Are Pre-trained Convolutions Better than Pre-trained Transformers?

Yi Tay
Google Research
Mountain View, California
yitay@google.com

Jai Gupta
Google Research
Mountain View, California
jaiguptal@google.com

Zhen Qin
Google Research
Mountain View, California
zhengin@google.com

Abstract

In the era of pre-trained language models,
Transformers are the de facto choice of model
architectures. ~ While recent research has
shown promise in entirely convolutional, or
CNN, architectures, they have not been ex-
plored using the pre-train-fine-tune paradigm.
In the context of language models, are con-
volutional models competitive to Transform-
ers when pre-trained? This paper investigates
this research question and presents several in-
teresting findings. Across an extensive set of
experiments on 8§ datasets/tasks, we find that
CNN-based pre-trained models are competi-
tive and outperform their Transformer counter-
part in certain scenarios, albeit with caveats.
Overall, the findings outlined in this paper
suggest that conflating pre-training and archi-
tectural advances is misguided and that both
advances should be considered independently.
We believe our research paves the way for a
healthy amount of optimism in alternative ar-
chitectures.

1 Introduction

In the modern era of pre-training, there appears
to be an unbreakable tie between Transformer ar-
chitectures (Vaswani et al., 2017) and pre-trained
language models. Models such as BERT (Devlin
et al., 2018), RoBERTa (Liu et al., 2019), and T5
(Raffel et al., 2019) have all adopted Transformers
as their underlying architecture. As a matter of fact,
there are barely any recent pre-trained models not
based on Transformers.

While the contextual representation learning has
a rich history (Pennington et al., 2014; Dai and Le,
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2015; Chidambaram et al., 2018; Liu et al., 2020;
Qiu et al., 2020), modern pre-trained language mod-
eling started with models like ELMo (Peters et al.,
2018) and CoVE (McCann et al., 2017) which are
based on recurrent (e.g. LSTM (Hochreiter and
Schmidhuber, 1997)) architectures. Although they
were successful, research using these architectures
dwindled as Transformers stole the hearts of the
NLP community, having, possibly implicitly, been
perceived as a unequivocal advancement over its
predecessors.

Recent work demonstrates the promise of en-
tirely convolution-based models (Wu et al., 2019;
Gehring et al., 2017) and questions the necessity of
self-attentive architectures like Transformers. For
example, in (Wu et al., 2019), the proposed convo-
lutional seq2seq models outperform Transformers
on a series of canonical benchmarks such as ma-
chine translation and language modeling. From
these findings emerge a rather natural line of ques-
tioning - should we consider pre-trained models
beyond Transformers?

Despite early success, the relevance of convo-
lutional models in the era of pre-trained language
models remains an open question. To the best of
our knowledge, convolutional architectures have
not yet been rigorously evaluated under the pre-
train-fine-tune paradigm. This is the primary pur-
pose of this work. Concretely, this paper seeks to
empirically validate whether pre-trained convolu-
tions are competitive with pre-trained Transformers
across a range of tasks.

The interaction between pre-training schemes
and model architectures is an under-studied topic.
Are only Transformers able to capitalize on the
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benefits of pre-training? If we use a different ar-
chitectural inductive bias, would there also be a
substantial gain unlocked by pre-training? Are pre-
trained convolutions better in particular scenarios?
This paper investigates these questions.

There are a number of obvious benefits of
convolution-based models. Firstly, convolutions
do not suffer from the quadratic memory complex-
ity of self-attention - a problem significant enough
that it spawned the creation of the entirely new cat-
egory of “efficient” Transformer architectures (Tay
et al., 2020b, 2021). Secondly, convolutions oper-
ate locally and do not rely on positional encodings
as an order signal to the model. That said, convo-
lutions also come with a slew of downsides. For
example, being unable to access global information
means such models are unable to perform a form of
cross-attention across multiple sequences. We dive
into the details of this more in subsequent sections.

In this paper, we present a pre-trained convolu-
tional sequence-to-sequence, or Seq2Seq, model.
We train our convolutional model using span-based
sequence-to-sequence denoising objectives similar
to those employed in TS5 (Raffel et al., 2019). We
evaluate a variety of convolutional variants (e.g., di-
lated, lightweight, dynamic (Wu et al., 2019), etc.)
under both raw (no pre-training) and pre-train-fine-
tune paradigms. Our goal is to understand the true
competitiveness of convolutional architectures in
the era of pre-training.

We show that pre-trained convolutions are com-
petitive against pre-trained Transformers via a
set of experiments on a potpourri of NLP tasks,
like toxicity detection, sentiment classification,
news classification, query understanding and se-
mantic parsing/compositional generalization (Kim
and Linzen, 2020). Moreover, we find that pre-
trained convolutions can outperform, in terms of
model quality and training speed, state-of-the-art
pre-trained Transformers (Raffel et al., 2019) in
certain scenarios. However, to provide a balanced
perspective, we also describe scenarios where pre-
trained convolutions do not perform well and may
be deemed unsuitable.

Contributions Overall, the main contributions
of this paper can be summarized as follows:

e We perform a comprehensive empirical evalu-
ation of convolutional Seq2Seq models under
the pre-train-fine-tune paradigm. To the best
of our knowledge, the competitiveness and

relevance of pre-trained convolutions still re-
mains an open question.

e We make several important observations.
Specifically, we find that (1) pre-training helps
convolutional models just as much as it helps
Transformers, and (2) pre-trained convolu-
tions are competitive alternatives in certain
scenarios in terms of model quality and train-
ing speed.

e We conduct extensive experiments across 8
datasets spanning a diverse range of tasks and
domains. On 7 out of 8 tasks, we find that
pre-trained convolutions outperform a recent
state-of-the-art transformer (T5 (Raffel et al.,
2019)) with and without pre-training. We ex-
amine the speed and operation count (FLOPS)
of convolutions versus Transformers and find
that convolutions are not only faster but also
scale better to longer sequence lengths.

2 Related Work

Pre-training on a large corpus has become the pri-
mary method of learning universal language rep-
resentations to solve different downstream NLP
tasks. The first generation of pre-trained mod-
els aimed at learning embedding for words, like
Skip-Gram (Mikolov et al., 2013) and Glove (Pen-
nington et al., 2014), and quickly developed to
learning contextualized representation for words,
like ELMO (Peters et al., 2018), GPT (Radford
et al., 2018), and BERT (Devlin et al., 2018). This,
however, is not the only axis in which pre-trained
models have evolved.

Different objective functions and various tasks,
both supervised and unsupervised, have been ex-
plored for pre-training. For instance, CoVe (Mc-
Cann et al., 2017) uses machine translation as the
pre-training task, ELMO (Peters et al., 2018) and
GPT (Radford et al., 2018) use language modeling
objectives, BERT (Devlin et al., 2018) uses masked
language modeling, TS5 (Raffel et al., 2019) and
MASS (Song et al., 2019) use Seq2Seq masked
language modeling, and XLNet (Yang et al., 2019)
utilizes permuted language modeling. In addition
to this, BART (Lewis et al., 2019) uses a denois-
ing autoencoder setup during pre-training, where
the model takes a partially corrupted input and is
trained to recover the original, undistorted input.
Some models use a contrastive learning setup dur-
ing pertaining, like replaced token detection, used

4350



by ELECTRA (Clark et al., 2020), and sentence or-
der prediction, used by ALBERT (Lan et al., 2019)
and StructBERT (Wang et al., 2019).

Another axis where pre-trained models in NLP
explored different ideas is model architecture.
ELMO (Peters et al., 2018) and CoVe (McCann
et al., 2017) used LSTMs as the base model. Later,
Transformers (Vaswani et al., 2017) became the
de facto architecture of pre-trained NLP models.
BERT (Devlin et al., 2018), XLNet (Yang et al.,
2019) and RoBERTa (Liu et al., 2019) use the
Transformer encoder, while GPT (Radford et al.,
2018), GPT-2 (Radford et al.), and GPT-3 (Brown
et al., 2020) use the Transformer decoder as the
backbone. Some pre-trained models are also are
based on the encoder-decoder transformer archi-
tecture, like TS (Raffel et al., 2019), MASS (Song
etal., 2019), and BART (Lewis et al., 2019). In this
paper, we investigate another model architecture
variation by studying the power of convolutional
neural network as the backbone of pre-trained mod-
els for NLP.

Convolutions have always been an interesting
choice for sequence modeling and NLP applica-
tions (Kim, 2014; Bai et al., 2018; Kalchbrenner
et al., 2016). Convolutions are lightweight and fast
and have many interesting use-cases, notably for
lightweight classification. In the era when LSTMs
were the workhorses of NLP applications, convolu-
tions were positioned nicely on the pareto frontier
of the compute-performance curve. They are fast
and lightweight, and unlike Transformers, they do
not suffer from quadratic complexity. Our work
is also well-aligned with the resurgence of interest
in convolutions where (Wu et al., 2019) showed
that convolutions can outperform self-attention on
several sequence transduction tasks. Moreover,
the necessity of the self-attention inductive bias
in transformers have been also a subject of recent
interest. Synthesizer models (Tay et al., 2020a)
showed that transformers can still do pretty well
without token-token dot product self-attention and
a random attention matrix can perform competi-
tively on certain tasks.

3 Pre-Trained Convolution Models

This section describes the pre-trained Convolution
Model. For most of our experiments, we adopt
depthwise separable convolutions (Kaiser et al.,
2017, Sifre and Mallat, 2014; Chollet, 2017) which
have shown to be fast and efficient variants of the

standard convolution.

3.1 Lightweight Depthwise Convolution

This section introduces Lightweight Depthwise
Convolutions (Wu et al., 2019) which forms the
backbone of our pre-trained convolution model.

3.1.1 Depthwise convolutions

Depthwise convolutions convolve independently
over every channel. Given an input tensor X
of dimensions n X d, the depthwise convolution,
D(X,W,_.,i,c) is defined as:

k

Oic = Z; Weg - Xigjprppre (D
§—

where W € R%** are the learnable parameters
of the layer. O; . is the output at position ¢ and
channel c. The overall output is a tensor of n X d
of identical shape as the input.

3.1.2 Lightweight Convolutions

L(.) are depthwise separable convolutions with (1)
softmax-normalized kernels and (2) shared output
channels and weight tying. Specifically, this is
written as:

)

k
Of, =) softmax(We;) - X, isag),é ()
j—1

where ¢ = %.

In short, parameters are shared
every % output channels. When H = 1, this is

equivalent to sharing all the weights of all channels.

3.1.3 Dynamic Convolutions

Dynamic Convolutions Dy (.) are a new form of
lightweight convolutions introduced by (Wu et al.,
2019). The key idea is to learn position-specific
kernels for performing lightweight convolutions.
This can be written as:

DY = L(Xa f(Xi)h,:a 7;) C)a (3)

where f(.) is a linear transformation with param-
eters WO € R >**xd that learns a position depen-
dent kernel.

3.2 Span-based Seq2Seq pre-training

We adopt span-based sequence-to-sequence pre-
training as per (Raffel et al., 2019). Specifically,
given an input sequence, we randomly mask spans
of lengths L and replace them with a special sen-
tinel token. The pre-training task is then to generate
the masked tokens as targets. For example: Inputs:
The happy cat sat [mask]. and Outputs: on the mat.
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3.2.1 Convolutional Seq2Seq Architecture

We implement a Seq2Seq (Sutskever et al., 2014)
architecture similar to (Wu et al., 2019). The key
difference when compared with Transformer archi-
tectures is that we replace the multi-headed self-
attention with convolutional blocks. Instead of
query-key-value transforms, we use gated linear
unit projections following (Wu et al., 2019). Each
convolution block be written as:

X! =wIX © sigmoid(W9X),
X? = ConvBlock(X1!),
X3 =WwO(x?),

where W1, W WO are trainable parameters. We
experiment with simple lightweight convolutions,
dynamic convolutions and dilated convolutions
in our experiments. Following (Wu et al., 2019;
Gehring et al., 2017), the encoder-decoder atten-
tion remains untouched. The convention follows
the backbone Transformer model in which we wrap
each submodule with layer normalization and resid-
ual connectors. Hence, each Conv block is written
as:

X 4 = LayerNorm(Conv (X)) + X,
Xp = LayerNorm(FFN(X 4) + X 4,

where Conv is any of the convolution models that
we explore in our experiments. FFN(.) is a two
layer feed-forward network with ReLU activations
in the middle.

3.2.2 Optimization

The model optimizes the token-wise cross-entropy
loss and is trained with teacher forcing.

L n

L= log(n}) + (1 —y)log(1 - ),

t=1 i=1

where 7! is the prediction of class 4 at time step
t and y! is the ground truth label of the class 7 at
time step .

4 Research Questions and Discussion

Before we delve into our experiments, we establish
a set of research questions and agenda we hope this
work aims to bring clarity to.

e RQ1: Do convolutions benefit from pre-
training as much as Transformers?

e RQ2: Are convolutional models, pre-trained
or otherwise, competitive with Transformer
models? When do they perform well?

e RQ3: What are the benefits (if any) of us-
ing pre-trained convolution models over pre-
trained Transformers? Are convolutions faster
alternatives to self-attention based Transform-
ers?

o RQ4: What are the failure modes, caveats and
reasons to not use pre-trained convolutions?

e RQ5: Are certain convolution variants better
than others?

5 Experiments and Analysis

This section presents our analysis and results.

5.1 Datasets

Our evaluation is based on the following datasets
and tasks.

o Toxicity Detection - We use the CIVIL COM-
MENTS (Borkan et al., 2019) and WIKI TOXIC
SUBTYPES dataset (Wulczyn et al., 2017).
Given a piece of short text (originating from
social media or wikipedia), the goal is to de-
termine if the content is toxic, i.e., a binary
classification task. For this task, we evaluate
on both accuracy and F1 score.

o Sentiment Classification - This is a binary
classification task that determines the polarity
of documents, sentences and/or tweets. We
use the IMDD reviews dataset (Maas et al.,
2011), Stanford Sentiment Treebank (SST-
2) (Socher et al., 2013) dataset, along with
Twitter Sentiment140 (S140) (Go et al., 2009)
dataset.

e News Classification - This is a task of topic
categorization for news articles. We use the
AGNews dataset (Zhang et al., 2015). This is
a four-way classification task.

e Question Classification We use the TREC
fine-grained question classification dataset (Li
and Roth, 2002). This task involves classi-
fying questions into 46 fine-grained question
categories.

e Semantic Parsing / Compositional Gener-
alization Compositional generalization is the
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ability of models to generalize composition-
ally outside of the training distribution. To
be specific, it needs be able to handle unseen
combinations at test time. For this task, we use
the COGS dataset (Kim and Linzen, 2020), a
task of generating semantic representation of
a given English sentence. For example, A cat
smiled — cat(z1) AND smile.agent(x2, x1).

All of the datasets, with the exception of the re-
cent COGS dataset (Kim and Linzen, 2020), are
Tensorflow datasets!.

For each dataset, we evaluate all models with
and without pre-training (details in subsequent sec-
tions). Table 1 reports the statistics of the datasets
used in this paper.

Dataset / Task # Train # Test # Class
Civil Comments | 3,820,210 205,781 2
Wiki Toxicity 561,808 234,564 2
IMDb 25,000 25,000 2
SST-2 67,000 1,800 2
S140 1,600,000 359 2
TREC 4,500 500 46
AGNews 120,000 7,600 4

COGS 24,000 3000 N/A

Table 1: Statistics of datasets used in our experiments.
Datasets are diverse in terms of domains, tasks and
amount of labeled data.

5.2 Experimental Setup

This section describes our experimental setup.

5.2.1 Models

Our models are largely based on sequence to se-
quence models, a paradigm that has demonstrated
great success made evident by models such as
BART (Lewis et al., 2019) and T5(Raffel et al.,
2019). We implement our models in Mesh Ten-
sorflow (MTF) (Shazeer et al., 2018), a library
for distributed and efficient parallel model train-
ing that has similar API to Tensorflow. We train
models that are of base size, which corresponds to
12 layers each in the encoder and decoder, along
with 3072 dimensions for the feed-forward layers,
a model dimension of 768 and a total of 12 heads.
Our Transformer models are largely based on T5
(Raffel et al., 2019), which is considered the cur-
rent state-of-the-art Transformer model for NLP
tasks and hence serves as a strong baseline. For the
convolution models, our lightweight convolution

'https://www.tensorflow.org/datasets/
catalog/overview.

and dynamic convolution models have a window
size? of 7 across all layers, the number of unique
depth filters is 2. For dilated models, we use a filter
size of [4,4,7,7,15,15,15,15, 31, 31, 31] for our
12 layer convolution model.

5.2.2 Pre-training

We pre-train both our convolutional and Trans-
former models for 524K steps with a batch size
of 128. Given the input sequence length of 512,
this corresponds to 65536 tokens per batch. For
pre-training, we use the Colossal Cleaned Com-
monCrawl Corpus (C4) (Raffel et al., 2019) dataset
which has demonstrated impressive results on
downstream tasks. We use the span based seq2seq
objective as the pre-training objective as mentioned
in earlier sections. The span size is set to 3 and
a corruption rate of 15% is adopted. We use the
Adafactor optimizer (Shazeer and Stern, 2018) with
an inverse square root learning rate scheduler. Each
pre-training run is performed using 16 TPU-v3
chips and takes approximately 12 hours to com-
plete for models of base size.

5.2.3 Downstream Fine-tuning

We fine-tune the pre-trained models using the
following set of hyperparameters: We use a
constant learning rate which is tuned amongst
{0.001, 0.0005, 0.0001}. The batch size is gener-
ally set to 64 but occasionally set to 32 for smaller
datasets. Intuitively, sequence length is task de-
pendent but generally approximately the 90th per-
centile for each task. We fine-tune for a maximum
of 100K steps and report peak validation perfor-
mance. Fine-tuning uses the same Adafactor opti-
mizer as during training. We perform fine-tuning
on similar hardware, i.e., typically 16 TPUv3 chips
are used per fine-tuning job.

5.3 Experimental Results

This section describes our experimental setup and
results.

5.4 Results on Toxicity Detection

Table 2 reports results on toxicity detection. On
both toxicity detection datasets the pre-trained and
no-pre-training (raw) setup, the best models are the
dilated convolution models and the dynamic con-
volution models. In fact, all convolutional models

2We believe that tuning the hyperparameters of the convo-

lution models can result in even better performance. However,
we decided to keep these hyperparameters simple for the start.
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outperform Transformers on both CivilComments
and WikiToxic. Before pre-training, convolutions
outperform Transformers by approximately 1.5 ab-
solute percentage points. The gap narrows after pre-
training where Transformers see a better gain (e.g.,
+5.1% against +4.3%) from pre-training over con-
volutions on the CivilComments dataset. However,
the converse is true on WikiToxic - the only case of
performance degradation after pre-training. Over-
all, on this task, convolutions are competitive to
Transformers and outperform them.

5.5 Results on Sentiment Classification

Results on Sentiment Classification (IMDb, SST-2
and S140) can be found in Table 2. On the IMDb re-
views dataset, the best non-pre-trained model is the
lightweight convolution model, outperforming the
Transformer model. The best pre-trained model is
the Transformer model. However, all convolutional
models come in close with less than a percentage
point gap difference with pre-trained Transformers.
On the SST-2 and S140 tasks, we observe that the
best models are convolution-based, regardless of
whether the model is pre-trained or not.

5.6 Results on Question Classification

The best non-pre-trained model is the Lightweight
Convolution model. For pre-trained models, con-
volutional models also outperform the pre-trained
Transformer. On this task, while most models ben-
efit significantly from pre-training, Transformers
seem to benefit slightly more from pre-training.

5.7 Results on News Classification

Results on news classification seems to follow sim-
ilar trends as other benchmarks. Convolutional
models outperform Transformers both in non-pre-
trained and pre-trained setups. The highest gain
from pre-training is obtained from the dilated con-
volution model.

5.8 Results on Compositional Generalization
Challenge and Semantic Parsing

We conduct additional experiments on semantic
parsing and compositional generalization. The task
is framed as a sequence generation task. We use the
recently proposed (Kim and Linzen, 2020) dataset.
On the in-distribution test set, Transformers and
convolutions have identical performance (95%).
On the generalization or out of distribution set,
Transformers perform at 77.5% while convolutions

come in at 76.9. While convolutions do not ex-
actly outperform Transformers, they come in close
enough to be considered competitive.

5.9 Summary of Results

On the seven tasks across a broad range of do-
mains we find that (1) non-pre-trained convolutions
are competitive and frequently outperform non-pre-
trained Transformers, (2) pre-trained convolutions
outperform pre-trained Transformers on six out of
seven tasks. This answers RQ2.

We also find that convolutions are able to ben-
efit from pre-training, in a similar fashion to
self-attention-based models. Hence, the benefits
achieved by pre-training are not exclusive to Trans-
former models. This answers RQ1.

Amongst the pre-trained convolutional models,
we find that dilated convolutions and dynamic con-
volutions are generally better than lightweight con-
volutions, thus answering RQS.

Finally, we observe that relative performance
(i.e., rankings) do change with pre-training. This
definitely shows that there is some kind of effect
from composing architectures with pre-training.
The direct implication of this effect is that a model
that performs well (relatively) without pre-training
will not necessarily perform the best when pre-
trained (and vice versa). Hence, aside from conflat-
ing architectures with pre-training schemes, we do
also need to take note that different architectures
may behave differently under pre-training.

6 Discussion and Analysis

This section expands on the results via a detailed
analysis and discussion. We discuss the pros/cons
of pretrained convolutions, the impact of pre-
training on performance and also recommendations
to the broader community.

6.1 When do we expect pre-trained
convolutions to fail?

In our experimental section, we observed the po-
tential upsides of convolutional models over well-
established pre-trained Transformers and observe
that we are able to get quality improvements in
certain cases. However, it might be good to further
understand the drawbacks of convolutions.

One obvious weakness of pre-trained convolu-
tions are their lack of cross-attention inductive
bias that comes for free with self-attention in the
Transformer encoder. For this reason, it is not a
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CIVILCOMMENT WIKITOXIC IMDb SST-2 S140 TREC News

Model | Acc F1 Acc F1 Acc Acc Acc Acc Acc
No pre-training
Trans. | 77.22 85.09 91.93 95.45 84.81 78.44 58.84 78.00 84.25
Light | 78.58 85.82 91.05 94.65 85.88 81.65 60.64 82.20 87.22
Dilat. | 79.94 86.50 92.29 9491 85.84 79.01 55.62 79.60 81.24
Dyna. | 78.49 84.71 90.06 95.66  85.69 82.80 60.84 80.20 85.13
With pre-training
Trans. | 81.16 86.56 91.46 95.12 94.16 92.09 61.65 93.60 93.54
Light | 81.47 87.58 93.61 9648  93.60 92.20 61.65 93.60 93.63
Dilat. | 81.67 87.78 93.84 96.21 93.92 92.09 62.85 94.20 93.26
Dyna. | 81.83 87.71 93.76  96.53  93.35 91.59 62.45 92.40 93.93
Gain from pre-training

Trans. | +5.1% +1.7% -0.6% -04% +11.0% +174% +4.7% +20.0% +11.0%
Light | +3.7% +2.1% +28% +19% +9.0% +13.0% +1.7% +14.0% +7.3%
Dilat. | +2.1% +1.5% +1.7% +14% +9.4% +17.0% +13.0% +18.0% +14.8%
Dyn. | +43% +3.5% +4.1% +1.0% +89% +10.6% +2.6% +152% +10.4%

Table 2: Comparison of pre-trained Convolutions and pre-trained Transformers on toxicity detection, sentiment
classification, question classification and news classification. All models have approximately 230M parameters
and are 12 layered seq2seq architectures. Our findings show that convolutions (1) also benefit from pretraining and
(2) are consistently competitive to transformer models with and without pretraining.

good idea to use pre-trained convolutions for tasks
that requires modeling the relationship between
two or more sequences. To verify this, we run ex-
periments on SQuUAD and MultiNLI and find that
convolutions do not come close to Transformers
just because of this missing inductive bias. This
should be clearly distinguished when examining
and evaluating models, as how the early SNLI
leaderboard® distinguished between models that
used cross-attention and models that did not.

Our initial evaluations on benchmarks like
SQuAD/MNLI (Rajpurkar et al., 2016; Williams
et al., 2017) showed that pre-trained convolutions
are indeed significantly lackluster. For exam-
ple, convolutions only achieve ~ 75% accuracy
on MultiNLI, while transformers easily achieve
~ 84% accuracy. Likewise, while transformers
achieve about ~ 90% F1 on SQuAd, convolutions
come in around ~ 70%. This is entirely expected
because there is no way the premise/question can
interact with the hypothesis/context. (RQ4). How-
ever, our experiments show that this was only
because they lack this cross-attention property.
When we augment convolutions with a single layer
of cross attention at the encoder, we find that
pre-trained convolutions come close (a delta of

*https://nlp.stanford.edu/projects/
snli/

(=~ 1%)) to pre-trained Transformers on datasets
such as MultiNLI (Williams et al., 2017), achieving
about ~ 83% accuracy.

That said, we leave it to the practitioner to decide
whether the cross-attention inductive bias is actu-
ally important for the problem at hand. We also like
to emphasize that the pattern of concatenating sen-
tence pairs is not necessary practical when scaling
up since this requires inference on every permuta-
tion of sentence pairs. For this reason, dual encoder
setups that do fast embedding space look-ups are
more practical and feasible in practice (Guo et al.,
2020). Given the strong performance of convolu-
tions in a series of encoding tasks, we can expect
pre-trained convolutions to do well in a dual en-
coder setup.

6.2 What are the benefits of pre-trained
convolutions over Transformers?

We observed a reasonable quality improvement
from using convolutions over Transformers. This
section discusses the additional benefit.

6.2.1 Convolutions are faster and scale better
to long sequences

Figure 1 reports training speed of convolution
(LightConvs) versus transformers on a sequence
to sequence task. The input lengths are varied
from {64,128, 256,512,1024,2048,4096}. We
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Figure 1: Effect of sequence length on processing
speed (examples per second) on a seq2seq masked lan-
guage modeling task. Results are benchmarked on 16
TPUV3 chips on C4 pre-training. Results are in log
scale.

show that convolutions are not only consistently
faster (even at shorter sequences) but scale bet-
ter than transformers. Convolution scales linearly
while transformers are not able to scale to longer
sequences.

6.2.2 Convolutions are FLOPs efficient

We measure the number of FLOPs of convolutions
versus transformers as we increase the sequence
length. Figure 2 shows the phenomenon while
varying sequence length. In general, across all
sequence lengths, convolutions are more efficient
in the number of floating point operations.

''''''' convolution
""""" transformer

Num operations
S
X
o
S

,,,,,,,,,,,,,,,,,

64 128 256 SequenSclEZIength 1024 2048 4096
Figure 2: Effect of sequence length on number of
FLOPs (einsum ops) on a seq2seq masked language
modeling task. Results are benchmarked on 16 TPUv3
chips on C4 pre-training. Results are in log scale.

The overall findings that convolutions are faster
both in wall clock time and in FLOPs answers RQ3.

Moreover, we find that the FLOP efficiency of con-
volutions scales better across sequence lengths.

6.3 Are we suggesting to completely replace
Transformers with convolution?

While Transformers have dominated the research
landscape in NLP, this paper suggests that there
are commonly overlooked benefits to convolutions
such as model quality, speed, FLOPs and scalabil-
ity. Moreover, it is previously unknown to whether
convolutions benefit from pre-training. In this pa-
per, we showed that they are competitive on some
tasks and also benefit from pre-training in simi-
lar fashion to transformer models. However, on
the flip side, we also highlighted that they are un-
able to handle tasks that require cross-attention or
when there is a need to model > 1 sentence or
documents within the same sequence. We believe
that practitioners have good options and it might
be worthwhile to explore architectures outside the
well-established transformer models.

6.4 On not conflating pre-training with
architectural advances

In this paper, we showed that three other
(convolutional-based) architectures (e.g.,
lightweight, dymamic and dilated) also ben-
efit from pre-training to the same extent as
transformer models.

In the current research landscape, pre-training
has always be tightly coupled and associated with
transformers architectures. As a result, the success
of BERT, transformers and large language models
seem to be pretty conflated. While it is true that,
to this date, the only model that large-scale pre-
training has been applied to are transformer mod-
els, we believe there might be potential in other
architectures.

Based on our empirical findings, we believe
there is still significant room for the improving
the understanding of the compositional effects of
architecture and pre-training. Hence, we believe
that the impact of this work extends beyond show-
ing the competitiveness of convolution models in
NLP. More concretely, the take home message is
that there should be a healthy level of optimism in
exploring architectural alternatives.

7 Conclusion

In this paper, we conducted an extensive study of
the viability and feasibility of pre-trained convolu-
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tions. Our experimental results show that convo-
lutions can outperform Transformers in both pre-
train and non-pre-trained setups. Our extensive
experiments across 8 datasets spanning a diverse
range of tasks, show that convolutions are able
to benefit from pre-training to the same (or some-
times greater) extent than Transformers. While
pre-trained transformers are the de-facto choice of
architecture, our results show that they might not
be the best in certain scenarios. Additionally, we
discussed the caveats, trade-offs pertaining with
runtime, scalability, number of FLOPS and model
quality. Finally, we discussed the situations or data
types that convolutions are not well equipped to
handle and make an empirically informed recom-
mendation for practitioners.
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