The ranking metrics are
preferable for EURLEX-57K since it does not in-
troduce a significant bias towards frequent labels
(Lu et al., 2020).

Implementation Details We initialize the word
embeddings with 300D pre-trained GloVe vectors
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(Pennington et al., 2014). Then we use a one-layer
BiGRU with hidden dimension 100 and used 100
filters with kernel size [2,3,4] to setup the CNNss.
The dimension of the text propagation feature and
graph convolution weight matrix are both 300. The
hidden size of joint embedding is 200. The match-
ing margin -y is set to 0.2 on RCV1-V2 and WOS
datasets, and set to 0.5 on EURLEX-57K dataset.
We set the value of hierarchy-aware penalty hyper-
parameters «, [ to 0.01 and 0.5, respectively. The
loss balancing factor A1, A9 are set to 1. For fair
comparisons with previous work (Lu et al., 2020;
Chalkidis et al., 2019) on EURLEX-57K dataset,
firstly, we do not use CNN layer and text feature
propagation module. Secondly, to adapt to the zero-
shot settings, the prediction is generated by the dot
product similarity between text semantics and label
semantics. Our model is optimized by Adam with
a learning rate of le-4.

For pretrained language model BERT (Devlin
et al., 2018), we use the top-level representation
hors of BERT’s special C'LS token to perform
classification. To combine our model with BERT,
we replace the text encoder of HiMatch with BERT,
and the label representations are initiated by pre-
trained BERT embedding. The batch size is set to
16, and the learning rate is 2e-5.

Comparison Models On RCV1-V2 and WOS
datasets, we compare our model with three types
of strong baselines: 1) Text classification baselines:
TextRCNN (Lai et al., 2015), TextRCNN with label
attention (TextRCNN-LA) (Zhou et al., 2020), and
SGM (Yang et al., 2018). 2) Hierarchy-aware mod-
els: HE-AGCRCNN (Peng et al., 2019), HMCN
(Mao et al., 2019), Htrans (Banerjee et al., 2019),
HiLAP-RL (Mao et al., 2019) which introduced re-
inforcement learning to simulate the assignment
process, HHAGM (Zhou et al., 2020) which ex-
ploited the prior probability of label dependecies
through Graph Convolution Network and TreeL-
STM. 3) Pretrained language model: a more power-
ful pretrained language model BERT (Devlin et al.,
2018) than tradition text classification models when
fine-tuned on downstream tasks.

On EURLEX-57K dataset, we compare our
model with strong baselines with/without zero-
shot settings such as BIGRU-ATT, BIGRU-LWAN
(Chalkidis et al., 2019) which introduced label-
wise attention. The models starting with “ZERO”
make predictions by calculating similarity scores
between text and label semantics for zero-shot set-

tings. AGRU-KAMG (Lu et al., 2020) is a state-
of-the-art model which introduced various label
knowledge.

4.2 Experiment Results

Models Micro Macro
Baselines
TextRCNN (Zhou et al., 2020)  81.57 59.25
TextRCNN-LA (Zhou et al., 2020) 81.88 59.85
SGM (Zhou et al., 2020) 77.30 47.49
Hierarchy-Aware Models

HE-AGCRCNN (Peng et al., 2019) 77.80 51.30
HMCN (Mao et al., 2019) 80.80 54.60
Htrans (Banerjee et al., 2019) 80.51 58.49
HIiLAP-RL (Mao et al., 2019) 83.30 60.10
HiAGM (Zhou et al., 2020) 83.96 63.35
HiMatch 84.73 64.11

Pretrained Language Models
BERT (Devlin et al., 2018) 86.26 67.35
BERT+HiMatch 86.33 68.66

Table 2: The experimental results comparing to other
state-of-the-art models on RCV1-V2 dataset.

Models

Baselines
TextRNN (Zhou et al., 2020)
TextCNN (Zhou et al., 2020) 82.00
TextRCNN (Zhou et al., 2020) 83.55

Hierarchy-Aware Models
HiAGM (Zhou et al., 2020)  85.82
HiMatch 86.20

Pretrained Language Models
BERT (Devlin et al., 2018)  86.26
BERT-+HiMatch 86.70

Micro Macro

77.94 69.65
76.18

76.99

80.28
80.53

80.58
81.06

Table 3: The experimental results comparing to other
state-of-the-art models on Web-of-Science dataset.

Table 2, 3 and 4 report the performance of our
approaches against other methods. HIAGM is an
effective baseline on RCV1-V2 and WOS due to
the introduction of holistic label information. How-
ever, they ignored the semantic relationship be-
tween text and labels. Our model achieves the
best results by capturing the matching relationships
among text and labels in a hierarchy-aware manner,
which achieves stronger performances especially
on Macro-F1. The improvements show that our
model can make better use of structural informa-
tion to help imbalanced HTC classification.

The pretrained language model BERT is an ef-
fective method when fine-tuned on downstream
tasks. Compared with the results regarding HTC
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Frequent Few Zero Overall

R@5 nDCG@5|R@5 nDCG@S5|R@5 nDCG@S5 | R@5 nDCG@5
BIGRU-ATT (Chalkidis et al., 2019) 0.740 0813 [0.596 0.580 |0.051 0.027 [0.675 0.789
BIGRU-LWAN (Chalkidis et al., 2019) 0.755 0.819 [0.661 0.618 [0.029 0.019 [0.692 0.796
ZERO-CNN-LWAN (Chalkidis et al., 2019) [0.683  0.745 [0.494 0.454 ]0321 0264 [0.617 0.717
ZERO-BIGRU-LWAN (Chalkidis et al., 2019) | 0.716  0.780 [0.560 0.510 ]0.438 0.345 [0.648 0.752
AGRU-KAMG (Lu et al., 2020) 0.731 0.795 [0.563 0.518 |0.528 0.414 [0.661 0.766
HiMatch 0.769 0.830 |0.697 0.648 [0.399 0.372 ]0.705 0.807

Table 4: The experimental results comparing to other state-of-the-art models on EURLEX-57K dataset.

as multiple binary classifiers, our results show that
the full use of structured label hierarchy can bring
great improvements to BERT model on RCV1-V2
and WOS datasets.

On EURLEXS57K dataset, our model achieves
the best results on different matrics except for zero-
shot labels. The largest improvements come from
few-shot labels. AGRU-KAMG achieves the best
results on zero-shot labels by fusing various knowl-
edge such as label semantics similarities and label
co-occurrence. However, our model performs se-
mantics matching among seen labels based on train-
ing corpora, which is not designed for a specific
zero-shot learning task.

4.3 Analysis
4.3.1 Ablation Study

In this section, we investigate to study the inde-
pendent effect of each component in our proposed
model. Firstly, we validate the influence of two
proposed losses, and the hierarchy-aware sampling.
The results are reported in Table 5. The results
show that F1 will decrease with removing joint
embedding loss or matching learning loss. Joint
embedding loss has a great influence since label
semantics matching relies on the joint embedding.
Besides, in the hierarchy-aware margin subsection,
we perform hierarchy-aware sampling by sampling
coarse-grained labels, incorrect sibling labels, and
other incorrect labels as negative label sets. When
we remove hierarchy-aware sampling and replace
it with random sampling, the results will decrease,
which shows the effectiveness of hierarchy-aware
sampling.

4.3.2 Hyperparameters Study

To study the influence of the hyperparameters v, c,
and 3, we conduct seven experiments on RCV1-
V2 dataset. The results are reported in Table 6.
The first experiment is the best hyperparameters of
our model. Then we fine-tune the matching learn-
ing margin -y in experiments two and three. We

Ablation Models Micro|Macro
TextRCNN 81.57 | 59.25
HiMatch 84.73 | 64.11
- w/o Joint Embedding Loss 84.49 | 62.57
- w/o Matching Learning Loss | 84.46 | 63.58
- w/o Hierarchy-aware Sampling | 84.67 | 63.45

Table 5: Ablation study on RCV1-V2 dataset.

No.‘ Y ‘ fo' ‘ B H Micro‘Macro
HiMatch
© [02]001]05] 8473 | 64.11
Fine-tuning vy

@ 0.02 | 0.01 | 0.5 84.51 63.26
(©) 2 0.01 | 0.5 84.69 63.55
Fine-tuning o, 3
® 0.2 | 0.5 | 0.01 || 84.52 | 63.35
® 0.2 1 1 84.37 63.45
® 0.2 | 0.01 | 0.01 84.49 63.20
@ 0.2 0.5 0.5 84.47 64.02

Table 6: Hyperparameter study on RCV1-V2 dataset.

find that a proper margin v = 0.2 is beneficial
for matching learning compared with a large or
small margin. Furthermore, we validate the effec-
tiveness of the hierarchy-aware margin. In exper-
iment four, the performance will decrease if we
violate the hierarchical structure by setting a large
penalty margin for coarse-grained labels, and set-
ting a small penalty margin for incorrect sibling
labels. In experiment five, the performance has
a relatively larger decrease if we set « = 1 and
B = 1, which ignores hierarchical structure com-
pletely. We speculate that the penalty margin that
violates the hierarchical structure will affect the
results, since the semantics relationship should be
closer if the labels are closer in the hierarchical
structure. Moreover, we validate the effectiveness
of different penalty margins among different gran-
ular labels. In experiments six and seven, the re-
sults will degrade if we ignore the relationships
between coarse-grained target labels and incorrect
sibling labels, by setting the same margin for o and
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Figure 4: Figure a) is a part of the hierarchical label structure. Figure b) is the T-SNE visualization of text
representations and label representations of the labels in Figure a) by introducing joint embedding loss. Figure c)
is the T-SNE visualization with both joint embedding loss and matching learning loss.
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Figure 5: Performance study on label granularity based
on hierarchical levels.

5. Therefore, it is necessary to set a small penalty
margin for coarse-grained target labels, and a larger
penalty margin for incorrect sibling labels.

4.3.3 T-SNE Visualization of Joint
Embedding

We plot the T-SNE projection of the text repre-
sentations and label representations in the joint
embedding in Figure 4. Figure a) is a part of the hi-
erarchical label structure in RCV1-V2. Label C171
and C172 are fine-grained labels, and label C17 is
coarse-grained label of C171 and C172. GWELF
and E61 are other labels with different semantics
with C17, C171 and C172. In Figure b), by intro-
ducing joint embedding loss, we can see that the
text representations are close to their correspond-
ing label representations. Furthermore, the text
representations of labels C171 and C172 are close
to the label representation of their coarse-grained
label C17. However, the text representations of
different labels may overlap, since the matching
relationships among different labels are ignored. In
Figure c), by introducing both joint embedding loss
and matching learning loss, the text representations
of different labels are more separable. Other unre-
lated text representations and label representations

such as labels GWELF, E61 are far away from C17,
C171, C172. Besides, the text representations of
semantically similar labels (C171 and C172) are
far away relatively compared with Figure b). The
T-SNE visualization shows that our model can cap-
ture the semantics relationship among texts, coarse-
grained labels, fine-grained labels and unrelated
labels.

4.3.4 Performance Study on Label
Granularity

We analyze the performance with different la-
bel granularity based on their hierarchical levels.
We compute level-based Micro-F1 and Macro-F1
scores of the RCV1-V2 dataset on TextRCNN, Hi-
AGM, and our model in Figure 5. On RCV1-V2
dataset, both the second and third hierarchical lev-
els contain fine-grained labels (leaf nodes). The
second level has the largest number of labels and
contains confusing labels with similar concepts, so
its Micro-F1 is relatively low. Both the second and
third levels contain some long-tailed labels, so their
Macro-F1 are relatively low. Figure 5 shows that
our model achieves a better performance than other
models on all levels, especially among deep levels.
The results demonstrate that our model has a better
ability to capture the hierarchical label semantic,
especially on fine-grained labels with a complex
hierarchical structure.

4.3.5 Computational Complexity

In this part, we compare the computational com-
plexity between HIAGM and our model. For time
complexity, the training time of HiMatch is 1.11
times that of HIAGM with batch size 64. For space
complexity during training, HiMatch has 37.4M pa-
rameters, while HTAGM has 27.8M. The increase
mainly comes from the label encoder with large
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label sets. However, during testing, the time and
space complexity of HiMatch is the same as Hi-
AGM. The reason is that only the classification
results are needed, and we can remove the joint
embedding. HiMatch achieves new state-of-the-art
results, and we believe that the increase of compu-
tational complexity is acceptable.

5 Conclusion

Here we present a novel hierarchical text classifica-
tion model called HiMatch that can capture seman-
tic relationships among texts and labels at different
abstraction levels. Instead of treating HTC as mul-
tiple binary classification tasks, we consider the
text-label semantics matching relationship and for-
mulate it as a semantic matching problem. We learn
a joint semantic embedding between text and labels.
Finally, we propose a hierarchy-aware matching
strategy to model different matching relationships
among coarse-grained labels, fine-grained labels
and incorrect labels. In future work, we plan to ex-
tend our model to the zero-shot learning scenario.
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