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Abstract

Although parsing to Abstract Meaning Rep-
resentation (AMR) has become very popu-
lar and AMR has been shown effective on
many sentence-level tasks, little work has stud-
ied how to generate AMRs that can repre-
sent multi-sentence information. We introduce
the first end-to-end AMR coreference resolu-
tion model in order to build multi-sentence
AMRs. Compared with the previous pipeline
and rule-based approaches, our model allevi-
ates error propagation and it is more robust for
both in-domain and out-domain situations. Be-
sides, the document-level AMRs obtained by
our model can significantly improve over the
AMRs generated by a rule-based method (Liu
et al., 2015) on text summarization.

1 Introduction

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a semantic formalism for
natural language understanding. It represents a
sentence as a rooted, directed and acyclic graph,
where nodes (e.g., “Bill” in Figure 1) represents
concepts and edges (e.g., “:arg0”) are the seman-
tic relations. Encompassing knowledge of named
entities, semantic roles and coreference structures,
AMR has been proven effective for downstream
tasks, including information extraction (Rao et al.,
2017), text summarization (Liu et al., 2015; Hardy
and Vlachos, 2018; Liao et al., 2018), paraphrase
detection (Issa Alaa Aldine et al., 2018), event de-
tection (Li et al., 2015), machine translation (Song
et al., 2019b) and dialogue understanding (Bonial
et al., 2020).

Existing work on AMR mainly focuses on in-
dividual sentences (Lyu and Titov, 2018; Naseem
et al., 2019; Ge et al., 2019; Zhang et al., 2019;
Cai and Lam, 2020a; Zhou et al., 2020). On the
other hand, with the advance of neural networks
in NLP, tasks involving multiple sentences with
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Figure 1: Multi-sentence AMR example, where nodes
with the same non-black color are coreferential and the
dotted ellipse represents an implicit role coreference.

cross-sentence reasoning (e.g., text summarization,
reading comprehension and dialogue response gen-
eration) have received increasing research atten-
tion. Given the effectiveness of AMR on sentence-
level tasks (Pan et al., 2015; Rao et al., 2017; Issa
Alaa Aldine et al., 2018; Song et al., 2019b), it is
important to extend sentence-level AMRs into the
multi-sentence level. To this end, a prerequisite
step is AMR coreference resolution, which aims
to find the AMR components referring to the same
entity. Figure 1 shows the AMR graphs of two
consecutive sentences in a document. An AMR
coreference resolution model need to identify two
coreference cases: “he” refers to “Bill” in the first
graph, and “arrive-01” omits an argument “:arg3”
that refers to “Paris”.

Relatively little research has been done on AMR
coreference resolution. Initial attempts (Liu et al.,
2015) merge the nodes that have the same surface
string. To minimize noise, only named entities
and date entities are considered, and they do not
consider merging non-identical nodes (e.g., “Bill”
and “he” in Figure 1) that are also frequent in real-
life situation. Subsequent work considers more
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co-reference cases by either manually annotating
AMR coreference information (O’Gorman et al.,
2018) or taking a pipeline system (Anikina et al.,
2020) consisting of a textual coreference resolu-
tion model (Lee et al., 2018) and an AMR-to-text
aligner (Flanigan et al., 2014). Yet there is little
research on automatically resolving coreference
ambiguities directly on AMR, making use of AMR
graph-structural features.

In this work, we formulate AMR coreference res-
olution as a missing-link prediction problem over
AMR graphs, where the input consists of multiple
sentence-level AMRs, and the goal is to recover
the missing coreference links connecting the AMR
nodes that represent to the same entity. There are
two types of links. The first type corresponds to
the standard situation, where the edge connects
two entity nodes (e.g., “Bill” and “he” in Figure
1) that refer to the same entity. The second type
is the implicit role coreference, where one node
(e.g., “Paris” in Figure 1) is a dropped argument
(“:arg3”) of other predicate node (“arrive-01”).

We propose an AMR coreference resolution
model by extending an end-to-end text-based coref-
erence resolution model (Lee et al., 2017). In par-
ticular, we use a graph neural network to represent
input AMRs for inducing expressive features. To
enable cross-sentence information exchange, we
make connections between sentence-level AMRs
by linking their root nodes. Besides, we intro-
duce a concept identification module to distinguish
functional graph nodes (non-concept nodes, e.g.,
“person” in Figure 1), entity nodes (e.g., “Bill”),
verbal nodes with implicit role (e.g., “arrive-01”)
and other regular nodes (e.g., “leave-11”) to help
improve the performance. The final antecedent pre-
diction is conducted between the selected nodes
and all their possible antecedent candidates, follow-
ing previous work on textual coreference resolution
(Lee et al., 2017).

Experiments on the MS-AMR benchmark1

(O’Gorman et al., 2018) show that our model out-
performs competitive baselines by a large margin.
To verify the effectiveness and generalization of
our proposed model, we annotate an out-of-domain
test set over the gold AMR Little Prince 3.0 data
following the guidelines of O’Gorman et al. (2018),
and the corresponding results show that our model
is consistently more robust than the baselines in
domain-transfer scenarios. Finally, results on docu-

1It consists gold coreference links on gold AMRs.

ment abstractive summarization show that our doc-
ument AMRs lead to much better summary qual-
ity compared to the document AMRs by Liu et al.
(2015). This further verifies the practical value of
our approach. Our code and data is available at
https://github.com/Sean-Blank/AMRcoref

2 Model

Formally, an input instance of AMR corefer-
ence resolution consists of multiple sentence-level
AMRs G1, G2, ..., Gn, where each Gi can be writ-
ten as Gi = 〈Vi, Ei〉 with Vi and Ei represent-
ing the corresponding nodes and edges for Gi.
We consider a document-level AMR graph Ĝ =
[G1, G2, ..., Gn; ê1, ê2, ..., êm], where each êi is a
coreference link connecting two nodes from dif-
ferent sentence-level AMRs. The task of AMR
coreference resolution aims to recover ê1, ..., êm,
which are missing from the inputs. Figure 2 shows
the architecture of our model, which consists of a
graph encoder (§ 2.1), a concept identifier (§ 2.2),
and an antecedent prediction module (§ 2.3).

2.1 Representing Input AMRs using GRN

Given sentence-level AMRs G1, ..., Gn as the in-
put, randomly initialized word embeddings are
adopted to represent each node vk as a dense vector
ek. To alleviate data sparsity and to obtain better
node representation, character embeddings echark

are computed by using a character-level CNN. We
concatenate both ek and echark embeddings for each
concept before using a linear projection to form the
initial representation:

xk = W node([ek; e
char
k ]) + bnode, (1)

where W node and bnode are model parameters.
To enable global information exchange across

different sentence-level AMRs, we construct a draft
document-level graph by connecting the root nodes
of each AMR subgraph as shown in Figure 2. This
is important because AMR coreference resolution
involves cross-sentence reasoning. We then adopt
Graph Recurrent Network (GRN, Song et al., 2018;
Zhang et al., 2018; Beck et al., 2018) to obtain
rich document-level node representations. GRN is
one type of graph neural network that iteratively
updates its node representations with the message
passing framework (Scarselli et al., 2009). Com-
pared with alternatives such as Graph Convolu-
tional Network (GCN, Kipf and Welling 2017;

https://github.com/Sean-Blank/AMRcoref
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Figure 2: Model framework for end-to-end AMR coreference resolution.

Bastings et al. 2017) and Graph Attention Net-
work (GAT, Veličković et al. 2018), GRN has been
shown to give competitive results.

Message passing In the message passing frame-
work, a node vk receives information from its di-
rectly connected neighbor nodes at each layer l.
We use a hidden state vector hlk to represent each
node, and the initial state h0

k is defined as a vector
of zeros.

In the first step at each message passing layer,
the concept representation of each neighbor of vk is
combined with the corresponding edge representa-
tion to make a message xk,j . This is because edges
contain semantic information that are important for
learning global representation and subsequent rea-
soning. Formally, a neighbor vj of node vk can be
represented as

xk,j = W node([ej ; e
char
j ; elabelk,j ]) + bnode, (2)

where elabelk,j denotes the label embedding of the
edge from node vk and to vj .

Next, representations of neighboring nodes from
the incoming and outgoing directions are aggre-
gated:

xink =
∑

i∈Nin(k)

xli,k

xoutk =
∑

j∈Nout(k)

xlk,j

xlk = [xink ,x
out
k ],

(3)

where Nin(k) and Nout(k) denote the set of in-
coming and outgoing neighbors of vk, respectively.

Similarly, the hidden states from incoming and out-
going neighbors are also summed up:

min
k =

∑
i∈Nin(k)

hl−1i

mout
k =

∑
j∈Nout(k)

hl−1j

ml
k = [min

k ,m
out
k ],

(4)

where hl−1j denotes the hidden state vector for node
vj at the previous (l−1) layer. Finally, the message
passing from layer l − 1 to l is conducted follow-
ing the gated operations of LSTM (Hochreiter and
Schmidhuber, 1997):

ilk = σ(Wm
i ml

k +W x
i x

l
k + bi)

olk = σ(Wm
o ml

k +W x
o x

l
k + bo)

f lk = σ(Wm
f ml

k +W x
f x

l
k + bf )

ulk = σ(Wm
u ml

k +W x
ux

l
k + bu)

clk = f lk � cl−1k + ilk � ulk

hlk = olk � tanh(clk),

(5)

where ilk, olk and f lk are a set of input, output and
forget gates to control information flow from differ-
ent sources, ulk represents the input messages, clk
is the cell vector to record memory, and c0k is also
initialized as a vector of zeros. Wm

z , W x
z and bz

(z ∈ {i, o, f, u}) are model parameters. We adopt
L GRN layers in total, where L is determined by a
development experiment. The output hLk at layer
L is adopted as the representation of each node vk
for subsequent procedures.
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2.2 Concept Identification
Concept identification aims to distinguish the AMR
nodes in regard to its concept type. We consider 6
concept types T = {func, ent, ver0, ver1, ver2, reg},
which denotes the functional nodes, entity concepts,
verbal concepts verx with implicit arguments (i.e.,
“:argx” x ∈ {0, 1, 2}2) and other regular nodes
(e.g., “leave-11”), respectively. This module is
comparable to the mention detection procedure in
textual coreference resolution (Lee et al., 2017).

Formally, a concept representation hLk from the
top GRN layer is concatenated with a learnable
type embedding etypek (t) of type t for each concept
vk, and the corresponding type score sktype(t) is
computed using a feed-forward network:

sktype(t) = FFNNtype(W
type[hLk ; e

type
k (t)]), (6)

where W type is a mapping matrix. etypek (t) repre-
sents a concept-type embedding and is randomly
initialized. A probability distribution P (t|vk) over
all concept types T for each concept vk is calcu-
lated as follows using a softmax layer:

P (t|vk) =
es
k
type(t)∑

t′∈T e
sktype(t

′ )
. (7)

Finally, we predicate the type t∗k for each concept

t∗k = argmaxt∈T sktype(t), (8)

and use it to filter the input nodes. In particular,
functional concepts are dropped directly and the
other concepts (i.e., ent, ver0, ver1, ver2, reg) are
selected as candidate nodes for antecedent predic-
tion.

2.3 Antecedent Prediction
Given a selected node vk by the concept identifier,
the goal is to predict its antecedent yk from all
possible candidate nodes Yk = {ε, yπ, ..., yk−1},
where a dummy antecedent ε is adopted for the
nodes that are not coreferent with any previous con-
cepts. π = min(1, k − ψ), where ψ represents the
maximum antecedents considered as candidates.
As mentioned by previous work on textual coref-
erence resolution (Lee et al., 2017), considering
too many candidates can hurt the final performance.
We conduct development experiments to decide
the best ψ. The finally predicted coreference links
implicitly determine the coreference clusters.

2We do not model other :argx to avoid long tail issue.

Type information in § 2.2 can help to guide the
antecedent prediction and ensure global type con-
sistency. We combine the node hidden vector and
its type representation as the final concept state:

hmk = [hLk ; e
type
k (t∗)], (9)

where etypek (t∗) denotes the learned embedding of
the concept type of node vk.

Similar with Lee et al. (2017), the goal of the
antecedent prediction module is to learn a distribu-
tion Q(yk) over the antecedents for each node vk:

Q(yk) =
es(k,yk)∑

y′∈Y(k) e
s(k,y′)

(10)

where s(k, a) computes a coreference link score
for each concept pair (vk, va):

s(k, a) = sm(k) + sm(a) + san(k, a). (11)

Here a < k, and sm(k) means whether concept
vk is a mention involved in a coreference link. It is
calculated by using a feed-forward network:

sm(k) = FFNNm(h
m
k ). (12)

san(k, a) indicates whether mention va is an an-
tecedent of vk and measures the semantic similarity
between vk and va, computed with rich features us-
ing a feed-forward network:

san(k, a) = FFNNan([h
m
k ,h

m
a ,h

m
k ◦hma , φ(k, a)])

(13)
where ◦ denotes element-wise multiplication of
each mention pair (vk, va), and a feature vector
φ(k, a) represents the normalized distance between
two mentions and the speaker information if avail-
able. Following Lee et al. (2017), we also nor-
malize the distance values by grouping them into
the following buckets [1, 2, 3, 4, 5-7, 8-15, 16-31,
32-63, 64+]. All features (speaker, distance, con-
cept type) are randomly initialized 32-dimensional
embeddings jointly learned with the model.

2.4 Training
Our objective function takes two parts: Ltype(θ)
(i.e., the concept-type identification loss), and
Lantecedent (i.e., the antecedent prediction loss)

L(θ) = Ltype(θ) + λLantecedent(θ), (14)

where λ is the weight coefficient (we empirically
set λ = 0.1 in this paper).
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Data (portion) #Doc #AMR #Links #Nodes
MS-AMR (Train) 273 7705 12003 86704
MS-AMR (Dev) 9 121 216 1599
MS-AMR (Test) 9 201 404 2745
LP (Test) 6 282 463 2333

Table 1: Statistics of MS-AMR (first group) and our
annotated out-of-domain test data based on LP corpus.

Concept Identification Loss. Ltype measures
whether our model can accurately identify mean-
ingful concepts and learn the correct type rep-
resentations. Specifically, given the concept set
V = {v1, ...vN}, the concept identifier is trained
to minimize an average cross-entropy loss:

Ltype(θ) = −
1

N

N∑
k=1

logP (t∗k|vk), (15)

where θ are the set of model parameters, P (t∗k|vk)
denotes the output probability of predicted type t∗k
for each node vk as in Eq. 7.
Antecedent Prediction Loss. Given a training
AMR document with gold coreference clusters
GOLD(k)|Nk=1 and antecedent candidates Yk =
{ε, yπ, ..., yk−1} for mention vk, Lantecedent mea-
sures whether mentions are linked to their correct
antecedent. Since the antecedents are latent, the
antecedent loss is a marginal log-likelihood of all
correct antecedents implied by gold clustering:

Lantecedent(θ) =
N∏
k=1

∑
y∈Yk∩GOLD(k)

logQ(y)

(16)

where GOLD(k) = ε if mention vk does not be-
long to any gold cluster. Q(y) is calculated using
Eq. 10.

3 Experiments

We conduct experiments on the MS-AMR dataset3

(O’Gorman et al., 2018), which is annotated over a
previous gold AMR corpus (LDC2017T10). It has
293 annotated documents in total with an average
of 27.4 AMRs per document, covering roughly
10% of the total AMR corpus. We split a dev data
with the same size as the test set from the training
set.

Following the annotation guidelines of MS-
AMR, we manually annotate the AMR coreference

3The MS-AMR dataset considers 3 types of coreference
links: regular, implicit and part-whole. We ignore the last
type, which has been challenging and ignored since textual
coreference resolution.

resolution information over the development and
test data of the Little Prince (LP) AMR corpus4

and use it as an out-of-domain test set. For this
dataset, we consider each chapter as a document.
The data statistics are shown in Table 1.

3.1 Setup
Evaluation Metrics We use the standard evalua-
tion metrics for coreference resolution evaluation,
computed using the official CoNLL-2012 evalua-
tion toolkit. Three measures include: MUC (Vilain
et al., 1995), B3 (Bagga and Baldwin, 1998) and
CEAFφ4 (Luo, 2005). Following previous studies
(Lee et al., 2018), the primary metric AVG-F is the
unweighted average of the above three F-scores.

Baselines To study the effectiveness of end-to-
end AMR coreference resolution, we compare our
model with the following baselines:

• Rule-based (Liu et al., 2015): a heuristic method
that builds a large document-level AMR graph
by linking identical entities.

• Pipeline (Anikina et al., 2020): it uses an off-the-
shelf coreference system (Lee et al., 2018) with
SpanBERT (Joshi et al., 2020) embeddings, and
an AMR-to-text aligner (Flanigan et al., 2014).
The former generates coreference from text, and
the later projects this information from text to
AMRs.

Models We study two versions of our model with
or without BERT features.

• AMRcoref-base: it corresponds to our model
described in § 2 only with word embeddings.

• AMRcoref-bert: it denotes our model in § 2 ex-
cept that the word embeddings (ek in Eq. 1) are
concatenated with BERT outputs. Specifically,
we use a cased BERT-base model with fixed pa-
rameters to encode a sentence, taking an AMR-
to-text aligner (Flanigan et al., 2014) to project
BERT outputs to the corresponding AMR nodes.

Hyperparameters We set the dimension of con-
cept embeddings to 256. Characters in the character
CNN (§ 2.1) are represented as learned embeddings
with 32 units and the convolution window sizes in-
clude 2, 3, and 4 characters, each consisting of 100
filters. We use Adam (Kingma and Ba, 2015) with
a learning rate of 0.005 for optimization.

4https://amr.isi.edu/download/amr-bank-struct-v3.0.txt.
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Model In-domain test set Out-domain test set
MUC B3 CEAFφ4 Average F1 MUC B3 CEAFφ4 Average F1

Rule-based 50.8 41.1 22.4 38.1 53.3 41.7 25.9 40.3
Pipeline 58.0 43.0 25.0 42.0 55.2 42.3 26.7 41.4
AMRcoref-base 66.1 49.7 38.1 51.3 64.4 45.8 31.4 47.2
AMRcoref-bert 72.5 64.1 50.6 62.4 69.9 61.9 48.5 60.1

Table 2: Main results on the MS-AMR data and LP test sets.

Number of GRN layers

Figure 3: Development results of AMRcoref-base on
the number of GRN layers.

3.2 Development Experiments

We first conduct development experiment to choose
the values for the crucial hyperparameters.
GRN Encoder Layers The number of recurrent
layers L in GRN defines the amount of message
interactions. Large message passing layers may
lead to over-smoothing problems, while small lay-
ers may result in weak graph representation (Qin
et al., 2020; Zhang et al., 2018). Figure 3 shows
development experiments of the AMRcoref-base
model in this aspect. We observe large improve-
ments when increasing the layers from 1 to 3, but
further increase from 3 to 7 does not lead to further
improvements. Therefore, we choose 3 layers for
our final model.
Antecedent Candidates How many antecedents
are considered as candidates (denoted as ψ in Sec-
tion 2.3) for making each coreference decision is
another important hyperparameter in a coreference
resolution model (Lee et al., 2017). Intuitively,
allowing more antecedents gives a higher upper
bound, but that also introduces a larger search
space. Table 3 shows the statistics of the distance
between each mention and its gold antecedent and
the devset performance of AMRcoref-base model
that uses this distance as the search space. The
performance of AMRcoref-base improves when in-
creasing the search space, and the best performance
was observed when 250 antecedents are considered
as the search space. We choose ψ =250 in subse-
quent experiments.

Distances. #Links Cover(%) F1
≤ 50 184 85.2 42.9
≤ 100 206 95.4 45.2
≤ 150 212 98.1 45.4
≤ 200 214 99.1 47.2
≤ 250 215 99.5 52.1
≤ 300 216 100.0 49.7
> 300 216 100.0 48.3

Table 3: Devset statistics on mention-gold-antecedent
distance and the performances of AMRcoref-base using
the distance as the search space.

3.3 Main Results

Table 2 shows the final in-domain results on the
MS-AMR test set and out-domain results on the an-
notated Little Prince (LP) data, where we compare
our model (AMRcoref-base and AMRcoref-bert)
with the Rule-based and Pipeline baselines.

In-domain Results The Rule-based method per-
forms the worst, because it only links the identical
entity and suffers from low recall. The Pipeline
model performs better than the Rule-based model
due to better coverage, but it can suffer from error
propagation in both textual coreference and inac-
curate AMR aligner. In addition, it does not make
use of AMR structure features, which is less sparse
compared to text cues. Our proposed AMRcoref-
base model outperforms the two baselines by a
huge margin, gaining at least 9.3% and 13.2% av-
erage F1 scores, respectively. This verifies the
effectiveness of the end-to-end framework.

Out-domain Results On the cross-domain LP
data, our model largely outperforms both Rule-
based method and the Pipeline model. Compared
with the in-domain setting, there is minor drop
on the out-of-domain dataset (4.1% and 2.3% F1
score for AMRcoref-base and AMRcoref-bert re-
spectively). Neither the performances of Rule-
based nor Pipeline change much on this dataset,
which is because these systems are not trained on
a certain domain. This also reflects the quality
of our LP annotations, because of the consistent
performance changes of both AMRcoref-base and
AMRcoref-bert when switching from MS-AMR to
LP.
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Model Average F1 ∆
AMRcoref-base 51.3 -
- concept identification 31.4 -19.9
+ gold mention 70.4 +19.1
+ bert concatenate 62.4 +11.1
+ bert graph 62.0 +10.7
- distance feature 49.2 -2.1
- speaker feature 49.4 -1.9
- character CNN 50.1 -1.2
- graph connections 49.0 -2.3

Table 4: Ablation study on the test set of MS-AMR.

3.4 Analysis

We analyze the effects of mention type, textual em-
bedding and various extra features in this section.
Concept Identification As shown in the first
group of Table 4, we conduct an ablation study
on the concept identification module, which has
been shown crucial on the textual coreference res-
olution (Lee et al., 2017). Removing the concept
identifier from the AMRcoref-base model results in
a large performance degradation of up to 19.9%, in-
dicating that concept type information of the AMR
node can positively guide the prediction of coref-
erence links. On the other hand, when the concept
identifier outputs are replaced with gold mentions,
the results can be further improved by 19.1%. This
indicates that better performances can be expected
if concept identification can be further improved.

Injecting BERT knowledge As shown in the
second group of Table 4, we study the influence
of rich features from BERT in our model, which
has been proven effective on text-based corefer-
ence resolution. Two alternatives of using BERT
are studied, concatenate (i.e. AMRcoref-bert) de-
notes concatenating the AMR node embeddings
with the corresponding textual BERT embedding,
and graph means that we construct an AMR-token
graph that connects AMR nodes and the corre-
sponding tokens. We find that the AMRcoref-base
model can be improved by a similar margin using
both approaches. This is consistent with existing
observations from other structured prediction tasks,
such as constituent parsing (Kitaev et al., 2019)
and dependency parsing (Li et al., 2019). Due to
the limited scale of our training data, we expect the
gain to be less with more training data.

Features Ablation As shown by the last group in
Table 4, we investigate the impacts of each compo-
nent in our proposed model on the development set
of MS-AMR. We have the following observations.
First, consistent with findings of Lee et al. (2017),

Figure 4: Testing results of AMRcoref-base regarding
different ratios of training data used. The F1 score of
Pipeline is 42.0% (Table 2).

the distance between a pair of AMR concepts is
an important feature. The final model performance
drops by 2.1% when removing the distance feature
(Eq. 13). Second, the speaker indicator features
(Eq. 13) contribute to our model by a 1.9% im-
provement. Intuitively, speaker information is help-
ful for pronoun coreference resolution in dialogues.
For example, “my package” in one sentence may
represent identical entity with “your package” in
the next utterance. Third, the character CNN pro-
vides morphological information and a way to back
off for out-of-vocabulary tokens. For AMR node
representations, we see a modest contribution of
1.2% F1 score. Finally, we exploit the necessity
of cross-sentence AMR connections. Compared
to encoding each AMR graph individually, global
information exchange across sentences can help to
achieve a significant performance improvement.

Data Hunger Similar to other results, it is im-
portant to study how much data is necessary to
obtain a strong performance (at least be better than
the baseline). Figure 4 shows the performances
when training the AMRcoref-base model on differ-
ent portions of data. As the number of training
samples increases, the performance of our model
continuously improves. This shows that our model
has room for further improvement with more train-
ing data. Moreover, our model even outperforms
the Pipeline baseline when trained on only 20%
data. This confirms the robustness of our end-to-
end framework.

Effect of Document Length Figure 5 shows
the performance on different MS-AMR document
lengths (i.e., the number of AMR graphs in the
document). We can see that both our model and
the Pipeline model show performance decrease
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Figure 5: Testing results regarding document length.

when increasing input document length. This is
likely because a longer document usually involves
more complex coreference situations and brings
more challenge for the encoder. Insufficient infor-
mation interaction for distant nodes further leads
to weaker inference performance. As expected,
the Rule-based approach (Liu et al., 2015) is not
significantly affected, but its result is still pretty
low. When the document contains more than
30 sentences, the AMRcoref-base model slightly
under-performs both the Rule-based method and
the Pipeline baseline. One reason is that only a few
training instances have a long document length, so
we expect that the performance of our model can
be further improved given more long documents.

3.5 Application on Summarization

Table 5 compares the summarization performances
using the document-level AMRs generated by var-
ious methods on the LDC2015E86 benchmark
(Knight et al., 2014). Following Liu et al. (2015),
Rouge scores (R-1/2/L Lin 2004) are used as the
metrics. To consume each document AMR and
the corresponding text, we take a popular dual-to-
sequence model (D2S, Song et al. 2019b), which
extends the standard sequence-to-sequence frame-
work with an additional graph encoder and a dual
attention mechanism for extracting both text and
graph contexts during decoding.

For previous work, summarization using AMR
was first explored by Liu et al. (2015). They first
use a rule-based method to build document AMRs
and then take a statistic model to generate sum-
maries. Dohare et al. (2017) improves this ap-
proach by selecting important sentences before
building a document AMR. The D2S-Rule-based
can be considered as a fair comparison with Liu
et al. (2015) on the same summerization platform.

Model R-1 R-2 R-L
Liu et al. (2015) 44.3 – –
Dohare et al. (2017) 44.8 17.3 30.6
D2S-Rule-based 47.6 20.1 32.5
D2S-Pipeline 47.9 19.5 32.6
D2S-AMRcoref-base 48.4 20.4 33.2
D2S-AMRcoref-bert 49.1 20.5 33.6

Table 5: Test summarization results on LDC2015E86.
R-1/2/L is short for Rouge-1/2/L.

The overall performance of the D2S models out-
perform the previous approaches, indicating that
our experiments are conducted on a stronger base-
line. Though Pipeline is better than Rule-based on
AMR coreference resolution, D2S-Pipeline is com-
parable with D2S-Rule-based on the downstream
summerization task. This shows that the error prop-
agation issue of Pipeline can introduce further neg-
ative effects to a downstream application. On the
other hand, both D2S-AMRcoref-base and D2S-
AMRcoref-bert show much better results than the
baselines across all Rouge metrics. This demon-
strates that the improvements made by our end-to-
end model is solid and can transfer to a downstream
application. D2S-AMRcoref-bert achieves the best
performance, which is consistent with the above
experiments.

4 Related Work

Multi-sentence AMR Although some previous
work (Szubert et al., 2020; Van Noord and Bos,
2017) explore the coreference phenomena of AMR,
they mainly focus on the situation within a sentence.
On the other hand, previous work on multi-sentence
AMR primarily focuses on data annotation. Song
et al. (2019a) annotate dropped pronouns over Chi-
nese AMR but only deals with implicit roles in
specific constructions. Gerber and Chai (2012) pro-
vide implicit role annotations, but the resources
were limited to a small inventory of 5-10 predicate
types rather than all implicit arguments. O’Gorman
et al. (2018) annotated the MS-AMR dataset by
simultaneously considering coreference, implicit
role coreference and bridging relations. We con-
sider coreference resolution as the prerequisite for
creating multi-sentence AMRs, proposing the first
end-to-end model for this task.

Coreference Resolution Coreference resolution
is a fundamental problem in natural language
processing. Neural network models have shown
promising results over the years. Recent work (Lee
et al., 2017, 2018; Kantor and Globerson, 2019)
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tackled the problem end-to-end by jointly detect-
ing mentions and predicting coreference. Lee et al.
(2018) build a complete end-to-end system with
the span-ranking architecture and higher-order in-
ference technique. While previous work considers
only text-level coreference, we investigate AMR
co-reference resolution.

AMR Representation using GNN To encode
AMR graphs, many variants of GNNs such as
GRNs (Song et al., 2018; Beck et al., 2018), GCNs
(Zhou et al., 2020; Zhang et al., 2020) and GATs
(Damonte and Cohen, 2019; Cai and Lam, 2020b;
Wang et al., 2020) have been introduced. We
choose a classic GRN model following Song et al.
(2018) to represent our document-level AMR graph
and leave the exploiting on a more efficient GNN
structure for future work.

5 Conclusion

We investigated a novel end-to-end multi-sentence
AMR coreference resolution model using a graph
neural network. Compared with previous rule-
based and pipeline methods, our model better cap-
tures multi-sentence semantic information. Results
on MS-AMR (in-domain) and LP (out-of-domain)
datasets show the superiority and robustness of our
model. In addition, experiments on the downstream
text summarization task further demonstrate the ef-
fectiveness of the document-level AMRs produced
by our model.

In future work, we plan to resolve both the cross-
AMR coreference links and the sentence-level ones
together with our model.
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