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Abstract
This position paper investigates the problem of
automated text anonymisation, which is a pre-
requisite for secure sharing of documents con-
taining sensitive information about individuals.
We summarise the key concepts behind text
anonymisation and provide a review of current
approaches. Anonymisation methods have so
far been developed in two fields with little mu-
tual interaction, namely natural language pro-
cessing and privacy-preserving data publish-
ing. Based on a case study, we outline the ben-
efits and limitations of these approaches and
discuss a number of open challenges, such as
(1) how to account for multiple types of seman-
tic inferences, (2) how to strike a balance be-
tween disclosure risk and data utility and (3)
how to evaluate the quality of the resulting
anonymisation. We lay out a case for moving
beyond sequence labelling models and incor-
porate explicit measures of disclosure risk into
the text anonymisation process.

1 Introduction

Privacy is a fundamental human right (Art. 12 of
the Universal Declaration of Human Rights) and
a critical component of any free society, among
others to protect citizens against social control,
stigmatisation, and threats to political expression.
Privacy is also protected by multiple national and
international legal frameworks, such as the General
Data Protection Regulation (GDPR) introduced in
Europe in 2018. This right to privacy imposes
constraints on the usage and distribution of data in-
cluding personal information, such as emails, court
cases or patient records. In particular, personal
data cannot be distributed to third parties (or even
used for secondary purposes) without legal ground,
such as the explicit and informed consent of the
individuals to whom the data refers.

As informed consent is often difficult to obtain
in practice, an alternative is to rely on anonymisa-

tion techniques that render personal data no longer
personal. Access to anonymised data is a prerequi-
site for research advances in many scientific fields,
notably in medicine and the social sciences. By fa-
cilitating open data initiatives, anonymised data can
also help empower citizens and support democratic
participation. For structured databases, anonymi-
sation can be enforced through well-established
privacy models such as k-anonymity (Samarati,
2001; Samarati and Sweeney, 1998) or differen-
tial privacy (Dwork et al., 2006). These privacy
models and their implementations are, however,
difficult to apply to unstructured data such as texts.
In fact, text anonymisation has been traditionally
enforced manually, a process that is costly, time-
consuming and prone to errors (Bier et al., 2009).
These limitations led to the development of various
computational frameworks designed to extend auto-
mated or semi-automated anonymisation to the text
domain (Meystre et al., 2010; Sánchez and Batet,
2016; Dernoncourt et al., 2017).

In this paper, we review the core concepts un-
derlying text anonymisation, and survey the ap-
proaches put forward to solve this task. These
can be divided into two independent research di-
rections. On the one hand, NLP approaches rely
on sequence labelling to detect and remove prede-
fined categories of entities that are considered sen-
sitive or of personal nature (such as names, phone
numbers or medical conditions). On the other
hand, privacy-preserving data publishing (PPDP)
approaches take the notion of disclosure risk as
starting point and anonymise text by enforcing a pri-
vacy model. Anonymisation consists of a sequence
of transformations (such as removal or generalisa-
tion) on the document to ensure the requirements
derived from the privacy model are fulfilled.

This position paper makes the case that none
of these approaches provide a fully satisfactory
account of the text anonymisation problem. We
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illustrate their merits and shortcomings on a case
study and discuss three open challenges:

1. How to ensure that anonymisation is robust
against multiple types of semantic inferences,
based on background knowledge assumed to
be available to an adversary ;

2. How to transform the text in order to minimise
the risk of disclosing personal data, yet retain
as much semantic content as possible ;

3. How to empirically evaluate the quality (in
terms of disclosure risk and utility preserva-
tion) of the resulting anonymisation.

We argue in this paper that NLP and PPDP ap-
proaches should be viewed as complementary (one
focusing on linguistic patterns, the other on disclo-
sure risk) and that future anonymisation approaches
for text should seek to reconcile these two views.
In particular, we contend that text anonymisation
models should combine a data-driven editor model
(which selects masking operations on the docu-
ment) with an adversary seeking to infer confiden-
tial attributes from edited documents.

2 What is Anonymisation?

The most common definition of privacy amounts to
self-determination, which is the ability of individ-
uals, groups or organisations to seclude informa-
tion about themselves selectively (Westin, 1967).
Information related to an identified or identifiable
person is known as personal data, or more precisely
personally identifiable information (PII). Datasets
with PII cannot be released without control as this
would impair the privacy of the data subjects.

2.1 Legal Requirements
Various legal frameworks regulate how PII can be
collected and processed. In particular, the Gen-
eral Data Protection Regulation introduced in Eu-
rope (GDPR, 2016) states that data owners must
have a legal basis for processing PII, the most im-
portant one being the explicit consent of the data
subjects.Alternatively, data owners may choose to
anonymise the data to ensure it can no longer be at-
tributed to specific individuals. Anonymised data is
no longer regulated by the GDPR and can therefore
be freely released.

Table 1 defines some of the key terms related
to data anonymisation (Elliot et al., 2016). This
terminology is, however, not always applied con-
sistently, as several authors seem to use e.g. the

Direct Identifier: A (set of) variable(s) unique
for an individual (a name, address, phone
number or bank account) that may be used
to directly identify the subject.

Quasi Identifier: Information (such as gender,
nationality, or city of residence) that in iso-
lation does not enable re-identification, but
may do so when combined with other quasi-
identifiers and background knowledge.

Confidential Attribute: Private personal infor-
mation that should not be disclosed (such as a
medical condition).

Identity Disclosure: Unequivocal association of
a record/document with a subject’s identity.

Attribute disclosure: Unequivocal inference of
a confidential attribute about a subject.

Anonymisation: Complete and irreversible re-
moval from a dataset of any information that,
directly or indirectly, may lead to a subject’s
data being identified.

De-identification: Process of removing specific,
predefined direct identifiers from a dataset.

Pseudonymisation: Process of replacing direct
identifiers with pseudonyms or coded values
(such ”John Doe”→ ”Patient 3”). The map-
ping between coded values and the original
identifiers is then stored separately.

Table 1: Key terms related to data anonymisation.

terms “anonymisation” and “de-identification” in-
terchangeably (Chevrier et al., 2019).

GDPR-compliant anonymisation is the complete
and irreversible process of removing personal iden-
tifiers, both direct and indirect, that may lead to an
individual being identified. Direct identifiers cor-
respond to values such as names or social security
numbers that directly disclose the identity of the
individual. However, removing direct identifiers is
not sufficient to eliminate all disclosure risks, as
individuals may also be re-identified by combining
several pieces of information together with some
background knowledge. For instance, the combi-
nation of gender, birth date and postal code can
be exploited to identify between 63 and 87% of
the U.S. population, due to the public availability
of US Census Data (Golle, 2006). These types of
personal identifiers are called quasi-identifiers and
encompass a large variety of data types such as
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demographic and geospatial data. Anonymisation
therefore necessitates both the removal of direct
identifiers and the masking of quasi-identifiers.

Other legal frameworks have adopted a different
approach. In the US, the Health Insurance Porta-
bility and Accountability Act (HIPAA) (HIPAA,
2004) lists 18 data types, such as patient’s name,
address or social security number, which qual-
ify as protected health information (PHI) and
should be removed from the data prior to release.
This process of removing predefined categories
of identifiers is called de-identification1. In other
words, while HIPAA-based de-identification is lim-
ited to specific categories of direct identifiers, the
anonymisation process defined by GDPR requires
us to consider any direct or indirect information
that, combined with background knowledge, may
lead to re-identifying an individual. The California
Consumer Privacy Act (CCPA) introduced in 2018
adopts a position relatively similar to GDPR regard-
ing anonymisation and asserts that any data that can
be linked directly or indirectly to a consumer must
be considered as personal information.

We highlight these legal differences as they have
important implications on how anonymisation tools
should be designed and evaluated (Rothstein, 2010;
Hintze, 2017). In particular, GDPR- or CCPA-
compliant anonymisation cannot be restricted to the
detection of predefined classes of entities but must
consider how any textual element may contribute
to the disclosure risk, either directly or through se-
mantic inferences using the background knowledge
assumed to be available to an adversary.

2.2 Disclosure Risks
Legal regulations for privacy and data protection
(such as GDPR and HIPAA) typically focus on
identity disclosure. However, personal informa-
tion may also be disclosed without re-identification.
In particular, attribute disclosure occurs when the
value of a confidential attribute (e.g., a medical
condition) can be inferred from the released data,
for instance when all records sharing some charac-
teristics (e.g. age) have the same confidential value
(e.g. suffering from AIDS). Identity disclosure can
be seen as a special case of attribute disclosure
when the confidential attribute corresponds to the
person identity. Data anonymisation should pre-
vent identity disclosure but, in most cases, attribute

1GDPR also introduces the equivalent concept of
pseudonymisation, which is a useful privacy-enhancing mea-
sure, but it does not qualify as full anonymisation.

disclosure, which is usually more harmful from a
privacy perspective, should also be avoided.

The removal of personal information necessarily
entails some data utility loss. Because the ultimate
purpose behind data releases is to produce usable
data, the best anonymisation methods are those
that optimise the trade-off between minimising the
disclosure risk and preserving the data utility.

3 NLP Approaches

3.1 De-identification

NLP research on text anonymisation has focused
to a large extent on the tasks of de-identification,
and, to a lesser extent, pseudonymisation. De-
identification is generally modelled as a sequence
labelling task, similar to Named Entity Recogni-
tion (NER) (Chiu and Nichols, 2016; Lample et al.,
2016). Most work to date has been performed in
the area of clinical NLP, where the goal is to de-
tect Protected Health Information (PHI) in clinical
texts (Meystre et al., 2010; Aberdeen et al., 2010).
Several shared tasks have contributed to increased
activity within this area, in particular through the
release of datasets manually annotated with PHIs.
The 2014 i2b2/UTHealth shared task (Stubbs and
Uzuner, 2015) includes diabetic patient medical
records annotated for an extended set of PHI cate-
gories. Another influential dataset stems from the
2016 CEGS N-GRID shared task (Stubbs et al.,
2017) based on psychiatric intake records, which
are particularly challenging to de-identify due to a
higher density of PHIs.

Early approaches to this task were based on rule-
based and machine learning-based methods, either
alone or in combination (Yogarajan et al., 2018).
Dernoncourt et al. (2017) and Liu et al. (2017)
present the first neural models for de-identification
using recurrent neural networks with character-
level embeddings, achieving state-of-the-art per-
formance on the i2b2 2014 dataset.

A central challenge in clinical de-identification
is the availability of annotated data and the lack of
universal annotation standards for PHI, making it
difficult to transfer data across domains. Hartman
et al. (2020) examine how to adapt de-identification
systems across clinical sub-domains. They com-
pare the use of labelled or unlabelled data for do-
main adaptation with in-domain testing and off-the-
shelf de-identification tools, and show that man-
ual labelling of even small amounts of PHI ex-
amples yields performance above existing tools.
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Further, embeddings trained on larger amounts of
in-domain, unlabelled data can be employed to
adapt models to a new domain (Yang et al., 2019).
Finally, Friedrich et al. (2019) present an adversar-
ial approach for learning privacy-preserving text
representations, thereby allowing data to be more
easily shared to train de-identification tools.

Outside of the clinical domain, Medlock (2006)
presents a dataset of e-mails annotated with both di-
rect identifiers (person names, transactional codes,
etc.) and quasi-identifiers (organisations, course
names, etc.). Some annotation efforts are also
geared towards de-identification for languages
other than English. Eder et al. (2020) present a de-
identification dataset consisting of German e-mails.
For Swedish, Velupillai et al. (2009); Alfalahi et al.
(2012) present efforts to collect and standardise an-
notated clinical notes, while Megyesi et al. (2018)
present a pseudonymised learner language corpus.
For Spanish, a recently held shared task on clini-
cal de-identification released a synthetic Spanish-
language dataset (Marimon et al., 2019).

The problem of replacing identifiers with surro-
gate values is rarely addressed in NLP. Most ap-
proaches simply replace detected identifiers with
dummy values such as X, although some models
attempt to preserve the gender of person names and
provide dedicated rules for e.g. dates and addresses
(Sweeney, 1996; Alfalahi et al., 2012; Eder et al.,
2019; Chen et al., 2019) or to a somewhat broader
range of identifiers (Volodina et al., 2020).

A few studies have analysed the re-identification
risk of de-identified or pseudonymised texts (Car-
rell et al., 2013; Meystre et al., 2014b). The data
utility of de-identified texts is analysed in Meystre
et al. (2014a), concluding that the impact of de-
identification is small, but non-negligible.

3.2 Obfuscation Methods

Beyond de-identification, several research efforts
have looked at detecting and obfuscating social me-
dia texts based on quasi-identifying categories such
as gender (Reddy and Knight, 2016) or race (Blod-
gett et al., 2016). A number of recent approaches
have sought to transform latent representations of
texts to protect confidential attributes, using adver-
sarial learning (Elazar and Goldberg, 2018), rein-
forcement learning (Mosallanezhad et al., 2019) or
encryption (Huang et al., 2020). However, those
methods operate at the level of latent vector repre-
sentations and do not modify the texts themselves.

One notable exception is the text rewriting ap-
proach of Xu et al. (2019) which edits the texts
using back-translations.

3.3 Challenges

NLP approaches to anonymisation suffer from a
number of shortcomings. Most importantly, they
are limited to predefined categories of entities and
ignore how less conspicuous text elements may
also play a role in re-identifying the individual. For
instance, the family status or physical appearance
of a person may lead to re-identification but will
rarely be considered as categories to detect. On the
other hand, those methods may also end up remov-
ing too much information, as they will systemati-
cally remove all occurrences of a given category
without examining their impact on the disclosure
risk or on the utility of the remaining text.

4 PPDP Approaches

Privacy-preserving data publishing (PPDP) devel-
ops computational techniques for releasing data
without violating privacy (Chen et al., 2009).

The PPDP approach to anonymisation is privacy-
first: a privacy model specifying an ex ante pri-
vacy condition is enforced through one or several
data masking methods, such as noise addition or
generalisation of values (Domingo-Ferrer et al.,
2016). The first widely-accepted privacy model is
k-anonymity (Samarati, 2001): a dataset satisfies k-
anonymity if each combination of values of quasi-
identifier attributes is shared by at least k records.
With k > 1, no unequivocal re-identifications are
possible, thereby preventing identity disclosure.

Most of the attention of the PPDP community
has been on structured databases. Privacy models
such as k-anonymity assume that datasets consist of
records, each one detailing the attributes of a single
individual, and that attributes have been classified
beforehand into identifiers, quasi-identifiers and
confidential attributes. Moreover, most masking
methods employed to enforce privacy models have
been designed with numerical data in mind, and
barely (and poorly) manage categorical or nominal
attributes (Rodrı́guez-Garcı́a et al., 2019).

4.1 k-anonymity and Beyond

Solutions for anonymising unstructured text are
scarce and mostly theoretical. The first approaches
adapted k-anonymity for collections of documents.
In (Chakaravarthy et al., 2008), the authors pre-
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sented the notion of K-safety. They assume a
collection of entities e to be protected against dis-
closure, each one characterised by a set of terms
C(e) that represent their contexts (i.e. words co-
occurring with e and that may be known to an
attacker). Then, a document D containing an entity
e is said to be K-safe if the terms appearing in D
also belong to the contexts of, at least, K−1 enti-
ties other than e. Terms not fulfilling the property
are redacted before release. The privacy guaran-
tee offered by this approach is sound because the
probability of disclosing the protected entity is re-
duced to 1/K. However, it requires exhaustive
collections of contexts for all entities to be pro-
tected, which is unfeasible. It also assumes that the
detection of sensitive terms is already performed.
This approach is only feasible for very constrained
domains and non-dynamic sets of entities, such as
collections of sensitive diseases, and documents
with homogeneous contents.

Another approach built on k-anonymity is
Cumby and Ghani (2011), where a multi-class clas-
sifier is trained to map input documents to (prede-
fined) sensitive entities. This aims at reproducing
the inferences that a potential attacker may per-
form to disclose sensitive entities. A document
x referring to a sensitive entity y is then said to
be K-confusable if the classifier outputs at least k
classes other than y. Documents are redacted via
term removal or generalisation until the property is
fulfilled. To be applicable, sensitive entities should
be static and the documents to be protected should
match that of the corpus used for training.

Anandan et al. (2012) present a privacy model
for document protection named t-plausibility. They
seek to generalise terms identified as sensitive ac-
cording to the t-plausibility property: a protected
document is said to fulfil t-plausibility if, at least,
t different plausible documents can be derived by
specialising the generalised terms. In other words,
Even though the privacy guarantee is intuitive, one
can hardly predict the results for a certain t, be-
cause they depend on the document length, the
number of sensitive entities and the granularity of
the knowledge base employed to obtain term gen-
eralisations. Assuming that sensitive entities have
already been detected also circumvents the most
challenging task of document protection.

4.2 C-sanitise

Sánchez and Batet (2016, 2017) tackles the

anonymisation problem from a different perspec-
tive. Instead of expressing privacy guarantees in
terms of probability of disclosure, it defines risk
as an information theoretic characterisation of dis-
closed semantics. The proposed privacy model,
C-sanitise, states that given a document d, back-
ground knowledge K available to potential attack-
ers, and a set of entities to protect C, d′ is the
C-sanitised version of d if d′ does not contain
any term t that, individually or in aggregate, un-
equivocally disclose the semantics encompassed
by any entity in C by exploiting K. The seman-
tic disclosure incurred by t on any entity in C is
quantified as their pointwise mutual information
(Anandan and Clifton, 2011) measured from their
probability of (co-)occurrence in the Web, which
is assumed to represent the most comprehensive
knowledge source (K) available to attackers (Chow
et al., 2008). This approach is able to automatically
detect terms that may cause disclosure and can en-
compass dynamic collections of entities to protect.
Obtaining accurate probabilities of co-occurrence
from large corpora is, however, costly.

4.3 Differential Privacy
Differential privacy (DP) is a privacy model that
defines anonymisation in terms of randomised al-
gorithms for computing statistics from the data
(Dwork et al., 2006). DP provides guarantees that
the statistics cannot be used to learn anything sub-
stantial about any individual. However, the goal
of DP is to produce randomised responses to con-
trolled queries, and applying it to data publishing
leads in poor data utility (Domingo-Ferrer et al.,
2021). DP cannot be directly employed to edit out
personal information from text while preserving
the content of the rest of the document, and is thus
outside the scope of this paper. However, DP can be
employed for other privacy-related tasks such as in
producing synthetic texts (Fernandes et al., 2018;
Bommasani et al., 2019), deriving differentially-
private word representations (Feyisetan et al., 2019)
or learning machine learning models with privacy
guarantees (McMahan et al., 2017).

4.4 Challenges
Compared to NLP approaches, proposals built
around privacy models allow defining what should
be protected and how. This not only allows en-
forcing privacy requirements, but also makes it
possible to tailor the trade-off between data pro-
tection and utility preservation. On the negative
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side, PPDP methods are hampered by practical con-
straints, either because of their unfeasible assump-
tions, their cost or their dependency on external
resources, such as large knowledge repositories,
training corpora or social-scale probabilities. To
the exception of C-sanitise, PPDP methods also
assume that sensitive entities have already been de-
tected in a preprocessing step. Furthermore, PPDP
approaches typically reduce documents to flat col-
lections of terms, which facilitates the formalisa-
tion of the data semantics for each document, but
also ignores how terms are influenced by their con-
text of occurrence (which is important to resolve po-
tential ambiguities) and are interconnected through
multiple layers of linguistic structures.

5 Case Study

To investigate the performance of NLP and PPDP
methods, we carried out a case study where 5 an-
notators annotated 8 English Wikipedia page ex-
tracts. The extracts were all biographies from the
“20th century scientists” category, with a length be-
tween 300 and 500 characters. Wikipedia articles
are generic enough not to require expert domain
knowledge and are commonly adopted for the eval-
uation of PPDP approaches (Chow et al., 2008;
Sánchez and Batet, 2016). Their informativeness
and density make them particularly challenging to
anonymise.

The annotation task2 consisted of tagging text
spans that could re-identify a person either directly
or in combination with publicly available knowl-
edge. The annotators were instructed to prevent
identity disclosure but otherwise seek to preserve
as much semantic content as possible. The five
annotators were researchers without previous expe-
rience in text anonymisation. The guidelines were
left intentionally general to examine how annota-
tors interpret and carry out the complex task of
anonymisation – and not only de-identification –
where multiple correct solutions are possible.

The task is challenging since these biographies
relate to publicly known scientists for which ex-
tensive background material can be found online.
Inter-rater agreement between the five annotators
for the binary masking decisions was low: 0.68
average observed agreement and Krippendorff’s
α = 0.36. This low agreement illustrates that,
contrary to traditional sequence labelling, several

2The guidelines and annotated data are publicly available:
https://github.com/IldikoPilan/anonymisation_ACL2021

solutions may exist for a given anonymisation prob-
lem. Direct identifiers were generally agreed on,
while quasi-identifiers such as professions and roles
(e.g. founder) triggered mixed decisions.

To shed further light on the anonymisation prob-
lem, we go on to compare the performance of ex-
isting tools with the manual annotations:

• A neural NER model (Honnibal and Montani,
2017) trained on the OntoNotes corpus with
18 entity types (Weischedel et al., 2011). All
detected entities were masked.3

• Presidio4, a data protection & anonymisation
API developed by Microsoft and relying on a
combination of template-based and machine
learning models to detect and mask PII.

• The C-sanitise privacy model (Sánchez and
Batet, 2016) described in Section 4, where the
required probabilities of (co-)occurrence of
terms were gathered from Google.

5.1 Metrics
To account for the multiple ways to anonymise a
document, we measured the performance of the
three tools above with micro-averaged scores over
all annotators and texts. Note that, while micro-
averages are typically used in NLP to aggregate
measures over output classes, we are here comput-
ing an average over multiple ground truths.

For each annotator q ∈ Q and document d ∈ D,
let Y q

d correspond to token indices masked by q
in d, and Ŷd to the token indices masked by the
anonymisation tool. Precision and recall are then
computed as:

P =

∑
d∈D

∑
q∈Q |Ŷd ∩ Y

q
d |

|Q|
∑

d∈D |Ŷd|
(1)

R =

∑
d∈D

∑
q∈Q |Ŷd ∩ Y

q
d |∑

d∈D
∑

q∈Q |Y
q
d |

(2)

An anonymisation tool will thus obtain a perfect
micro-averaged recall if it detects all tokens masked
by at least one annotator. The metric implicitly
assigns a higher weight to tokens masked by several
annotators – in other words, if all five annotators
mask a given token, not detecting it will have a

3Although NERs do not specifically focus on data protec-
tion, they are often used to de-identify generic texts (except
clinical notes, for which domain-specific tools are available).

4
https://github.com/microsoft/presidio

https://github.com/IldikoPilan/anonymisation_ACL2021
https://github.com/microsoft/presidio
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P R F1

NER
IOB-Exact 0.5 0.49 0.47
IOB-Partial 0.61 0.48 0.54
Binary 0.64 0.51 0.57

Presidio
IOB-Exact 0.63 0.22 0.33
IOB-Partial 0.74 0.24 0.36
Binary 0.76 0.25 0.38

C-sanitise
IOB-Exact 0.51 0.66 0.57
IOB-Partial 0.57 0.68 0.62
Binary 0.58 0.69 0.63

Table 2: Micro-averaged scores for NER, C-sanitise
and Presidio over all texts for annotators a1, a4, a5.

larger impact on the recall than a token masked by
a single annotator. Recall expresses the level of
privacy protection while precision is related to the
degree of utility preservation.

The most consistent manual annotations (a1, a4,
a5) were compared to system outputs at token level
both as binary labels (keep or mask) and as IOB
tags expressing annotation spans5. To go beyond
token-level comparisons, we also computed a par-
tial match score for IOB tags, by assigning a weight
of 0.5 to partial true positives (i.e. I instead of B
tags and vice versa), as in the SemEval 2013 evalu-
ation scheme (Diab et al., 2013).

5.2 Results and Error Analysis

Table 2 presents the micro-averaged precision, re-
call and F1 scores obtained for the three systems.
C-sanitise provided the best performance in

terms of recall and F1 score, while precision was
higher for NER and Presidio. Figure 1 illustrates
the average observed agreement for all annotators
and tools on the binary, token-level masking deci-
sions. Observed agreement with annotators was, on
average, approximately the same for NER and C-
sanitise, ca. 75% and ca. 77% for Presidio. We can
distinguish two subgroups among the annotators
in terms of mutual agreement, namely (a2, a3) and
(a1, a4, a5) with 79% and 83% agreement respec-
tively. Divergent choices in entity segmentation –
e.g. splitting a consecutive mention of department
and university or not – was found to play an impor-
tant role in the differences among annotators, and
between annotators and systems.

5B(eginning) represents the first token of a span, I(nside)
the subsequent tokens, and O(ut) is the label assigned to all
tokens that are not part of a span.

Figure 1: Pairwise average observed agreement. a1 to
a5 correspond to the human annotators.

The proportion of masked tokens was around
50% for a1, a2 and C-sanitise, < 30% for a3, a4,
a5 and NER and 11% for Presidio.

We conducted a detailed error analysis to gain
a better understanding about the advantages and
shortcoming of the three anonymisation tools de-
scribed above. The NER tool masked generic enti-
ties such as Second World War, although this term
was not masked by any annotator or by C-sanitise.
In the phrase “a Christian charity dedicated to
helping the people of Cambodia”, most annotators
did not mask any tokens, while NER masked both
Christian and Cambodia, and C-sanitise Christian
charity. On the other hand, NER ignored terms
that were highly correlated with the individual and
should have been masked, such as book titles au-
thored by the person. Another interesting error
can be found in the sentence “In 1964 and 1965
he was a Visiting Professor at the University of
Wisconsin–Madison on a Fulbright Program fel-
lowship” where the university was masked by most
annotators but left untouched by C-sanitise (as the
university does not frequently co-occur with this
person in web documents). Presidio had the lowest
recall and ignored the majority of quasi-identifiers
(including organisations). Consequently, Presidio’s
masking should be considered a de-identification
process rather than full anonymisation. See Ap-
pendix A for an annotated example document.

6 Challenges and Future Directions

The case study illustrates a number of issues fac-
ing current methods for text anonymisation. We
discuss below three overarching challenges: the
need to protect against several types of semantic
inferences, the formalisation of possible masking
operations to apply on documents, and, last but not
least, the design of evaluation metrics to empiri-
cally assess the anonymisation performance.
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6.1 Semantic Inferences

Most works on PPDP address anonymisation from
a statistical perspective (Batet and Sánchez, 2018).
Their main focus is on the statistical properties of
(numerical) data and how these may allow attackers
to re-identify an individual or uncover confidential
data. However, the most harmful inferences in text
documents are semantic in nature – that is, they are
based on the actual meaning expressed in the texts
instead of their statistical distributions.

NLP approaches do not explicitly account for se-
mantic inferences, and simply mask all text spans
belonging to predefined categories irrespective of
their impact on the disclosure risk. In many PPDP
approaches (Chakaravarthy et al., 2008; Cumby
and Ghani, 2011; Anandan et al., 2012), the ad-
versary is assumed to know sets of attributes as-
sociated with each entity, and semantic inferences
thus correspond to combinations of attributes en-
abling the adversary to single out the entity to pro-
tect. However, in most practical settings, human
adversaries do not have access to the original doc-
uments. They do, however, make extensive use of
external background knowledge available, e.g., on
the web. Such external background knowledge is
captured in Sánchez and Batet (2016, 2017) using
(co-)occurrence counts of terms on the web.

Other types of semantic inferences may be
taken into account, such as lexical and taxonomic
relations (synonyms, antonyms, hypernyms, hy-
ponyms) between words or entities. For instance,
the word “AIDS” will lead to the disclosure of
the confidential attribute “immune system disease”.
In Sánchez and Batet (2017), those relations are
taken into account by enforcing consistency be-
tween known taxonomic relations and the informa-
tion content of each term. Semantic relations can,
however, extend beyond individual terms and ex-
ploit various syntactic patterns, as shown in e.g. tex-
tual entailment (Dagan et al., 2013).

Semantic inferences can also be drawn from
structured data sources such as census data or med-
ical knowledge bases. In the “Wisconsin-Madison”
example above, the search for Fullbright recipients
at that university in 1964-65 would likely allow the
individual to be re-identified. Such logical infer-
ences require specifying which background knowl-
edge may be available to a potential intruder and
would be relevant for a given text domain.

Although semantic inferences have been studied
in isolation in previous work, how to integrate and

chain together those inferential mechanisms into a
single framework remains an open question. For-
mally, assuming a document d transformed into d′

by an anonymisation tool in charge of protecting a
set of entitiesC, one can design an adversary model
adv(c, d′,K) seeking to predict, based on docu-
ment d′ and background knowledge K, whether
the entity c was part of the original document d
or not. Ideally, this adversary model should allow
for multiple types of semantic inferences based on
domain-relevant background knowledge (word co-
occurrences in text corpora, taxonomic relations,
knowledge bases, etc.).

6.2 Masking Operations

NLP approaches to text anonymisation essentially
focus on detecting personal identifiers and rarely
discuss what to do with the detected text spans, gen-
erally assuming that those should be either redacted
or replaced with coded values. This approach may,
however, lead to unnecessary loss of data utility, as
it is often possible to replace quasi-identifiers by
more generic (but still informative) entries.

How to transform a dataset to balance disclosure
risk and data utility is a central research question in
privacy-preserving data publishing. Various trans-
formations have been put forward: one can remove
values altogether, generalise them into less detailed
categories, or perturb the values by adding noise
or swapping them (Domingo-Ferrer et al., 2016).

In the text domain, several PPDP approaches
have shown how to generalise terms using ontolo-
gies (Anandan et al., 2012; Sánchez and Batet,
2016). However, these approaches are intrinsi-
cally limited to entities present in such ontologies,
and are difficult to extend to more generic text
entries. Another possible transformation is to in-
troduce noise into the text. The perturbation of
data points through noise is a common type of
transformation in data privacy (McSherry and Tal-
war, 2007). This idea of perturbation has notably
been applied to word embeddings (Feyisetan et al.,
2019), but it produces perturbed word distributions
rather than readable documents. Semantic noise
has also been defined to perturb nominal values
(Rodrı́guez-Garcı́a et al., 2017).

Formally, one can define an editor model edit(d)
taking a document d and outputting an edited doc-
ument d′ after applying a sequence of masking
operations. This model can be e.g. expressed as a
neural text editing model (Mallinson et al., 2020).
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Its optimisation objective should include both min-
imising the risk of letting an adversary disclose
at least some of the protected entities C through
semantic inferences (as described in the previous
section) and minimising the number of masking
operations necessary to map d to d′.

6.3 Evaluation Metrics

Let D be a set of documents transformed into D′

by an anonymisation tool. How can we empirically
evaluate the quality of the anonymisation?

The most common method is to rely on human
annotators to manually mark identifiers in each doc-
ument d ∈ D, and then compare the system output
with those human-annotated identifiers using IR-
based metrics such as precision, recall and F1 score.
The recall can be seen as reflecting the degree of
protection of the confidential information, while
the precision is correlated with the remaining data
utility of the documents D′.

This evaluation procedure has a number of short-
comings. As observed in our case study, there
may be several equally valid solutions to a given
anonymisation problem. Furthermore, IR-based
metrics typically associate uniform weights to all
identifiers, without taking into account the fact that
some identifiers may have a much larger influence
on the disclosure risk than others. For instance,
failing to detect a full person name is more harmful
than failing to detect a quasi-identifier.

Finally, such type of evaluation procedure is lim-
ited to the detection of direct and indirect identi-
fiers, but ignore the subsequent step of transform-
ing the textual content. Evaluating the quality of
masking operations is tightly coupled with the prob-
lem of evaluating how data utility is preserved
through the anonymisation process (Sánchez and
Batet, 2016; Rodrı́guez-Garcı́a et al., 2019). How-
ever, how to empirically measure this data utility
remains an open question.

An alternative which has so far received little
attention is to conduct so-called privacy attacks on
the edited documents D′. This can be achieved
by e.g. providing the documents D′ to human ex-
perts and instruct them to re-identify those docu-
ments with the help of any information source at
their disposal. Such human evaluations can help
uncover weaknesses in the anonymisation model
(such as semantic inferences that had been over-
looked). However, they are also costly and time-
consuming, as they must be repeated for each ver-

sion of the anonymisation model.

7 Conclusion

This position paper discussed a number of un-
resolved challenges in text anonymisation. Text
anonymisation is defined as the removal or mask-
ing of any information that, directly or indirectly,
may lead to an individual being identified (given
some assumptions about the available background
knowledge). As illustrated in our case study, text
anonymisation is a difficult task (also for human
annotators), which goes beyond the mere detection
of predefined categories of entities and may allow
for several solutions. How to properly anonymise
text data is a problem of great practical importance.
In particular, access to high-quality data is a key in-
gredient for most scientific research, and the lack of
good anonymisation methods for text documents
(allowing data to be shared without compromis-
ing privacy) is a limiting factor in fields such as
medicine, social sciences, psychology and law.

We surveyed two families of approaches with
complementary strengths and weaknesses: NLP
models are well-suited to capture textual patterns
but lack any consideration of disclosure risk, while
PPDP approaches provide principled accounts of
privacy requirements, but view documents as bag-
of-terms void of linguistic structure.

As outlined in the last section, a promising ap-
proach is to couple a neural editor model (apply-
ing transformations to the text) with an adversary
model (capturing possible semantic inferences to
uncover confidential entities). These two models
can be optimised jointly using adversarial training,
taking into account the necessary balance between
disclosure risk and utility preservation.

Finally, we lay out a case for designing evalu-
ation metrics that go beyond traditional IR-based
measures, and account in particular for the fact that
some identifiers and quasi-identifiers are more im-
portant than others in terms of their influence on
the disclosure risk.
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A Appendix

We present below the annotation of one short biography of a 20th century scientist (Alexander Frumkin)
according to 5 human annotators, C-sanitize, the neural NER model and the Presidio anonymisation tool
(see paper for details). The annotation task consisted of tagging text spans that could re-identify a person
either directly or in combination with publicly available knowledge. The annotators were instructed to
prevent identity disclosure, but otherwise seek to preserve the semantic content as much as possible. The
five annotators were researchers in statistics and natural language processing.
The first five (gray) lines denotes the five human annotators, while the cyan line corresponds to

C-sanitise, the blue line to the neural NER model, and the green line to the Presidio tool.
Due to page limits, we only present here one single biography, but the annotations for all 8 texts (along

with the annotation guidelines and raw data) are available in the GitHub repository associated with the
paper.

A.1 Alexander Frumkin

Alexander Naumovich Frumkin (Александр Наумович Фрумкин) (October 24, 1895–May 27, 1976)

was a Russian/Soviet electrochemist, member of the Russian Academy of Sciences since

1932, founder of the Russian Journal of Electrochemistry Elektrokhimiya and receiver

of the Hero of Socialist Labor award. The Russian Academy of Sciences’ A. N. Frumkin

Institute of Physical Chemistry and Electrochemistry is named after him. Frumkin was

born in Kishinev, in the Bessarabia Governorate of the Russian Empire (present-day Moldova)

to a Jewish family; his father was an insurance salesman. His family moved to Odessa,

where he received his primary schooling; he continued his education in Strasbourg, and

then at the University of Bern. Frumkin’s first published articles appeared in 1914,

https://github.com/IldikoPilan/anonymisation_ACL2021


4202

when he was only 19; in 1915, he received his first degree, back in Odessa. Two years

later, the seminal article “Electrocapillary Phenomena and Electrode Potentials” was

published. Frumkin moved to Moscow in 1922 to work at the Karpov Institute, under A.

N. Bakh. In 1930 Frumkin joined the faculty of Moscow University, where in 1933 he founded—and

would head until his death—the department of electrochemistry. During the Second World

War, Frumkin led a large team of scientists and engineers involved in defense issues.

This contribution did not save him from being dismissed in 1949 as the director of the

Institute of Physical Chemistry, when he was accused of “cosmopolitanism”. Frumkin’s

most fundamental achievement was the fundamental theory of electrode reactions, which

describes the influence of the structure of the interface between electrode and solution

on the rate of electron transfer. This theory has been confirmed and extended within

the framework of contemporary physical electron transfer models. Frumkin introduced the

concept of the zero charge potential, the most important characteristic of a metal surface.
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Alessandro Volta’s question—a topic of discussion for over 120 years—about the nature

of the EMF of electrochemical circuits was resolved using Frumkin’s approach. Frumkin

developed the Frumkin isotherm, an extension of the Langmuir isotherm in describing certain

adsorption phenomena. Frumkin’s students developed novel experimental methods that would,

in time, become standard. Several applied electrochemical processes, including ones related

to chemical sources of electrical power, industrial electrolysis, and anti-corrosion

protection, were successfully developed under Frumkin’s supervision. Frumkin was married

three times, including a brief first marriage to Vera Inber.




