
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 377–387

August 1–6, 2021. ©2021 Association for Computational Linguistics

377

Multi-TimeLine Summarization (MTLS): Improving Timeline
Summarization by Generating Multiple Summaries

Yi Yu1, Adam Jatowt2, Antoine Doucet3
Kazunari Sugiyama1, Masatoshi Yoshikawa1

1Kyoto University, Japan
2University of Innsbruck, Austria, 3University of La Rochelle, France

yuyi@db.soc.i.kyoto-u.ac.jp
adam.jatowt@uibk.ac.at, antoine.doucet@univ-lr.fr

{kaz.sugiyama, yoshikawa}@i.kyoto-u.ac.jp

Abstract

In this paper, we address a novel task, Multi-
ple TimeLine Summarization (MTLS), which
extends the flexibility and versatility of Time-
Line Summarization (TLS). Given any collec-
tion of time-stamped news articles, MTLS au-
tomatically discovers important yet different
stories and generates a corresponding timeline
for each story. To achieve this, we propose a
novel unsupervised summarization framework
based on the two-stage affinity propagation
process. We also introduce a quantitative eval-
uation measure for MTLS based on the previ-
ous TLS evaluation methods. Experimental re-
sults show that our MTLS framework demon-
strates high effectiveness and MTLS task can
provide better results than TLS.

1 Introduction

Nowadays, online news articles are one of the most
popular Web documents. However, due to a huge
amount of news articles available online, it is get-
ting difficult for users to effectively search, under-
stand, and track the entire news stories. To solve
this problem, a research area of TimeLine Sum-
marization (TLS) has been established, which can
alleviate the redundancy and complexity inherent
in news article collections thereby helping users
better understand the news landscape.

After the influential work on temporal sum-
maries by Swan and Allan (2000), TLS has at-
tracted researchers’ attention. Most of works on
TLS (Martschat and Markert, 2018; Steen and
Markert, 2019; Gholipour Ghalandari and Ifrim,
2020) have focused on improving the performance
of summarization. However, their drawbacks are as
follows: (a) the methods work essentially on a ho-
mogeneous type of datasets such as ones compiled
from the search results of an unambiguous query
(e.g., “BP Oil Spill”). The requirements imposed
on the input dataset make it hard for TLS systems

to generalize; (b) the output is usually a single time-
line regardless of the size and the complexity of the
input dataset.

We propose here the Multiple TimeLine Summa-
rization (MTLS) task that enhances and further gen-
eralizes TLS. MTLS automatically generates a set
of timelines that summarize disparate yet important
stories, rather than always generating a single time-
line as is in the case of TLS. An effective MTLS
framework should: (a) detect key events including
both short- and long-term events, (b) link events
related to the same story and separate events be-
longing to other stories, and (c) provide informative
summaries of constituent events to be incorporated
into the generated timelines.

MTLS can also help to deal with the ambiguity,
which is common in information retrieval. For ex-
ample, suppose that a user wants to get an overview
of news about a basketball player, Michael Jordan,
from a large collection of news articles. However,
when a search engine over such a collection takes
“Michael Jordan” as a query, it would likely return
documents constituting a mixture of news about dif-
ferent persons having the same name. Then, how
can a typical TLS system return meaningful results
if only a single timeline can be generated? Simi-
larly, ambiguous queries such as “Apple”, “Ama-
zon”, “Java” require MTLS solutions to produce
high quality results.

To address this task, we further propose a Two-
Stage Affinity Propagation Summarization frame-
work (2SAPS). It uses temporal information em-
bedded in sentences to discover important events,
and their linking information latent in news articles
to construct timelines. 2SAPS has several advan-
tages: firstly, it is entirely unsupervised which is
especially suited to TLS-related tasks as there are
very few gold summaries available for training su-
pervised systems; secondly, both the number of
events and the number of generated timelines are

378

self-determined. This allows our framework to be
dependent only on the input document collection,
instead of on human efforts.

Furthermore, the current TLS evaluation mea-
sures allow only 1-to-1 comparison (system- to
human-generated timeline), which is not suitable
for MTLS task where multiple timelines must be
compared to (typically) multiple ground-truth time-
lines. Therefore, we also propose a quantitative
evaluation measure for MTLS based on the adapta-
tion of the previous TLS evaluation framework.

Given these points, our contributions in this work
are summarized as follows:

1. We propose a novel task (MTLS), which auto-
matically generates multiple, informative, and
diverse timelines from an input time-stamped
document collection.

2. We introduce a superior MTLS model that out-
performs all TLS-adapted MTLS baselines.

3. We design an evaluation measure for MTLS
systems by extending the original TLS evalu-
ation framework.

2 Related Work

2.1 Timeline Summarization
Since the first work on timeline summariza-
tion (Swan and Allan, 2000; Allan et al., 2001),
this topic has received much attention over the
years (Alonso et al., 2009; Yan et al., 2011a; Zhao
et al., 2013; Tran et al., 2013; Li and Li, 2013;
Suzuki and Kobayashi, 2014; Wang et al., 2016;
Takamura et al., 2011; Pasquali et al., 2019, 2021).
In the following, we review the major approaches.

Chieu and Lee (2004) constructed timeline by
directly selecting the top ranked sentences based on
the summed similarities within n-day long window.
Yan et al. (2011b) proposed evolutionary timeline
summarization (ETS) to return the evolution tra-
jectory along the timeline, consisting of individual
but correlated summaries of each date. Shahaf et al.
(2012) created information maps (Maps) to help
users understand domain-specific knowledge. How-
ever, the output consists of a set of storylines that
have intersections or overlaps, which is not appro-
priate for a dataset that may contain quite different
topics. Nguyen et al. (2014) proposed a pipeline
to generate timelines consisting of date selection,
sentence clustering and sentence ranking.

Recently, Martschat and Markert (2018) adapted
a submodular function model for TLS task, which

is originally used for multi-document summariza-
tion (MDS). Duan et al. (2020) introduced the task
of Comparative Timeline Summarization (CTS),
which captures important comparative aspects of
evolutionary trajectories in two input sets of docu-
ments. The output of the CTS system is, however,
always two timelines generated in a contrastive
way. Then, Gholipour Ghalandari and Ifrim (2020)
examined different TLS strategies and categorized
TLS frameworks into the following three types:
direct summarization approaches, date-wise ap-
proaches, and event detection approaches.

To the best of our knowledge, the idea of multi-
ple timeline summarization has not been formally
proposed yet. Table 1 compares the related tasks.

2.2 Timeline Evaluation

Some works (Yan et al., 2011b; Chen et al., 2019;
Duan et al., 2020) evaluate timeline by only com-
puting ROUGE scores (Lin, 2004). This way ig-
nores the temporal aspect of a timeline, which is
important in timeline summarization. Martschat
and Markert (2017) then proposed a framework,
called tilse, to assess timelines from both textual
and temporal aspects. Subsequently, TLS works
(Steen and Markert, 2019; Gholipour Ghalandari
and Ifrim, 2020; Born et al., 2020) have followed
this framework to evaluate their models. Some
researches (Tran et al., 2015; Shahaf et al., 2012;
Alonso and Shiells, 2013) also involved user stud-
ies, in which users are required to score system-
generated timelines based on varying criteria such
as relevance and understandability. In Section 5,
we will adapt the tilse framework to MTLS task.

3 Problem Definition

We formulate MTLS task as follows:
Input: A time-stamped news article collection
D = {d1, d2, ..., d|D|}. The collection can be stan-
dalone or compiled from search results returned by
a news search engine.

Output: A set of timelines, T =
{T1, T2, . . . , Tk} is generated based on D, so that
each timeline Ti includes a sequence of time/date1

and summary pairs (tTi1 , s
Ti
1), . . . , (tTil , s

Ti
l) where

sTij (i = 1, . . . , k) are the summary sentences for
the time tTij (j = 1, . . . , l) and l is the length of
Ti. Each timeline in T should be consistent and
coherent, yet different from other timelines.

1In this paper, time and date are used as synonyms.

379

Tasks Output
1 timeline

Output
≥ 2 timelines

Automatically
Determine k

Input Heterogeneous
Collection

Quantitatively
Evaluate

TLS (Most of which in Section 2.1) X X
CTS (Duan et al., 2020) X (always 2) X
ETS (Yan et al., 2011b) X X

Maps (Shahaf et al., 2012) X X
MTLS (Proposed task) X X X X X

Table 1: Comparison between different TLS related tasks (k is the number of generated timelines).

We note that while the traditional TLS task
is limited as a document collection for it is
typically coherent and homogeneous, MTLS is
more flexible as the input news collection can
be diverse. For example, the input collection
can be generated using a search query q com-
posed of multiple entities or concepts like q =
{“egypt”, “h1n1”, “iraq”} or by using an am-
biguous query like q = {“michael”, “jordan”},
or it can also consist of news articles crawled over
a certain time span from multiple news sources.
Generally, the more heterogeneous D is, the more
timelines could be produced. The intuition behind
this idea is that users will need more structured
information to help them understand a relatively
complex document collection.

4 Framework

Next, we present two key components of our frame-
work: event generation module (Sec. 4.1) and time-
line generation module (Sec. 4.2).

We first make the following two assumptions:
Assumption 1: News articles sometimes retrospec-
tively mention past events for providing necessary
context to the target event, for underlying continu-
ation, causality, etc.
Assumption 2: Sentences mentioning similar
dates have higher probability to refer to the same
event than sentences with different dates.

4.1 Event Generation Module
In this module, we extract important historical
events from a document collection. Gholipour Gha-
landari and Ifrim (2020) constructed events by sim-
ply grouping articles with close publication dates
into clusters, resulting in lower accuracy. Note that
Assumption 1 implies that a single news article
may contain multiple events. Accordingly, in our
work, the concept of event is more fine-grained.
We define event as a set of sentences that describe
the same real-world occurrence, typically using the
same identifying information (e.g., actions, enti-
ties, locations). This information is captured by
sentence-BERT (Reimers and Gurevych, 2019): a

pre-trained model on a transformer network where
similar meanings are positioned nearby in semantic
vector space. We then employ Affinity Propaga-
tion (AP) (Frey and Dueck, 2007) following Steen
and Markert (2019) for clustering similar sentences.
AP algorithm groups data points by selecting a set
of exemplars along with their followers due to mes-
sage passing. It operates over an affinity matrix
S, where S(i, j) denotes similarity between data
points xi and xj .

We observe that high semantic similarity does
not always guarantee that sentences refer to the
same event. Especially, for some periodic events,
similar happenings might have occurred several
times. For example, a news article could include
sentences reporting that Brazil won the gold medal
in the World Cup (in 2002) while some other sen-
tences in this document could recall that Brazil has
won the first place in the World Cup in 1994. It
is clear that those sentences describe two distinct
events, which would be grouped into one event if
only semantic similarity is considered.

Therefore, based on Assumption 2, we introduce
another key factor, temporal similarity, which en-
hances the confidence of how likely two sentences
will refer to the same event. We define each ele-
ment S1(vi, vj) of affinity matrix S1 as follows:

S1(vi, vj) = α1 ·Sdate(ti, tj)+(1− α1)·Scos(vi, vj),
(1)

where vi and vj denote different sentences, and ti
and tj denote dates mentioned by vi and vj , respec-
tively.2 In addition, Sdate and Scos denote the tem-
poral and semantic similarities, respectively. While
we employ cosine similarity for the semantic simi-
larity, we define temporal similarity Sdate(i, j) to
quantify how similar two dates are using Equation
(2):

Sdate(ti, tj) =
1

expγ·|ti−tj |
, (2)

where γ3 is the decay rate of the exponential func-
2We use Heideltime (Strötgen and Gertz, 2013) for resolving temporal

expressions. If a sentence does not explicitly mention any date, we assume it
refers to the publication date of the article.

3We set γ = 0.05 in the experiments.

380

tion. The larger the time gap between two dates,
the smaller the value of Sdate.

By passing messages of both semantic and tem-
poral information between sentences, clusters con-
sisting of exemplar and non-exemplar sentences
are constructed to form the candidate event set E.
Each cluster represents an event.

Event Selection. In a timeline, it is not neces-
sary to show all events of a story as users usually
care about the most important events only. We de-
sign an event selection step that is helpful for han-
dling excessive number of events. The selection
relies on two measures: Salience and Consistency
defined by Equations (3) and (4), respectively:

Salience(e) =
log(| e |)
log(| D |) , (3)

Consistency(e) =

∑
vi∈e,vi 6=veScos(vi,ve)

| e | −1 , (4)

where ve is the exemplar sentence in event e; | e |
and | D | denote the number of sentences in e and
document collection D, respectively.

Intuitively, important historical events would of-
ten be mentioned by future news reports. Salience
of event is used to evaluate such importance and
is computed as the relative frequency of sentences
about that event compared with all sentences in the
collection. On the other hand, Consistency ensures
high quality of events. We then rank all candi-
date events based on the weighted summed score
of these two measures. Hereafter, we denote the
weight of Event Salience as ζ1 and that of Event
Consistency as 1− ζ1.

We select the top-scored events obtaining a new
event setE∗ by setting a threshold. To avoid tuning
its value, we set the value to one standard deviation
from the mean (lower end).

4.2 Timeline Generation Module

While TLS systems directly link all the identified
events, MTLS requires their deeper understand-
ing. As described in Section 1, an effective MTLS
framework should link events related to the same
story and separate other unrelated events to differ-
ent timelines. To achieve this, we explain the fol-
lowing steps in this module: Event Linking, Time-
line Selection, and Timeline Summarizing.

Event Linking. According to Assumption 1,
current events can refer to related past events. We
thus define a reference matrix R, in which each
element R(ei, ej) denotes the degree of reference

between two events ei and ej . As events in our
work are represented by sentences and a sentence
belongs to a single event, R(ei, ej) can be reflected
by counting patterns of sentence co-occurrences in
documents. Formally, R(vi, vj) represents the case
where two sentences vj and vi refer to each other
as defined by Equation (5):

R(vi, vj)=

{
1 vi,vj ∈ d ∧vi∈ ek,vj ∈el, ek 6= el
0 otherwise, (5)

where d is an article, ek and el are elements in E∗.
The degree of reference between ei and ej is

then defined as follows:

R(ei, ej) =

∑
v1∈ei

∑
v2∈ej R(v1, v2)

| ei | · | ej |
, (6)

where |ei| and |ej | are sizes of ei, ej , respectively.
We then construct a graph of events where each

node is an e ∈ E∗, and the value of an edge reflects
the connection degree between a pair of two events.
We reuse AP algorithm to detect the community
of events over the affinity matrix S2 defined by
Equation (7):

S2(ei, ej) = α2 ·R(ei, ej) + (1− α2) · Scos(ei, ej), (7)

where Scos(ei, ej) denotes cosine similarity be-
tween ei and ej to capture semantic similarity.
Based on the affinity matrix S2, AP finally gen-
erates clusters, i.e., the initial timeline set, T .

Timeline Selection. In order to ensure the qual-
ity of constructed timelines, we define criteria to
select high-quality timelines from T . Similar to
event selection described in Section 4.1, we also
use two indicators to evaluate the quality of a time-
line. We define Timeline Salience as the average
score of Event Salience of all events within the
timeline, and Timeline Coherence as the average
of semantic similarity scores between any chrono-
logically4 adjacent events defined by Equation (8):

Coherence(T) =

∑
ei,ei+1∈T Scos(ei, ei+1)

| T | −1 , (8)

where | T | is the size of a timeline, i.e., the number
of events in this timeline.

Intuitively, important timelines, which reflect im-
portant stories in the document collection, are more
likely to be preferred by users. Timeline Salience
captures this importance by passing the importance
of its components (i.e., events), while Timeline Co-
herence ensures that the story expressed by the
timeline is consistent.

4The time of an event e is given by its exemplar sentence.

381

We rank timelines based on a weighted sum of
Timeline Salience and Timeline Coherence. The
weight of Timeline Salience is denoted as ζ2; thus
the weight of Timeline Coherence is 1−ζ2. We then
select the top-scored elements from the timeline set
T based on a threshold. Same as before, we set the
value to one standard deviation from the mean.

Timeline Summarizing. By previous steps, we
have now obtained multiple timelines {T1, T2, ...},
where T is a list of events {e1, e2, ...}. However,
it is not feasible to show all contents of each e as
it usually contains many sentences. We use only
the exemplar sentence in event since exemplar is
the most typical and representative member in the
group.

In addition, it is possible that two events ei and
ej occur on the same day. In this case, we concate-
nate their exemplar sentences.

Timeline Tagging. This step is an add-on to
MTLS systems. To better understand the stories
of constructed timelines, we believe that it should
be helpful for users to also obtain a label for each
timeline. As described in Section 1, the input doc-
ument collection may be composed of different
topics or of one topic discussed through different
aspects. For example, among the timelines gener-
ated based on the topic syria, one timeline might
summarize the story about Syrian civil war while
another might be about Syrian political elections. A
label should then help people understand the story
of the timeline. We simply select the 3 most fre-
quent words among events (excluding stopwords)
for each timeline as its label.

5 Evaluation Framework

5.1 TLS Evaluation

TLS evaluation relies on ROUGE score and its
variants as follows:

Concatenation-based ROUGE (concat). It
considers only the textual overlap between concate-
nated system summaries and ground-truth, while
ignoring all date information of timeline (Yan et al.,
2011b; Nguyen et al., 2014; Wang et al., 2016).

Date-agreement ROUGE (agreement). It mea-
sures both textual and temporal information over-
lap by computing ROUGE score only when the
date in the system-generated timelines matches the
one of the ground-truth timeline (Tran et al., 2013).
Otherwise, its value is 0.

Alignment-based ROUGE. It linearly penal-
izes the ROUGE score by the distances of dates
or/and summary contents. Martschat and Markert
(2017) proposed three types of this metric: align,
align+, align+m:1 (align by date, align by date and
contents, align by date and contents where the map
function is non-injective, respectively).

Date selection (d-select). It evaluates how well
the model works in selecting correct dates in the
ground-truth (Martschat and Markert, 2018).

5.2 MTLS evaluation
The evaluation methods for TLS cannot directly as-
sess the performance of MTLS systems as there are
multiple output timelines and multiple ground-truth
timelines. Concretely, given an input collection
D, corresponding ground-truth timeline set G =
{G1, G2, ...Gk1} (k1 ≥ 1), and system-generated
timeline set T = {T1, T2, ..., Tk2} (k2 ≥ 1), eval-
uation metrics need information to automatically
“match” the ground-truth timeline when evaluating
Ti. Therefore, we make the system find the closest
ground-truth G∗ to timeline T as follows:

G∗ = argmax
G∈G

fm(T,G), (9)

where fm is the TLS evaluation function to com-
pute the score between T and G based on metric
m, which can be either concat, agreement, align,
align+, align+m:1, or d-select. Then, the overall
performance of the MTLS models is computed by
taking the average of all the members in T .

6 Experimental Setup

The goal of our experiments is to answer the fol-
lowing research questions (RQs):

RQ1: Do MTLS models produce more mean-
ingful output than TLS models?

RQ2: How does 2SAPS framework perform on
MTLS task compared with other MTLS baselines?

RQ3: How effective are the components of the
modules in 2SAPS? How do parameter changes in
the model affect the results?

6.1 Datasets
We note that there is no available dataset for MTLS
task, thus we construct MTLS datasets5 extending
existing TLS datasets. Tran et al. released Time-
line17 (Binh Tran et al., 2013) and Crisis (Tran
et al., 2015) datasets for TLS over news articles.

5The datasets are now available at
https://yiyualt.github.io/mtlsdata/.

https://yiyualt.github.io/mtlsdata/.

382

Name #Topics #Groundtruth Avg.Timespan #Docs. #Sents.
Timeline17 9 17 250 days 4,650 183,782

Crisis 4 22 343 days 9,242 331,044

Table 2: Statistics on TLS datasets.

L=1 D1:egyptD2:finanD3:haitiD4:h1n1D5:libya

L=2
D6:egypt+libyaD7:haiti+iraq
D8:h1n1+haitiD9:finan+mj
D10:egypt+mj

L=3
D11:egypt+h1n1+iraqD12:finan+iraq+syria
D13:egypt+ iraq+mjD14:finan+h1n1+mj
D15:finan+libya+mj

L=4
D16:egypt+finan+haiti+iraqD17:finan+h1n1+
iraq+mjD18:h1n1+haiti+iraq+mjD19:finan+
h1n1+haiti+mjD20:egypt+haiti+iraq+mj

L=5

D21:finan+h1n1+haiti+iraq+mj
D22:h1n1+haiti+iraq+mj+syria
D23:egypt+finan+haiti+mj+syria
D24:egypt+finan+ iraq+mj+syria
D25:egypt+finan+h1n1+haiti+mj

Table 3: MTLS datasets used for our experiments.

Table 2 shows their statistics. To assure high com-
plexity of data, we generate multiple datasets from
TLS datasets by varying degree of story mixtures.
We construct MTLS datasets based on combining
TLS datasets, according to the following procedure:
(1) set the number of topics L used to generate
a new dataset; (2) from TLS datasets, randomly
choose L topics, then merge their document collec-
tions into a new datasetD along with grouping their
associated ground-truth timelines into G.6 (3) re-
peat steps (1) and (2). Here, the value of L reflects
the complexity of the dataset. The more topics the
dataset contains, the more complex it is.

We repeated the steps (1)~(3) on Timeline177

and finally created 25 datasets as shown in Ta-
ble 3. Timeline17 contains 9 document collec-
tions, covering the following topics: “BP Oil Spill”
(bpoil), “Influenza H1N1” (h1n1), “Michael Jack-
son death” (mj), “Libyan War” (libya), “Egyptian
Protest” (egypt), “Financial Crisis” (finan), “Haiti
Earthquake” (haiti), “Iraq War” (iraq), “Syrian Cri-
sis” (syria).

6.2 Baselines

As there are no ready models for MTLS task, we
design the baselines as “divide-and-summarize” ap-
proaches. The underlying idea is: first segment the
input dataset into sub-datasets (subsequently called

6If a topic has multiple ground-truth timelines, we pick one
that has length closest to the average length of the timelines
for that topic.

7We note that Crisis contains only 4 topics, resulting in
few possible combinations, so we finally decided to skip it.

segments) by partition/division algorithms; then
adopt TLS techniques to generate a timeline for
each sub-dataset (segment). We now describe the
choices for each step.

Dataset Division Approaches:

• Random. We randomly decide the number of
segments from 1 to 10. Then, we assign a
news article to a random segment.

• LDA (Latent Dirichlet Allocation) (Blei et al.,
2003). Given a dataset, we first use LDA to
detect the main topics in the dataset. Then, we
assign each news article to its dominant topic.

• K-means (MacQueen et al., 1967). We use
k-means algorithm in scikit-learn.8

TLS Approaches:

• CHIEU2004 (Chieu and Lee, 2004): It is a
frequently used unsupervised TLS baseline
which selects the top-ranked sentences based
on summed similaries within n-day window.

• MARTSCHAT2018 (Martschat and Markert,
2018): It is one of the state-of-the-art TLS
models and is also the first work to establish
formal experimental settings for TLS task. We
use the implementation given by the authors.9

• GHALANDARI2020 (Gholipour Ghalandari
and Ifrim, 2020): It constructs timeline by first
predicting the important dates via a simple re-
gression model and then selecting important
sentences for each date.10

We combine the above 3 dataset division ap-
proaches and 3 TLS approaches and thus yield 9
baselines.

6.3 Experimental Settings
Concerning the characteristics of MTLS task and
our datasets, the experimental settings differ from
the TLS settings applied in Martschat and Markert
(2018). In particular, the settings are:

• When generating timelines, none of the com-
pared models knows the actual value of L
(i.e., L is not an input data). The stratification
given in Table 3 is shown only for the reader
to explain the datasets’ construction method.

8https://scikit-learn.org/
9https://github.com/smartschat/tilse.

10https://github.com/complementizer/
news-tls.

https://scikit-learn.org/
https://github.com/smartschat/tilse
https://github.com/complementizer/news-tls
https://github.com/complementizer/news-tls

383

• For the dataset-division algorithms, LDA and
k-means, we use different techniques to find
optimal number of segments. For LDA, we
evaluate topic coherence measure (Cv score)
(Röder et al., 2015) for topic numbers ranging
from 1 to 10, and then choose the optimal
number. For k-means, we use silhouette value
(Rousseeuw, 1987) to determine the optimal
number of segments.

• All the compared methods do not take the
information of the ground-truth as input. That
is, the number of dates, the average number of
summary sentences per date, the total number
of summary sentences, the ground-truth start
dates, and end dates are all unknown.

• We set the length of timelines to 20 and sum-
mary length to 2 sentences per date.

7 Results and Discussion

7.1 MTLS vs. TLS

We first address RQ1 to show the necessity of
MTLS and to demonstrate that TLS performs
poorly when an input dataset contains mixture of
documents on different stories. To achieve this, we
compare results of MTLS baselines with a standard
TLS approach. Table 4 shows the performance
comparison between TLS and MTLS baselines
based on MARTCHAT2018. For fair comparison
in this first experiment, we select only one time-
line from MTLS outputs that is most similar to the
timeline generated by TLS. We observe that when
L = 1, 2, MTLS underperforms TLS by 15.1%,
4.8% in terms of align+m:1 ROUGE-1, respec-
tively. However, it outperforms TLS by 150%,
117.1%, and 94.7% when L equals 3,4,5, respec-
tively. This indicates that as the complexity of input
document collection increases (higher L values),
TLS systems do not produce good results when
compared to MTLS ones. In real world scenarios,
it is rather rare that the input dataset is clean enough
to contain only a single topic. Thus, these results
suggest that MTLS approach should in practice be
more useful than TLS. The results for the other two
TLS algorithms introduced in Section 6.2 show a
similar trend, too. Furthermore, the example out-
puts of TLS and MTLS systems are also available
as supplementary materials.

7.2 Performance of 2SAPS

We now investigate the performance of our frame-
work to answer RQ2. Table 5 shows the over-
all performance of MTLS systems. We observe
that 2SAPS achieves the best performance in
terms of all ROUGE metrics. In particular, when
compared with CHIEU2004, MARTSCHAT2018 and
GHALANDARI2020 in terms of concat ROUGE-
1 score, it outperforms them by 52.9%, 12.2%,
and 16.4%, respectively. We also observe that
GHALANDARI2020 method still achieves the best
performance among baselines except for concat
ROUGE-1. Furthermore, it is worth noticing that k-
means works best in dividing datasets. On average,
k-means outperforms Random and LDA by 15%
and 7.2%, respectively, in terms of concat ROUGE-
1. Finally, compared with the best-performing base-
line, k-means-GHALANDARI2020, our 2SAPS out-
performs it by 9.9%, 15.1%, 0%, 10%, 4.7%, 3.6%,
19.1%, in terms of concat (ROUGE-1,ROUGE-
2), align+m:1 (ROUGE-1,ROUGE-2), agreement
(ROUGE-1,ROUGE-2) and d-select, respectively.

7.3 Ablation Study

We turn to the first part of RQ3. We conduct ab-
lation tests on Event Selection (ES) and Timeline
Selection (TS) components. Table 6 shows the
changes of different models. We observe that with-
out ES, d-select and align+m:1 ROUGE-2 scores
decrease 14.6% and 42.2% compared with 2SAPS.
The plausible reason is that without ES, many unim-
portant dates and events are included in a timeline,
resulting in low recall of correct dates. On the other
hand, without TS component, the generated time-
line set tends to contain noisy timelines, causing
low ROUGE-1 as the performance drops by 18.8%.

7.4 Parameter Impact

We now analyze the impact of key parameters, α1,
α2, ζ1, ζ2. α1 and α2 directly influence the quality
of generated events and timelines, while ζ1 and
ζ2 indirectly affect the model’s performance by
controlling the selection steps. Figure 1 shows the
performance of 2SAPS under concat ROUGE-1,
align+m:1 ROUGE-1, and agreement ROUGE-1.

In particular, we observe that: a smaller value
of α1 (from 0.1 to 0.4) gives better results than
a larger value (Figure 1a). When α1 turns to 1,
AP algorithm does not converge, and the values
of all measures become 0. The plausible reason
for this could be that when sentence dates are very

384

Model Metric L=1 L=2 L=3 L=4 L=5

TLS (MARTSCHAT2018)

concat (ROUGE-1) 0.287 0.310 0.214 0.261 0.202
concat (ROUGE-2) 0.061 0.069 0.038 0.044 0.035

align+m:1 (ROUGE-1) 0.053 0.063 0.032 0.041 0.038
align+m:1 (ROUGE-2) 0.011 0.017 0.011 0.007 0.007

MTLS (k-means-MARTSCHAT2018)

concat (ROUGE-1) 0.272 0.364 0.362 0.400 0.390
concat (ROUGE-2) 0.056 0.084 0.085 0.100 0.084

align+m:1 (ROUGE-1) 0.046 0.063 0.082 0.097 0.082
align+m:1 (ROUGE-2) 0.009 0.014 0.026 0.034 0.024

MTLS (LDA-MARTSCHAT2018)

concat (ROUGE-1) 0.274 0.332 0.363 0.335 0.273
concat (ROUGE-2) 0.054 0.074 0.089 0.079 0.059

align+m:1 (ROUGE-1) 0.043 0.057 0.078 0.080 0.065
align+m:1 (ROUGE-2) 0.007 0.009 0.027 0.024 0.018

Table 4: Performance comparison between TLS and MTLS systems. For fair comparisons, we compare the single
timeline generated by TLS model with the most related timeline generated by MTLS models.

MTLS Methods
concat align+m:1 agreement d-select

ROUGE-1 ROUGE-2 ROUGE-1 ROUGE-2 ROUGE-1 ROUGE-2 F1

Baselines

CHIEU2004
Random 0.191 0.027 0.019 0.004 0.010 0.002 0.075

LDA 0.192 0.035 0.023 0.005 0.013 0.004 0.089
k-means 0.229 0.046 0.027 0.006 0.014 0.004 0.096

MARTSCHAT2018
Random 0.254 0.049 0.044 0.009 0.037 0.007 0.352

LDA 0.289 0.068 0.062 0.017 0.052 0.015 0.387
k-means 0.291 0.071 0.061 0.017 0.051 0.015 0.376

GHALANDARI2020
Random 0.253 0.048 0.068 0.015 0.058 0.013 0.414

LDA 0.268 0.062 0.085 0.025 0.076 0.024 0.440
k-means 0.284 0.073 0.096 0.030 0.085 0.028 0.467

Our method

2SAPS 0.312 0.084 0.096 0.033 0.089 0.029 0.556

Table 5: Overall performance obtained by the baselines and the proposed methods over D1 ~D25 datasets.

d-select ROUGE-1 ROUGE-2
2SAPS w/o ES 0.475 0.085 0.019
2SAPS w/o TS 0.502 0.078 0.023

2SAPS 0.556 0.096 0.033

Table 6: Ablation results of 2SAPS model, showing
changes of align+m:1 ROUGE and d-select F1 scores.

close, the elements of transition matrix differ only
slightly, resulting in non-convergence.

Figure 1b shows the impact of the reference re-
lation in linking events. The values of all metrics
increase as α2 increases. It makes sense that ref-
erence relation exerts an important role in linking
events into timelines, thus a higher value is nec-
essary. However, when α2 is over 0.9, the perfor-
mance drops because when news articles provide
few contextual events (e.g., background events, re-
lated events, etc.), then the reference relation be-
tween events becomes unreliable.

ζ1 controls the impact of Event Salience de-
scribed in Section 4.1. Another corresponding fac-
tor is Event Consistency, which is weighted by 1-ζ1.
Figure 1c shows that the model with larger values
of ζ1 underperforms the ones with relatively small
values of ζ1 (from 0.2 to 0.4), indicating that con-

(a) α1: Temporal similarity (b) α2: Reference relation

(c) ζ1: Event salience (d) ζ2: Timeline salience

Figure 1: Impact of parameters on F1 score.

sistency of event matters more than its salience in
selecting high-quality events. Finally, in Figure 1d,
we observe that along with the increase of ζ2, the
performance of all metrics decrease, suggesting
that the coherence of timeline is more effective
than salience in selecting good timelines.

7.5 Limitations

Our 2SAPS model works essentially on the unit
of sentences and constructs a graph where each
sentence is a node and edge is the relation between

385

sentences. It has then a complexity of O(n2). Fu-
ture work could address this by simplifying graph
structure and providing approximate solutions to
cover also the cases of processing large datasets.
Another solution is to select only important sen-
tences from news articles using the combination of
classification, summarization or filtering.

8 Conclusions

We introduced MTLS task to generalize the time-
line summarization problem. MTLS improves the
performance of timeline summarization by gener-
ating multiple summaries. We conducted exper-
iments to first show that given a heterogeneous
time-stamped news article collection, TLS usually
does not produce satisfactory result. We further pro-
posed 2SAPS, a two-stage clustering-based frame-
work, to effectively solve MTLS task. Further-
more, we extended TLS datasets to MTLS datasets,
as well as introduced a novel evaluation measure
for MTLS. Experimental results show that 2SAPS
outperforms MTLS baselines which follow the
“divide-and-summarize” strategy. Our work sig-
nificantly improves the generalization ability of
timeline summarization and can provide users with
easier access to news collections. As an unsuper-
vised approach that does not require costly training
data, it can be applied to any potential datasets and
languages.

In future work, we plan to test our approach on
additional MTLS datasets. We will also investigate
scenarios in which MTLS can enhance information
retrieval systems operating over news article col-
lections. For users searching over large temporal
collections, structuring the returned results into a
series of timelines could prove beneficial, instead
of returning a usual list of interwoven documents
that relate to different stories or periods.

Acknowledgments

We greatly appreciate the authors in CoNLL’18 pa-
per (Martschat and Markert, 2018) for making their
data public. In particular, we wish to thank Sebas-
tian Martschat for his great support in discussions
about the experiment setup and reproduction. We
also want to thank anonymous reviewers for their
invaluable feedback.

References
James Allan, Rahul Gupta, and Vikas Khandelwal.

2001. Temporal Summaries of New Topics. In Pro-
ceedings of the 24th Annual International ACM SI-
GIR Conference on Research and Development in
Information Retrieval (SIGIR ’01), pages 10–18.

Omar Alonso, Michael Gertz, and Ricardo Baeza-
Yates. 2009. Clustering and Exploring Search Re-
sults Using Timeline Constructions. In Proceed-
ings of the 18th ACM Conference on Information
and Knowledge Management (CIKM ’09), pages 97–
106.

Omar Alonso and Kyle Shiells. 2013. Timelines as
Summaries of Popular Scheduled Events. In Pro-
ceedings of the 22nd International Conference on
World Wide Web (WWW ’13), pages 1037–1044.

Giang Binh Tran, Mohammad Alrifai, and Dat
Quoc Nguyen. 2013. Predicting Relevant News
Events for Timeline Summaries. In Proceedings of
the 22nd International Conference on World Wide
Web (WWW ’13), pages 91–92.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent Dirichlet Allocation. Journal of Ma-
chine Learning Research, 3(Jan):993–1022.

Leo Born, Maximilian Bacher, and Katja Markert.
2020. Dataset Reproducibility and IR Methods in
Timeline Summarization. In Proceedings of the
12th Language Resources and Evaluation Confer-
ence (LREC’20), pages 1763–1771.

Xiuying Chen, Zhangming Chan, Shen Gao, Meng-
Hsuan Yu, Dongyan Zhao, and Rui Yan. 2019.
Learning Towards Abstractive Timeline Summariza-
tion. In Proceedings of the 28th International
Joint Conference on Artificial Intelligence (IJCAI-
19), pages 4939–4945.

Hai Leong Chieu and Yoong Keok Lee. 2004. Query
Based Event Extraction Along a Timeline. In Pro-
ceedings of the 27th Annual International ACM SI-
GIR Conference on Research and Development in
Information Retrieval (SIGIR ’04), pages 425–432.

Yijun Duan, Adam Jatowt, and Masatoshi Yoshikawa.
2020. Comparative Timeline Summarization via Dy-
namic Affinity-Preserving Random Walk. In Pro-
ceedings of the 24th European Conference on Artifi-
cial Intelligence (ECAI’20), pages 1778–1785.

Brendan J Frey and Delbert Dueck. 2007. Clustering
by Passing Messages Between Data Points. Science,
315(5814):972–976.

Demian Gholipour Ghalandari and Georgiana Ifrim.
2020. Examining the State-of-the-Art in News
Timeline Summarization. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics (ACL’20), pages 1322–1334.

386

Jiwei Li and Sujian Li. 2013. Evolutionary Hierarchi-
cal Dirichlet Process for Timeline Summarization.
In Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (ACL’13),
pages 556–560.

Chin-Yew Lin. 2004. ROUGE: A Package for Auto-
matic Evaluation of Summaries. In Proceedings of
the 42th Annual Meeting of the Association for Com-
putational Linguistics (ACL’04), pages 74–81.

James MacQueen et al. 1967. Some methods for clas-
sification and analysis of multivariate observations.
In Proceedings of the 5th Berkeley Symposium on
Mathematical Statistics and Probability, pages 281–
297.

Sebastian Martschat and Katja Markert. 2017. Improv-
ing Rouge for Timeline Summarization. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics
(EACL’17), pages 285–290.

Sebastian Martschat and Katja Markert. 2018. A
Temporally Sensitive Submodularity Framework for
Timeline Summarization. In Proceedings of the
22nd Conference on Computational Natural Lan-
guage Learning (CONLL’18), pages 230–240.

Kiem-Hieu Nguyen, Xavier Tannier, and Véronique
Moriceau. 2014. Ranking Multidocument Event De-
scriptions for Building Thematic Timelines. In Pro-
ceedings of the 25th International Conference on
Computational Linguistics (COLING 2014), pages
1208–1217.

Arian Pasquali, Ricardo Campos, Alexandre Ribeiro,
Brenda Santana, Alípio Jorge, and Adam Jatowt.
2021. TLS-Covid19: A New Annotated Corpus
for Timeline Summarization. In Proceedings of the
43rd European Conference on Information Retrieval
(ECIR 2021), pages 497 – 512.

Arian Pasquali, Vítor Mangaravite, Ricardo Campos,
Alípio Mário Jorge, and Adam Jatowt. 2019. Inter-
active System for Automatically Generating Tempo-
ral Narratives. In Proceedings of the 41st European
Conference on Information Retrieval (ECIR 2019),
pages 251–255.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence Embeddings using Siamese BERT-
Networks. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP-IJCNLP 2019), pages 3982–3992.

Michael Röder, Andreas Both, and Alexander Hinneb-
urg. 2015. Exploring the Space of Topic Coherence
Measures. In Proceedings of the 8th ACM Interna-
tional Conference on Web Search and Data Mining
(WSDM ’15), pages 399–408.

Peter J Rousseeuw. 1987. Silhouettes: A graphical aid
to the interpretation and validation of cluster analy-
sis. Journal of Computational and Applied Mathe-
matics, 20:53–65.

Dafna Shahaf, Carlos Guestrin, and Eric Horvitz. 2012.
Trains of Thought: Generating Information Maps.
In Proceedings of the 21st International Conference
on World Wide Web (WWW ’12), pages 899–908.

Julius Steen and Katja Markert. 2019. Abstractive
Timeline Summarization. In Proceedings of the 2nd
Workshop on New Frontiers in Summarization (New-
Sum’19), pages 21–31.

Jannik Strötgen and Michael Gertz. 2013. Multilingual
and Cross-Domain Temporal Tagging. Language
Resources and Evaluation, 47(2):269–298.

Satoko Suzuki and Ichiro Kobayashi. 2014. On-line
Summarization of Time-Series Documents Using a
Graph-Based Algorithm. In Proceedings of the 28th
Pacific Asia Conference on Language, Information
and Computing (PACLIC’14), pages 470–478.

Russell Swan and James Allan. 2000. Automatic Gen-
eration of Overview Timelines. In Proceedings of
the 23rd Annual International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval (SIGIR ’00), pages 49–56.

Hiroya Takamura, Hikaru Yokono, and Manabu Oku-
mura. 2011. Summarizing a Document Stream. In
Proceedings of the 33rd European Conference on In-
formation Retrieval (ECIR 2011), pages 177–188.

Giang Tran, Mohammad Alrifai, and Eelco Herder.
2015. Timeline Summarization From Relevant
Headlines. In Proceedings of the 37th European
Conference on Information Retrieval (ECIR 2015),
pages 245–256.

Giang Binh Tran, Tuan A Tran, Nam-Khanh Tran,
Mohammad Alrifai, and Nattiya Kanhabua. 2013.
Leveraging Learning to Rank in an Optimization
Framework for Timeline Summarization. In Pro-
ceedings of SIGIR 2013 Workshop on Time-aware
Information Access (#TAIA’13).

William Yang Wang, Yashar Mehdad, Dragomir Radev,
and Amanda Stent. 2016. A Low-Rank Approxi-
mation Approach to Learning Joint Embeddings of
News Stories and Images for Timeline Summariza-
tion. In Proceedings of the 15th Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies (NAACL-HLT 2016), pages 58–68.

Rui Yan, Liang Kong, Congrui Huang, Xiaojun Wan,
Xiaoming Li, and Yan Zhang. 2011a. Timeline Gen-
eration Through Evolutionary Trans-temporal Sum-
marization. In Proceedings of the 2011 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP ’11), pages 433–443.

Rui Yan, Xiaojun Wan, Jahna Otterbacher, Liang Kong,
Xiaoming Li, and Yan Zhang. 2011b. Evolutionary
Timeline Summarization: a Balanced Optimization
Framework via Iterative Substitution. In Proceed-
ings of the 34th international ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval (SIGIR ’11), pages 745–754.

387

Xin Wayne Zhao, Yanwei Guo, Rui Yan, Yulan He,
and Xiaoming Li. 2013. Timeline Generation with
Social Attention. In Proceedings of the 36th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR ’13),
pages 1061–1064.

