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Abstract

We propose Generation-Augmented Retrieval
(GAR) for answering open-domain questions,
which augments a query through text genera-
tion of heuristically discovered relevant con-
texts without external resources as supervi-
sion. We demonstrate that the generated con-
texts substantially enrich the semantics of the
queries and GAR with sparse representations
(BM25) achieves comparable or better per-
formance than state-of-the-art dense retrieval
methods such as DPR (Karpukhin et al., 2020).
We show that generating diverse contexts for a
query is beneficial as fusing their results con-
sistently yields better retrieval accuracy. More-
over, as sparse and dense representations are
often complementary, GAR can be easily com-
bined with DPR to achieve even better per-
formance. GAR achieves state-of-the-art per-
formance on Natural Questions and TriviaQA
datasets under the extractive QA setup when
equipped with an extractive reader, and con-
sistently outperforms other retrieval methods
when the same generative reader is used.!

1 Introduction

Open-domain question answering (OpenQA) aims
to answer factoid questions without a pre-specified
domain and has numerous real-world applications.
In OpenQA, a large collection of documents (e.g.,
Wikipedia) are often used to seek information per-
taining to the questions. One of the most com-
mon approaches uses a retriever-reader architecture
(Chen et al., 2017), which first retrieves a small sub-
set of documents using the question as the query
and then reads the retrieved documents to extract
(or generate) an answer. The retriever is crucial as it
is infeasible to examine every piece of information
in the entire document collection (e.g., millions
of Wikipedia passages) and the retrieval accuracy
bounds the performance of the (extractive) reader.

*Work was done during internship at Microsoft Azure Al.

'0ur code is available at https://github.com/
morningmoni/GAR.

Early OpenQA systems (Chen et al., 2017)
use classic retrieval methods such as TF-IDF and
BM?25 with sparse representations. Sparse methods
are lightweight and efficient, but unable to per-
form semantic matching and fail to retrieve rele-
vant passages without lexical overlap. More re-
cently, methods based on dense representations
(Guu et al., 2020; Karpukhin et al., 2020) learn to
embed queries and passages into a latent vector
space, in which text similarity beyond lexical over-
lap can be measured. Dense retrieval methods can
retrieve semantically relevant but lexically differ-
ent passages and often achieve better performance
than sparse methods. However, the dense mod-
els are more computationally expensive and suffer
from information loss as they condense the entire
text sequence into a fixed-size vector that does not
guarantee exact matching (Luan et al., 2020).

There have been some recent studies on query re-
formulation with text generation for other retrieval
tasks, which, for example, rewrite the queries to
context-independent (Yu et al., 2020; Lin et al.,
2020; Vakulenko et al., 2020) or well-formed (Liu
et al.,, 2019) ones. However, these methods re-
quire either task-specific data (e.g., conversational
contexts, ill-formed queries) or external resources
such as paraphrase data (Zaiem and Sadat, 2019;
Wang et al., 2020) that cannot or do not trans-
fer well to OpenQA. Also, some rely on time-
consuming training process like reinforcement
learning (RL) (Nogueira and Cho, 2017; Liu et al.,
2019; Wang et al., 2020) that is not efficient enough
for OpenQA (more discussions in Sec. 2).

In this paper, we propose Generation-
Augmented Retrieval (GAR), which augments
a query through text generation of a pre-trained
language model (PLM). Different from prior
studies that reformulate queries, GAR does not
require external resources or downstream feedback
via RL as supervision, because it does not rewrite
the query but expands it with heuristically discov-
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ered relevant contexts, which are fetched from
PLMs and provide richer background information
(Table 2). For example, by prompting a PLM
to generate the title of a relevant passage given
a query and appending the generated title to the
query, it becomes easier to retrieve that relevant
passage. Intuitively, the generated contexts
explicitly express the search intent not presented
in the original query. As a result, GAR with
sparse representations achieves comparable or
even better performance than state-of-the-art
approaches (Karpukhin et al., 2020; Guu et al.,
2020) with dense representations of the original
queries, while being more lightweight and efficient
in terms of both training and inference (including
the cost of the generation model) (Sec. 6.4).

Specifically, we expand the query (question) by
adding relevant contexts as follows. We conduct
seq2seq learning with the question as the input
and various freely accessible in-domain contexts as
the output such as the answer, the sentence where
the answer belongs to, and the title of a passage
that contains the answer. We then append the gen-
erated contexts to the question as the generation-
augmented query for retrieval. We demonstrate
that using multiple contexts from diverse gener-
ation targets is beneficial as fusing the retrieval
results of different generation-augmented queries
consistently yields better retrieval accuracy.

We conduct extensive experiments on the Nat-
ural Questions (NQ) (Kwiatkowski et al., 2019)
and TriviaQA (Trivia) (Joshi et al., 2017) datasets.
The results reveal four major advantages of GAR:
(1) GAR, combined with BM25, achieves signif-
icant gains over the same BM25 model that uses
the original queries or existing unsupervised query
expansion (QE) methods. (2) GAR with sparse rep-
resentations (BM25) achieves comparable or even
better performance than the current state-of-the-art
retrieval methods, such as DPR (Karpukhin et al.,
2020), that use dense representations. (3) Since
GAR uses sparse representations to measure lexical
overlap?, it is complementary to dense representa-
tions: by fusing the retrieval results of GAR and
DPR, we obtain consistently better performance
than either method used individually. (4) GAR
outperforms DPR in the end-to-end QA perfor-
mance (EM) when the same extractive reader is
used: EM=41.8 (43.8 when combining with DPR)

2Strictly speaking, GAR with sparse representations han-
dles semantics before retrieval by enriching the queries, while
maintaining the advantage of exact matching.

on NQ and 62.7 on Trivia, creating new state-of-
the-art results for extractive OpenQA. GAR also
outperforms other retrieval methods under the gen-
erative setup when the same generative reader is
used: EM=38.1 (45.3 when combining with DPR)
on NQ and 62.2 on Trivia.

Contributions. (1) We propose Generation-
Augmented Retrieval (GAR), which augments
queries with heuristically discovered relevant con-
texts through text generation without external su-
pervision or time-consuming downstream feedback.
(2) We show that using generation-augmented
queries achieves significantly better retrieval and
QA results than using the original queries or ex-
isting unsupervised QE methods. (3) We show
that GAR, combined with a simple BM25 model,
achieves new state-of-the-art performance on two
benchmark datasets in extractive OpenQA and com-
petitive results in the generative setting.

2 Related Work

Conventional Query Expansion. GAR shares
some merits with query expansion (QE) meth-
ods based on pseudo relevance feedback (Rocchio,
1971; Abdul-Jaleel et al., 2004; Lv and Zhai, 2010)
in that they both expand the queries with relevant
contexts (terms) without the use of external super-
vision. GAR is superior as it expands the queries
with knowledge stored in the PLMs rather than
the retrieved passages and its expanded terms are
learned through text generation.

Recent Query Reformulation. There are recent
or concurrent studies (Nogueira and Cho, 2017;
Zaiem and Sadat, 2019; Yu et al., 2020; Vaku-
lenko et al., 2020; Lin et al., 2020) that reformu-
late queries with generation models for other re-
trieval tasks. However, these studies are not eas-
ily applicable or efficient enough for OpenQA be-
cause: (1) They require external resources such as
paraphrase data (Zaiem and Sadat, 2019), search
sessions (Yu et al., 2020), or conversational con-
texts (Lin et al., 2020; Vakulenko et al., 2020)
to form the reformulated queries, which are not
available or showed inferior domain-transfer per-
formance in OpenQA (Zaiem and Sadat, 2019);
(2) They involve time-consuming training process
such as RL. For example, Nogueira and Cho (2017)
reported a training time of 8 to 10 days as it uses
retrieval performance in the reward function and
conducts retrieval at each iteration. In contrast,
GAR uses freely accessible in-domain contexts like
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passage titles as the generation targets and standard
seq2seq learning, which, despite its simplicity, is
not only more efficient but effective for OpenQA.
Retrieval for OpenQA. Existing sparse retrieval
methods for OpenQA (Chen et al., 2017) solely rely
on the information of the questions. GAR extends
to contexts relevant to the questions by extracting
information inside PLMs and helps sparse meth-
ods achieve comparable or better performance than
dense methods (Guu et al., 2020; Karpukhin et al.,
2020), while enjoying the simplicity and efficiency
of sparse representations. GAR can also be used
with dense representations to seek for even better
performance, which we leave as future work.
Generative QA. Generative QA generates answers
through seq2seq learning instead of extracting an-
swer spans. Recent studies on generative OpenQA
(Lewis et al., 2020a; Min et al., 2020; Izacard and
Grave, 2020) are orthogonal to GAR in that they
focus on improving the reading stage and directly
reuse DPR (Karpukhin et al., 2020) as the retriever.
Unlike generative QA, the goal of GAR is not to
generate perfect answers to the questions but perti-
nent contexts that are helpful for retrieval. Another
line in generative QA learns to generate answers
without relevant passages as the evidence but solely
the question itself using PLMs (Roberts et al., 2020;
Brown et al., 2020). GAR further confirms that one
can extract factual knowledge from PLMs, which
is not limited to the answers as in prior studies but
also other relevant contexts.

3 Generation-Augmented Retrieval

3.1 Task Formulation

OpenQA aims to answer factoid questions with-
out pre-specified domains. We assume that a large
collection of documents C' (i.e., Wikipedia) are
given as the resource to answer the questions and
a retriever-reader architecture is used to tackle the
task, where the retriever retrieves a small subset
of the documents D C C' and the reader reads the
documents D to extract (or generate) an answer.
Our goal is to improve the effectiveness and effi-
ciency of the retriever and consequently improve
the performance of the reader.

3.2 Generation of Query Contexts

In GAR, queries are augmented with various heuris-
tically discovered relevant contexts in order to re-
trieve more relevant passages in terms of both quan-
tity and quality. For the task of OpenQA where the

query is a question, we take the following three
freely accessible contexts as the generation targets.
We show in Sec. 6.2 that having multiple gener-
ation targets is helpful in that fusing their results
consistently brings better retrieval accuracy.

Context 1: The default target (answer). The de-
fault target is the label in the task of interest, which
is the answer in OpenQA. The answer to the ques-
tion is apparently useful for the retrieval of relevant
passages that contain the answer itself. As shown
in previous work (Roberts et al., 2020; Brown et al.,
2020), PLMs are able to answer certain questions
solely by taking the questions as input (i.e., closed-
book QA). Instead of using the generated answers
directly as in closed-book QA, GAR treats them
as contexts of the question for retrieval. The ad-
vantage is that even if the generated answers are
partially correct (or even incorrect), they may still
benefit retrieval as long as they are relevant to the
passages that contain the correct answers (e.g., co-
occur with the correct answers).

Context 2: Sentence containing the default tar-
get. The sentence in a passage that contains the
answer is used as another generation target. Sim-
ilar to using answers as the generation target, the
generated sentences are still beneficial for retriev-
ing relevant passages even if they do not contain
the answers, as their semantics is highly related to
the questions/answers (examples in Sec. 6.1). One
can take the relevant sentences in the ground-truth
passages (if any) or those in the positive passages
of a retriever as the reference, depending on the
trade-off between reference quality and diversity.

Context 3: Title of passage containing the de-
fault target. One can also use the titles of rele-
vant passages as the generation target if available.
Specifically, we retrieve Wikipedia passages using
BM25 with the question as the query, and take the
page titles of positive passages that contain the an-
swers as the generation target. We observe that
the page titles of positive passages are often entity
names of interest, and sometimes (but not always)
the answers to the questions. Intuitively, if GAR
learns which Wikipedia pages the question is re-
lated to, the queries augmented by the generated
titles would naturally have a better chance of re-
trieving those relevant passages.

While it is likely that some of the generated
query contexts involve unfaithful or nonfactual in-
formation due to hallucination in text generation
(Mao et al., 2020) and introduce noise during re-
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trieval, they are beneficial rather than harmful over-
all, as our experiments show that GAR improve
both retrieval and QA performance over BM25 sig-
nificantly. Also, since we generate 3 different (com-
plementary) query contexts and fuse their retrieval
results, the distraction of hallucinated content is
further alleviated.

3.3 Retrieval with Generation-Augmented
Queries

After generating the contexts of a query, we append
them to the query to form a generation-augmented
query.’> We observe that conducting retrieval with
the generated contexts (e.g., answers) alone as
queries instead of concatenation is ineffective be-
cause (1) some of the generated answers are rather
irrelevant, and (2) a query consisting of the correct
answer alone (without the question) may retrieve
false positive passages with unrelated contexts that
happen to contain the answer. Such low-quality
passages may lead to potential issues in the follow-
ing passage reading stage.

If there are multiple query contexts, we conduct
retrieval using queries with different generated con-
texts separately and then fuse their results. The per-
formance of one-time retrieval with all the contexts
appended is slightly but not significantly worse.
For simplicity, we fuse the retrieval results in a
straightforward way: an equal number of passages
are taken from the top-retrieved passages of each
source. One may also use weighted or more so-
phisticated fusion strategies such as reciprocal rank
fusion (Cormack et al., 2009), the results of which
are slightly better according to our experiments.*

Next, one can use any off-the-shelf retriever for
passage retrieval. Here, we use a simple BM25
model to demonstrate that GAR with sparse repre-
sentations can already achieve comparable or better
performance than state-of-the-art dense methods
while being more lightweight and efficient (includ-
ing the cost of the generation model), closing the
gap between sparse and dense retrieval methods.

4 OpenQA with GAR

To further verify the effectiveness of GAR, we
equip it with both extractive and generative read-
ers for end-to-end QA evaluation. We follow the

30One may create a title field during document indexing
and conduct multi-field retrieval but here we append the titles
to the questions as other query contexts for generalizability.

“We use the fusion tools at https://github.com/
joaopalotti/trectools.

reader design of the major baselines for a fair com-
parison, while virtually any existing QA reader can
be used with GAR.

4.1 Extractive Reader

For the extractive setup, we largely follow the de-
sign of the extractive reader in DPR (Karpukhin
etal., 2020). Let D = [dy, da, ..., di] denote the list
of retrieved passages with passage relevance scores
D. Let S; = [s1, s2, ..., sn] denote the top N text
spans in passage d; ranked by span relevance scores
S;. Briefly, the DPR reader uses BERT-base (De-
vlin et al., 2019) for representation learning, where
it estimates the passage relevance score D; for
each retrieved passage d; based on the [CLS] to-
kens of all retrieved passages D, and assigns span
relevance scores S; for each candidate span based
on the representations of its start and end tokens.
Finally, the span with the highest span relevance
score from the passage with the highest passage rel-
evance score is chosen as the answer. We refer the
readers to Karpukhin et al. (2020) for more details.
Passage-level Span Voting. Many extractive QA
methods (Chen et al., 2017; Min et al., 2019b; Guu
et al., 2020; Karpukhin et al., 2020) measure the
probability of span extraction in different retrieved
passages independently, despite that their collec-
tive signals may provide more evidence in deter-
mining the correct answer. We propose a simple
yet effective passage-level span voting mechanism,
which aggregates the predictions of the spans in
the same surface form from different retrieved pas-
sages. Intuitively, if a text span is considered as the
answer multiple times in different passages, it is
more likely to be the correct answer. Specifically,
GAR calculates a normalized score p(.S;[7]) for the
j-th span in passage d; during inference as follows:
p(S;[j]) = softmax(D)[i] x softmax(S;)[j]. GAR
then aggregates the scores of the spans with the
same surface string among all the retrieved pas-
sages as the collective passage-level score.’

4.2 Generative Reader

For the generative setup, we use a seq2seq frame-
work where the input is the concatenation of the
question and top-retrieved passages and the target
output is the desired answer. Such generative read-
ers are adopted in recent methods such as SpanSe-

>We find that the number of spans used for normalization
in each passage does not have significant impact on the final
performance (we take N = 5) and using the raw or normalized
strings for aggregation also perform similarly.
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gGen (Min et al., 2020) and Longformer (Belt-
agy et al., 2020). Specifically, we use BART-large
(Lewis et al., 2019) as the generative reader, which
concatenates the question and top-retrieved pas-
sages up to its length limit (1,024 tokens, 7.8 pas-
sages on average). Generative GAR is directly com-
parable with SpanSeqGen (Min et al., 2020) that
uses the retrieval results of DPR but not comparable
with Fusion-in-Decoder (FID) (Izacard and Grave,
2020) since it encodes 100 passages rather than
1,024 tokens and involves more model parameters.

S Experiment Setup
5.1 Datasets

We conduct experiments on the open-domain ver-
sion of two popular QA benchmarks: Natural Ques-
tions (NQ) (Kwiatkowski et al., 2019) and Trivi-
aQA (Trivia) (Joshi et al., 2017). The statistics of
the datasets are listed in Table 1.

Dataset Train/ Val / Test Q-len A-len #-A

NQ 79,168 /8,757 / 3,610 12.5 52 12
Trivia 78,785/8,837/11,313 20.2 55 137

Table 1: Dataset statistics that show the number of sam-
ples per data split, the average question (answer) length,
and the number of answers for each question.

5.2 Evaluation Metrics

Following prior studies (Karpukhin et al., 2020),
we use top-k retrieval accuracy to evaluate the per-
formance of the retriever and the Exact Match (EM)
score to measure the performance of the reader.

Top-k retrieval accuracy is defined as the pro-
portion of questions for which the top-k retrieved
passages contain at least one answer span, which
is an upper bound of how many questions are “an-
swerable” by an extractive reader.

Exact Match (EM) is the proportion of the pre-
dicted answer spans being exactly the same as (one
of) the ground-truth answer(s), after string normal-
ization such as article and punctuation removal.

5.3 Compared Methods

For passage retrieval, we mainly compare with
BM25 and DPR, which represent the most used
state-of-the-art methods of sparse and dense re-
trieval for OpenQA, respectively. For query ex-
pansion, we re-emphasize that GAR is the first QE
approach designed for OpenQA and most of the
recent approaches are not applicable or efficient

enough for OpenQA since they have task-specific
objectives, require external supervision that was
shown to transfer poorly to OpenQA, or take many
days to train (Sec. 2). We thus compare with a clas-
sic unsupervised QE method RM3 (Abdul-Jaleel
et al., 2004) that does not need external resources
for a fair comparison. For passage reading, we
compare with both extractive (Min et al., 2019a;
Asai et al., 2019; Lee et al., 2019; Min et al., 2019b;
Guu et al., 2020; Karpukhin et al., 2020) and gen-
erative (Brown et al., 2020; Roberts et al., 2020;
Min et al., 2020; Lewis et al., 2020a; Izacard and
Grave, 2020) methods when equipping GAR with
the corresponding reader.

5.4 Implementation Details

Retriever. We use Anserini (Yang et al., 2017) for
text retrieval of BM25 and GAR with its default
parameters. We conduct grid search for the QE
baseline RM3 (Abdul-Jaleel et al., 2004).
Generator. We use BART-large (Lewis et al.,
2019) to generate query contexts in GAR. When
there are multiple desired targets (such as multi-
ple answers or titles), we concatenate them with
[SEP] tokens as the reference and remove the [SEP]
tokens in the generation-augmented queries. For
Trivia, in particular, we use the value field as the
generation target of answer and observe better per-
formance. We take the checkpoint with the best
ROUGE-1 F1 score on the validation set, while
observing that the retrieval accuracy of GAR is rel-
atively stable to the checkpoint selection since we
do not directly use the generated contexts but treat
them as augmentation of queries for retrieval.
Reader. Extractive GAR uses the reader of DPR
with largely the same hyperparameters, which is
initialized with BERT-base (Devlin et al., 2019)
and takes 100 (500) retrieved passages during train-
ing (inference). Generative GAR concatenates the
question and top-10 retrieved passages, and takes
at most 1,024 tokens as input. Greedy decoding is
adopted for all generation models, which appears to
perform similarly to (more expensive) beam search.

6 Experiment Results

We evaluate the effectiveness of GAR in three
stages: generation of query contexts (Sec. 6.1),
retrieval of relevant passages (Sec. 6.2), and pas-
sage reading for OpenQA (Sec. 6.3). Ablation
studies are mostly shown on the NQ dataset to un-
derstand the drawbacks of GAR since it achieves
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Question: when did bat out of hell get released?

Answer: September 1977  {September 1977}

Sentence: Bat Out of Hell is the second studio album and the major - label debut by American rock singer Meat
Loaf ... released in September 1977 on Cleveland International / Epic Records.

{The album was released in September 1977 on Cleveland International / Epic Records. }

Title: Bat Out of Hell {Bat Out of Hell}

Question: who sings does he love me with reba?

Answer: Brooks & Dunn  {Linda Davis}

Sentence: Linda Kaye Davis ( born November 26, 1962 ) is an American country music singer.

{* Does He Love You ” is a song written by Sandy Knox and Billy Stritch, and recorded as a duet by American
country music artists Reba McEntire and Linda Davis. }

Title: Does He Love Me [SEP] Does He Love Me (Reba McEntire song) [SEP] I Do (Reba McEntire album)
{Linda Davis [SEP] Greatest Hits Volume Two (Reba McEntire album) [SEP] Does He Love You}

Question: what is the name of wonder womans mother?
Answer: Mother Magda {Queen Hippolyta}
Sentence: In the Amazonian myths, she is the daughter of the Amazon queen Sifrat and the male dwarf Shuri,

and is the mother of Wonder Woman.

{Wonder Woman’s origin story relates that she was sculpted from clay

by her mother Queen Hippolyta and given life by Aphrodite. }
Title: Wonder Woman [SEP] Diana Prince [SEP] Wonder Woman (2011 TV pilot)
{Wonder Woman [SEP] Orana (comics) [SEP] Wonder Woman (TV series)}

Table 2: Examples of generated query contexts. The issue of generating wrong answers is alleviated by generat-
ing other contexts highly related to the question/answer. Ground-truth references are shown in the {braces}.

better performance on Trivia.

6.1 Query Context Generation

Automatic Evaluation. To evaluate the quality
of the generated query contexts, we first measure
their lexical overlap with the ground-truth query
contexts. As suggested by the nontrivial ROUGE
scores in Table 3, GAR does learn to generate
meaningful query contexts that could help the re-
trieval stage. We next measure the lexical overlap
between the query and the ground-truth passage.
The ROUGE-1/2/L F1 scores between the original
query and ground-truth passage are 6.00/2.36/5.01,
and those for the generation-augmented query are
7.05/2.84/5.62 (answer), 13.21/6.99/10.27 (sen-
tence), 7.13/2.85/5.76 (title) on NQ, respectively.
Such results further demonstrate that the generated
query contexts significantly increase the word over-
lap between the queries and the positive passages,
and thus are likely to improve retrieval results.®

Context ROUGE-1 ROUGE-2 ROUGE-L
Answer 33.51 20.54 33.30
Sentence 37.14 24.71 3391
Title 43.20 32.11 39.67

Table 3: ROUGE F1 scores of the generated query
contexts on the validation set of the NQ dataset.

We use F1 instead of recall to avoid the unfair favor of
(longer) generation-augmented query.

Case Studies. In Table 2, we show several ex-
amples of the generated query contexts and their
ground-truth references. In the first example, the
correct album release date appears in both the gen-
erated answer and the generated sentence, and the
generated title is the same as the Wikipedia page
title of the album. In the last two examples, the
generated answers are wrong but fortunately, the
generated sentences contain the correct answer and
(or) other relevant information and the generated
titles are highly related to the question as well,
which shows that different query contexts are com-
plementary to each other and the noise during query
context generation is thus reduced.

6.2 Generation-Augmented Retrieval

Comparison w. the state-of-the-art. We next
evaluate the effectiveness of GAR for retrieval.
In Table 4, we show the top-k retrieval accuracy
of BM25, BM25 with query expansion (+RM3)
(Abdul-Jaleel et al., 2004), DPR (Karpukhin et al.,
2020), GAR, and GAR +DPR.

On the NQ dataset, while BM25 clearly under-
performs DPR regardless of the number of retrieved
passages, the gap between GAR and DPR is signifi-
cantly smaller and negligible when £ > 100. When
k > 500, GAR is slightly better than DPR despite
that it simply uses BM25 for retrieval. In con-
trast, the classic QE method RM3, while showing
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Method NQ Trivia

Top-5 Top-20 Top-100 Top-500 Top-1000 | Top-5 Top-20 Top-100 Top-500 Top-1000
BM25 (ours)  43.6 62.9 78.1 85.5 87.8 67.7 77.3 83.9 87.9 88.9
BM25 +RM3  44.6 64.2 79.6 86.8 88.9 67.0 77.1 83.8 87.7 88.9
DPR 68.3 80.1 86.1 90.3 91.2 72.7 80.2 84.8 - -
GAR 60.9 74.4 85.3 90.3 91.7 73.1 80.4 85.7 88.9 89.7

GAR +DPR 70.7 81.6 88.9 92.0

932 | 760 821  86.6 - -

Table 4: Top-k retrieval accuracy on the test sets. All baselines are evaluated by ourselves and better than
reported in Karpukhin et al. (2020). GAR helps BM25 to achieve comparable or better performance than DPR.

marginal improvement over the vanilla BM25, does
not achieve comparable performance with GAR or
DPR. By fusing the results of GAR and DPR in
the same way as described in Sec. 3.3, we further
obtain consistently higher performance than both
methods, with top-100 accuracy 88.9% and top-
1000 accuracy 93.2%.

On the Trivia dataset, the results are even more
encouraging — GAR achieves consistently better
retrieval accuracy than DPR when &£ > 5. On
the other hand, the difference between BM25 and
BM25 +RM3 is negligible, which suggests that
naively considering top-ranked passages as relevant
(i.e., pseudo relevance feedback) for QE does not
always work for OpenQA. Results on more cutoffs
of k can be found in App. A.

Effectiveness of diverse query contexts. In
Fig. 1, we show the performance of GAR when
different query contexts are used to augment the
queries. Although the individual performance
when using each query context is somewhat similar,
fusing their retrieved passages consistently leads
to better performance, confirming that different
generation-augmented queries are complementary
to each other (recall examples in Table 2).
Performance breakdown by question type. In
Table 5, we show the top-100 accuracy of the com-
pared retrieval methods per question type on the
NQ test set. Again, GAR outperforms BM25 on
all types of questions significantly and GAR +DPR
achieves the best performance across the board,
which further verifies the effectiveness of GAR.

6.3 Passage Reading with GAR

Comparison w. the state-of-the-art. We show
the comparison of end-to-end QA performance of
extractive and generative methods in Table 6. Ex-
tractive GAR achieves state-of-the-art performance
among extractive methods on both NQ and Trivia
datasets, despite that it is more lightweight and
computationally efficient. Generative GAR outper-

90
580
870
o
8 60 Answer+Sentence+Title
2 —— Answer+Sentence
x 50 —— Answer+Title
& —— Answer
= 40 Title

30 Sentence

1 5 10 20 50 100 200 300 500 1000
k: # of retrieved passages

Figure 1: Top-k retrieval accuracy on the test

set of NQ when fusing retrieval results of different
generation-augmented queries.

Type  Percentage BM25 DPR GAR GAR +DPR
Who 37.5% 82.1 88.0 875 90.8
When 19.0% 73.1 869 83.8 88.6
What 15.0% 765 826 81.5 86.0
Where 109% 774 89.1 87.0 90.8
Other 91% 793 781 81.8 84.2
How 50% 782 838 832 85.5
Which 33% 89.0 90.7 94.1 94.9
Why 0.3% 90.0 90.0 90.0 90.0

Table 5: Top-100 retrieval accuracy breakdown of
question type on NQ. Best and second best methods
in each category are bold and underlined, respectively.

forms most of the generative methods on Trivia but
does not perform as well on NQ, which is some-
what expected and consistent with the performance
at the retrieval stage, as the generative reader only
takes a few passages as input and GAR does not
outperform dense retrieval methods on NQ when &
is very small. However, combining GAR with DPR
achieves significantly better performance than both
methods or baselines that use DPR as input such as
SpanSeqGen (Min et al., 2020) and RAG (Lewis
et al., 2020a). Also, GAR outperforms BM25 sig-
nificantly under both extractive and generative se-
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Method NQ Trivia
Hard EM (Min et al., 2019a) 28.1 50.9 -
Path Retriever (Asai et al., 2019) 32.6 - -
ORQA (Lee et al., 2019) 333 45.0 -
.f‘zj Graph Retriever (Min et al., 2019b) 34.5 56.0 -
§ REALM (Guu et al., 2020) 40.4 - -
5 DPR (Karpukhin et al., 2020) 415 579 -
BM25 (ours) 37.7 60.1 -
GAR 41.8 62.7 74.8
GAR +DPR 43.8 - -
GPT-3 (Brown et al., 2020) 29.9 - 71.2
TS5 (Roberts et al., 2020) 36.6 60.5 -
¢ SpanSeqGen (Min et al., 2020) 422 - -
‘g RAG (Lewis et al., 2020a) 445 56.1 68.0
% FID (Izacard and Grave, 2020) 514 67.6 80.1
O BM25 (ours) 353 58.6 -
GAR 38.1 62.2 -
GAR +DPR 45.3 - -

Table 6: End-to-end comparison with the state-of-
the-art methods in EM. For Trivia, the left column
denotes the open-domain test set and the right is the
hidden Wikipedia test set on the public leaderboard.

tups, which again shows the effectiveness of the
generated query contexts, even if they are heuristi-
cally discovered without any external supervision.
The best performing generative method FID
(Izacard and Grave, 2020) is not directly compara-
ble as it takes more (100) passages as input. As an
indirect comparison, GAR performs better than FID
when FID encodes 10 passages (cf. Fig. 2 in Izac-
ard and Grave (2020)). Moreover, since FID relies
on the retrieval results of DPR as well, we believe
that it is a low-hanging fruit to replace its input with
GAR or GAR +DPR and further boost the perfor-
mance.’” We also observe that, perhaps surprisingly,
extractive BM25 performs reasonably well, espe-
cially on the Trivia dataset, outperforming many
recent state-of-the-art methods.® Generative BM25
also performs competitively in our experiments.

Model Generalizability. Recent studies (Lewis
et al., 2020b) show that there are significant ques-
tion and answer overlaps between the training and
test sets of popular OpenQA datasets. Specifically,
60% to 70% test-time answers also appear in the
training set and roughly 30% test-set questions
have a near-duplicate paraphrase in the training
set. Such observations suggest that many questions
might have been answered by simple question or

"This claim is later verified by the best systems in the
NeurIPS 2020 EfficientQA competition (Min et al., 2021).

8We find that taking 500 passages during reader inference
instead of 100 as in Karpukhin et al. (2020) improves the
performance of BM25 but not DPR.

answer memorization. To further examine model
generalizability, we study the per-category perfor-
mance of different methods using the annotations
in Lewis et al. (2020b).

Question Answer No

Method Total Overl Overlap Overl
erlap Only verlap

DPR 41.3 69.4 34.6 19.3
GAR +DPR (E) 43.8 66.7 38.1 23.9
BART 26.5 67.6 10.2 0.8
RAG 44.5 70.7 34.9 24.8
GAR +DPR (G) 45.3 67.9 38.1 27.0

Table 7: EM scores with question-answer overlap
category breakdown on NQ. (E) and (G) denote ex-
tractive and generative readers, respectively. Results of
baseline methods are taken from Lewis et al. (2020b).
The observations on Trivia are similar and omitted.

As listed in Table 7, for the No Overlap category,
GAR +DPR (E) outperforms DPR on the extractive
setup and GAR +DPR (G) outperforms RAG on the
generative setup, which indicates that better end-
to-end model generalizability can be achieved by
adding GAR for retrieval. GAR +DPR also achieves
the best EM under the Answer Overlap Only cat-
egory. In addition, we observe that a closed-book
BART model that only takes the question as input
performs much worse than additionally taking top-
retrieved passages, i.e., GAR +DPR (G), especially
on the questions that require generalizability. No-
tably, all methods perform significantly better on
the Question Overlap category, which suggests that
the high Total EM is mostly contributed by question
memorization. That said, GAR +DPR appears to
be less dependent on question memorization given
its lower EM for this category.’

6.4 Efficiency of GAR

GAR is efficient and scalable since it uses sparse
representations for retrieval and does not in-
volve time-consuming training process such as
RL (Nogueira and Cho, 2017; Liu et al., 2019).
The only overhead of GAR is on the generation of
query contexts and the retrieval with generation-
augmented (thus longer) queries, whose computa-
tional complexity is significantly lower than other
methods with comparable retrieval accuracy.

We use Nvidia V100 GPUs and Intel Xeon Plat-
inum 8168 CPUs in our experiments. As listed in

°The same ablation study is also conducted on the retrieval
stage and similar results are observed. More detailed discus-
sions can be found in App. A.
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Retrieval

30 min w. 1 GPU
5 min w. 35 CPUs

Training Indexing

DPR  24hw. 8 GPUs  17.3h w. 8 GPUs
GAR 3 ~6hw.1GPU 0.5hw. 35 CPUs

Table 8: Comparison of computational cost between
DPR and GAR at different stages. The training time
of GAR is for one generation target but different gener-
ators can be trained in parallel.

Table 8, the training time of GAR is 3 to 6 hours
on 1 GPU depending on the generation target. As
a comparison, REALM (Guu et al., 2020) uses
64 TPUs to train for 200k steps during pre-training
alone and DPR (Karpukhin et al., 2020) takes about
24 hours to train with 8 GPUs. To build the indices
of Wikipedia passages, GAR only takes around 30
min with 35 CPUs, while DPR takes 8.8 hours
on 8 GPUs to generate dense representations and
another 8.5 hours to build the FAISS index (John-
son et al., 2017). For retrieval, GAR takes about
1 min to generate one query context with 1 GPU,
1 min to retrieve 1,000 passages for the NQ test
set with answer/title-augmented queries and 2 min
with sentence-augmented queries using 35 CPUs.
In contrast, DPR takes about 30 min on 1 GPU.

7 Conclusion

In this work, we propose Generation-Augmented
Retrieval and demonstrate that the relevant contexts
generated by PLMs without external supervision
can significantly enrich query semantics and im-
prove retrieval accuracy. Remarkably, GAR with
sparse representations performs similarly or better
than state-of-the-art methods based on the dense
representations of the original queries. GAR can
also be easily combined with dense representa-
tions to produce even better results. Furthermore,
GAR achieves state-of-the-art end-to-end perfor-
mance on extractive OpenQA and competitive per-
formance under the generative setup.

8 Future Extensions

Potential improvements. There is still much
space to explore and improve for GAR in future
work. For query context generation, one can ex-
plore multi-task learning to further reduce computa-
tional cost and examine whether different contexts
can mutually enhance each other when generated
by the same generator. One may also sample multi-
ple contexts instead of greedy decoding to enrich a
query. For retrieval, one can adopt more advanced
fusion techniques based on both the ranking and

score of the passages. As the generator and re-
triever are largely independent now, it is also inter-
esting to study how to jointly or iteratively optimize
generation and retrieval such that the generator is
aware of the retriever and generates query contexts
more beneficial for the retrieval stage. Last but not
least, it is very likely that better results can be ob-
tained by more extensive hyper-parameter tuning.

Applicability to other tasks. Beyond OpenQA,
GAR also has great potentials for other tasks that
involve text matching such as conversation utter-
ance selection (Lowe et al., 2015; Dinan et al.,
2020) or information retrieval (Nguyen et al., 2016;
Craswell et al., 2020). The default generation tar-
get is always available for supervised tasks. For
example, for conversation utterance selection one
can use the reference utterance as the default target
and then match the concatenation of the conversa-
tion history and the generated utterance with the
provided utterance candidates. For article search,
the default target could be (part of) the ground-truth
article itself. Other generation targets are more task-
specific and can be designed as long as they can
be fetched from the latent knowledge inside PLMs
and are helpful for further text retrieval (matching).
Note that by augmenting (expanding) the queries
with heuristically discovered relevant contexts ex-
tracted from PLMs instead of reformulating them,
GAR bypasses the need for external supervision to
form the original-reformulated query pairs.
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A More Analysis of Retrieval
Performance

We show the detailed results of top-k retrieval accu-

racy of the compared methods in Figs. 2 and 3.
GAR performs comparably or better than DPR
when k& > 100 on NQ and k& > 5 on Trivia.
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Figure 2: Top-k retrieval accuracy of sparse and
dense methods on the test set of NQ. GAR improves
BM25 and achieves comparable or better performance
than DPR when k& > 100.
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Figure 3: Top-k retrieval accuracy on the Trivia test
set. GAR achieves better results than DPR when & > 5.

We show in Table 9 the retrieval accuracy break-
down using the question-answer overlap categories.
The most significant gap between BM25 and other
methods is on the Question Overlap category,
which coincides with the fact that BM25 is un-
able to conduct question paraphrasing (semantic
matching). GAR helps BM25 to bridge the gap by
providing the query contexts and even outperform
DPR in this category. Moreover, GAR consistently
improves over BM25 on other categories and GAR
+DPR outperforms DPR as well.

Question Answer No
Method Total Overlap Overlap Overlap
Only
BM25 78.8 81.2 85.1 70.6
DPR 86.1 93.2 89.5 76.8
GAR 85.3 94.1 87.9 73.7
GAR +DPR  88.9 96.3 91.7 79.8

Table 9: Top-100 retrieval accuracy by question-
answer overlap categories on the NQ test set.
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