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Abstract

Discourse relations among arguments reveal
logical structures of a debate conversation.
However, no prior work has explicitly studied
how the sequence of discourse relations influ-
ence a claim’s impact. This paper empirically
shows that the discourse relations between two
arguments along the context path are essential
factors for identifying the persuasive power of
an argument. We further propose DISCOC
to inject and fuse the sentence-level structural
discourse information with contextualized fea-
tures derived from large-scale language mod-
els. Experimental results and extensive anal-
ysis show that the attention and gate mecha-
nisms that explicitly model contexts and texts
can indeed help the argument impact classifica-
tion task defined by Durmus et al. (2019), and
discourse structures among the context path of
the claim to be classified can further boost the
performance.

1 Introduction

It is an interesting natural language understanding
problem to identify the impact and the persuasive-
ness of an argument in a conversation. Previous
works have shown that many factors can affect the
persuasiveness prediction, ranging from textual and
argumentation features (Wei et al., 2016), style fac-
tors (Baff et al., 2020), to the traits of source or au-
dience (Durmus and Cardie, 2018, 2019; Shmueli-
Scheuer et al., 2019). Discourse relations, such as
Restatement and Instantiation, among arguments
reveal logical structures of a debate conversation. It
is natural to consider using the discourse structure
to study the argument impact.

Durmus et al. (2019) initiated a new study of the
influence of discourse contexts on determining ar-
gument quality by constructing a new dataset Kialo.

∗ This work was done when Xin Liu was an intern at
Huawei Noah’s Ark Lab.

Thesis: Physical torture of 
prisoners is an acceptable 

interrogation tool.

S1: Torture can help force 
prisoners to reveal 

information that could 
prevent attacks and save 

lives.

O1: Torture is ineffective 
at getting prisoners to 

reveal desired information.

O2: If torture is allowed, then 
it could easily be misused or 

performed in excess.

S2: The knowledge that 
torture is acceptable and 
may be applied is in and 

of itself a strong incentive 
for prisoners to cooperate 

with their captors.

S3: Interrogators and 
prison guards could torture 
prisoners solely to fulfill 
their own sadistic desires 
or out of a motivation for 

personal revenge.

Support

Support Oppose Support

Oppose

Result

Result Contrast

Result

Not Impactful Impactful Impactful

Restatement, 
Instantiation

Figure 1: Example of an argument tree from Kialo.
Stances, impact labels, and discourse relations are an-
notated in orange, red, and violet respectively.

As shown in Figure 1, it consists of arguments, im-
pact labels, stances where every argument is lo-
cated in an argument tree for a controversial topic.
They argue contexts reflect the discourse of argu-
ments and conduct experiments to utilize historical
arguments. They find BERT with flat context con-
catenation is the best, but discourse structures are
not easily captured by this method because it is dif-
ficult to reflect implicit discourse relations by the
surface form of two arguments (Prasad et al., 2008;
Lin et al., 2009; Xue et al., 2015; Lan et al., 2017;
Varia et al., 2019). Therefore, there is still a gap to
study how discourse relations and their sequential
structures or patterns affect the argument impact
and persuasiveness prediction.

In this paper, we acquire discourse relations for
argument pairs with the state-of-the-art classifier
for implicit discourse relations. Then we train a
BiLSTM whose input is the sequence of discourse
relations between two adjacent arguments to pre-
dict the last argument’s impact, and the perfor-
mance is comparable to that of a BiLSTM on raw
text. This indicates that a sequence of discourse re-
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lations is one of the essential factors for identifying
the persuasive power of an argument. Based on this
intuition, we further propose a new model called
DISCOC (Discourse Context Oriented Classifier)
to explicitly produce discourse-dependent contex-
tualized representations, fuse context representa-
tions in long distances, and make predictions. By
simple finetuning, our model beats the backbone
RoBERTa (Liu et al., 2019) over 1.67% and pre-
vious best model BERT over 2.38%. Extensive
experiments show that DISCOC results in steady
increases when longer context paths with discourse
structures, e.g., stances and discourse relations, are
provided. On the contrary, encoders with full-range
attentions are hard to capture such interactions,
and narrow-range attentions cannot handle com-
plex contexts and even become poisoned.

Our contributions can be highlighted as follows:
1. To the best of our knowledge, we are the first

to explicitly analyze the effect of discourse among
contexts and an argument on the persuasiveness.

2. We propose a new model called DISCOC to
utilize attentions to imitate recurrent networks for
sentence-level contextual representation learning.

3. Fair and massive experiments demonstrate the
significant improvement; detailed ablation studies
prove the necessities of modules.

4. Last, we discover distinct discourse relation
path patterns in a machine learning way and con-
duct consistent case studies.

Code is publicly released at https://github.
com/HKUST-KnowComp/DisCOC.

2 Argument Tree Structure

2.1 Overview

Kialo dataset is collected by Durmus et al. (2019),
which consists of 47,219 argument claim texts from
kialo.com for 741 controversial topics and corre-
sponding impact votes. Arguments are organized
as tree structures, where a tree is rooted in an ar-
gument thesis, and each node corresponds to an
argument claim. Along a path of an argument tree,
every claim except the thesis was made to either
support or oppose its parent claim and propose a
viewpoint. As shown in Figure 1, an argument tree
is rooted at the thesis “Physical torture of prisoners
is an acceptable interrogation tool.”. There is one
claim to support this thesis (S1 in green) and one
to oppose it (O2 in fuchsia). Moreover, S1 is sup-
ported by its child claim S2 and opposed by O1,
and S3 holds the same viewpoint of O2.

Stance / Impact Train Validation Test

Pro 9,158 1,949 1,953
Con 8,695 1,873 1,891

Impactful 3,021 641 646
Medium Impact 1,023 215 207
Not Impactful 1,126 252 255

Table 1: Statistics of stances and impact labels in the
training, validation, and test data.

2.2 Claim and Context Path

As each claim was put in view of all its ances-
tral claims and surrounding siblings, the audience
evaluated the claim based on how timely and appro-
priate it is. Therefore, the context information is of
most interest to be discussed and researched in the
Kialo dataset. We define that a claim denoted as C
is the argumentative and persuasive text to express
an idea for the audience, and a context path of a
claim of length l is the path from the ancestor claim
to its parent claim, denoted as (C0, C1, · · · , C l−1)
where C l−1 is the parent of C. For simplicity, we
may use C l instead of C without causing ambigu-
ity. The longest path of C starts from the thesis.
Statistically, the average length of the longest paths
is 3.5.

2.3 Argument Stance

In a controversial topic, each argument claim ex-
cept the thesis would have a stance, whether to
support or oppose the argument thesis or its parent
claim. In Kialo, users need to directly add a stance
tag (Pro or Con) to show their agreement or dis-
agreement about the chosen parent argument when
they post their arguments. We use si to denote the
stance whether Ci is to support or oppose its parent
Ci−1 when i ≥ 1. The statistics of these stances
are shown in Table 1.

2.4 Impact Label

After reading claims as well as the contexts, users
may agree or disagree about these claims. The
impact vote for each argument claim is provided
by users who can choose from 1 to 5. Durmus et al.
(2019) categorize votes into three impact classes
(Not Impactful, Medium Impact, and Impactful)
based on the agreement and the valid vote numbers
to reduce noise. We can see the overall distribution
from Table 1. The argument impact classification
is defined to predict the impact label y of C given
the claim text C and its corresponding context path
(C0, C1, · · · , C l−1).

https://github.com/HKUST-KnowComp/DisCOC
https://github.com/HKUST-KnowComp/DisCOC
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Discourse Relations Reason Conjunction Contrast Restatement Result Instantiation Chosen Alternative
Numbers 6,559 6,421 5,718 5,343 1,355 99 23

Table 2: Statistics of predicted discourse relations.

3 Discourse Structure Analysis

3.1 Argument Impact from the Perspective of
Discourse

As paths under a controversial topic are strongly
related to Comparison (e.g., Contrast), Contin-
gency (e.g., Reason), Expansion (e.g., Restate-
ment), and Temporal (e.g., Succession) discourse
relations (Prasad et al., 2008), we model the dis-
course structures from a view of discourse relations.
The first step is to acquire discourse relation anno-
tations. BMGF-RoBERTa (Liu et al., 2020) is the
state-of-the-art model proposed to detect implicit
discourse relations from raw text. In the following
experiments, we use that as our annotation model
to predict discourse relation distributions for each
adjacent claim pair.

Specifically, for a given argument claim C l and
its context path (C0, C1, · · · , C l−1), we denote
pdisco(C l) = (r1, r2, · · · , rl) as a discourse re-
lation path such that ri ∈ R indicates the dis-
course relation between Ci−1 and Ci when i ≥
1. In this work, we adopt the 14 discourse re-
lation senses in CoNLL2015 Shared Task (Xue
et al., 2015) as R. And we also define the corre-
sponding distributed discourse relation path to
be pdist(C

l) = (d1,d2, · · · ,dl) such that di =
F (Ci−1, Ci) is the predicted discourse relation dis-
tribution between claims Ci−1 and Ci (i ≥ 1) by a
predictive model F . In experiments, F is BMGF-
RoBERTa1. 8 out of 14 relations appear in the
predictions, and the statistics of 7 frequent predic-
tions are shown in Table 2.

As discourse contexts would affect the persua-
sive power of claims, we first discover the correla-
tions between impacts and stances as well as cor-
relations between impacts and discourse relations,
illustrated in Figure 2. From the label distribu-
tion and correlations, we find there are some clear
trends: 1) Stances have little influence on argument
impact, but discourse relations do. Correlations in-
dicate that it is the contents instead of standpoints
that contribute to potential impacts; 2) It is a smart
choice to show some examples to convince others

1The official open-source code is at https://github.
com/HKUST-KnowComp/BMGF-RoBERTa. We train
such a classifier on CoNLL2015 Shared Task training data,
and achieve 57.57% accuracy on the test set.

Figure 2: Impact label distributions, the correlations be-
tween labels and stances, and the correlations between
labels and discourse relations. Normalization is applied
to the columns.

because Instantiation is more relevant to Impactful
than any other relations; 3) Similarly, explaining is
also helpful to make voices outstanding; 4) Restate-
ment is also positively correlated with Impactful so
that we can also share our opinions by paraphrasing
others’ viewpoints to command more attention. On
the contrary, Chosen Alternative is a risky method
because the audience may object.

To investigate the role of discourse relations in
impact analysis, we design a simple experiment
that a single-layer BiLSTM followed by a 2-layer
MLP with batch normalization predicts the impact
by utilizing the distributed discourse relation path
pdist(C

l). For the purposes of comparison and anal-
ysis, we build another BiLSTM on the raw text.
Each claim has [BOS] and [EOS] tokens to clarify
boundaries and we use 300-dim pretrained GloVe
word embeddings (Pennington et al., 2014) and re-
main them fixed. We set different thresholds for
context path lengths so that we can control how
many discourse relations or contexts are provided.
From Figure 3, discourse features can result in
comparable performance, especially when longer
discourse paths are provided. Instead, the model
with raw text gets stuck in complex contexts.

3.2 Discourse Context Oriented Classifier
It is generally agreed that the informative context
can help understand the text to be classified. How-
ever, it is still unclear how to determine whether a
context is helpful. One drawback of a broader con-
text is the increasing ambiguity, especially in the
scenario of the argument context path from differ-
ent users like the results shown in Figure 3. Take
claims in Figure 1 for example, S1 and O2 give
two different consequences to support or oppose

https://github.com/HKUST-KnowComp/BMGF-RoBERTa
https://github.com/HKUST-KnowComp/BMGF-RoBERTa
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Figure 3: Performance of BiLSTM on discourse rela-
tions and BiLSTM on raw text.

the thesis. And O1 objects S1 by a contrast con-
clusion. It is hard to build a connection between
the thesis and O1 if S1 is not given because it is
challenging to build a connection between “reveal
desired information” with “interrogation tool” with-
out a precondition “Torture can help force prisoners
to reveal information”. On the contrary, thesis and
S2 are still compatible as S2 is also a kind of result.
Hence, a recurrent model with the gating mecha-
nism that depicts pair-wise relations and passes to
the following texts makes more sense.

LSTM has gates to decide whether to remem-
ber or forget during encoding, but it cannot handle
long-range information with limited memory. Re-
cently, transformer-based encoders have shown re-
markable performance in various complicated tasks.
These models regard sequences as fully connected
graphs to learn the correlations and representations
for each token. People assume that transformers
can learn whether two tokens are relevant and how
strong the correlation is by back-propagation. Ta-
ble 3 illustrates different possible ways to aggre-
gation context information. Transformer (Vaswani
et al., 2017) and BERT (Devlin et al., 2019) adopt
full-range attentions while TransformerXL (Dai
et al., 2019) and XLNet (Yang et al., 2019) regard
historical encoded representations as memories to
reuse hidden states. SparseTransformer (Child
et al., 2019), in the opposite direction, stacks hun-
dreds of layers by narrow the attention scope by
sparse factorization. Information can still spread
after propagations in several layers. Inspired by
these observations, we design DISCOC (Discourse
Context Oriented Classifier) to capture contextu-
alized features by localized attentions and imitate
recurrent models to reduce noises from long dis-
tance context. As shown in Figure 4, DISCOC
predicts the argument impact through three steps.

Attention Representative Query Key & Value
Full BERT Ci C0, · · · , Cl

Memory XLNet Ci (C0, · · · , Ci−1)
Context SparseTransformer Ci Ci−1

Table 3: Different attention mechanisms. The Mem-
ory attention freezes the historical representations so
that gradients of Ci would not propagate to the mem-
ory (C0, · · · , Ci−1).

3.2.1 Adjacent Claim Pair Encoding

A difficult problem in such an argument claim tree
is the noise in irrelevant contexts. A claim is con-
nected to its parent claim because of a supporting
or opposing stance, but claims in long distances
are not high-correlated. Based on this observation,
DISCOC conduct word-level representations by
encoding claim pairs instead of the whole contexts.

Given a claim C l and its context path
(C0, C1, · · · , C l−1), all adjacent pairs are coupled
together, i.e., (C0, C1), · · · , (C l−1, C l). We can
observe that each claim appears twice except the
first and the last. Next, each pair (Ci−1, Ci) is
fed into the RoBERTa encoder to get the contex-
tualized word representations. C0 and C l are also
encoded separately so that each claim has been en-
coded twice. We use

−→
H i to denote the encoded

word representations of Ci when this claim is en-
coded with its parent Ci−1, or when it is computed
alone as C0. Similarly,

←−
H i is the representations

when encoding (Ci, Ci+1), or when it is fed as C l.
The encoding runs in parallel but we still use the

term phase to demonstrate for better understanding.
In 0-th phase, RoBERTa outputs

−→
H0. One particu-

lar relationship between a parent-child pair is the
stance, and we insert the one special token [Pro] or
[Con] between them. It makes the sentiment and
viewpoint of the child claim more accurate. On the
other hand, discourse relations can also influence
impact prediction, as reported in Section 3.1. How-
ever, discourse relations are not mutually exclusive,
let alone predictions from BMGF-RoBERTa are not
precise. Thus, we use the relation distributions as
weights to get sense-related embeddings over 14 re-
lations. We add additional W 1di for the parent and
W 2di for the child except position embeddings
and segment embeddings, where di is predicted
discourse relation distribution for (Ci−1, Ci), W 1

and W 2 are trainable transformations for parents
and children. Hence, RoBERTa outputs

←−
H i−1 and−→

H i with the concatenation of two claims, [CTX]
Ci−1 [SEP] [CLS] si Ci [SEP] in the i-th phase
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Figure 4: The architecture of DISCOC. si refers to the stance between Ci−1 and Ci, di is the discourse relation
distribution obtained from F(Ci−1, Ci). Gray boxes represent the RoBERTa encoder and the violet is a gated
transformer layer. [CTX], [CLS], and [SEP] are omitted in this figure.

(i ∈ {1, 2, · · · , l}), where [CTX] is a special token
to indicate the parent claim and distinguish from
[CLS]. Its embedding is initialized as a copy em-
bedding of [CLS] but able to update by itself. And←−
H l is computed by self-attention with no context
in the last phase. In the end, each claim Ci has two
contextualized representations

←−
H i and

−→
H i with

limited surrounding context information.

3.2.2 Bidirectional Representation Fusion
As claim representations {

←−
H i} and {

−→
H i} from

RoBERTa are not bidirectional, we need to com-
bine them and control which of them matters more.
The gated fusion (Liu et al., 2020) has been shown
of a better mixture than the combination of multi-
head attention and layer normalization. We use it to
maintain the powerful representative features and
carry useful historical context information:

Ĥ i = MultiHead(
←−
H i,
−→
H i,
−→
H i) (1)

Aj = Sigmoid(W a[
←−
H i, Ĥ i]j + ba) (2)

U i = A� Ĥ i + (1−A)�
←−
H i, (3)

where MultHead is the multi-head attention opera-
tion (Vaswani et al., 2017) whose query is

←−
H i and

key & value is
−→
H i, Aj is the fusion gate for the

j-th word embedding, [· · · ] is the concatenation,
� is the element product operation, and W a and
ba are trainable matrix and bias for fusion gating.

There are two reasons why using
←−
H i as the key

of the multi-head attention: 1) [CLS] exists in the←−
H i while the replaced token [CTX] appears in

−→
H i

when i 6= 0; 2) The position ids start from 0 when
computing

←−
H i. The fused [CLS] token embedding

ui is selected to represent the whole claim.

3.2.3 Context Path Information Gathering
After extracting sentence-level claim representa-
tions u0,u1, · · · ,ul, a transformer layer is used to
gather longer-range context representations. The
transformer layer includes a position embedding
layer to provide sinusoid positional embeddings,
a gated multi-head attention layer, a feed-forward
network, and a layer normalization. The position
embedding layer in DISCOC is different from that
in the vanilla Transformer because it generates po-
sition ids in a reversed order, i.e. l, l − 1, · · · , 0.
The reversed order is helpful to model the contexts
of variable length because the claim to be classi-
fied has the same position embedding. We also
choose a gate to maintain the scale instead of using
a residual connection. The gated transformer can
generate meaningful representations because each
claim can attend any other claims and itself. On the
other hand, it perfectly fits the pair-wise encoding
that imitates the recurrent networks to reduce the
noise in irrelevant contexts and enhance the nearest
context’s correlations. For example, in Figure 1,
S2 is predicted as a result of S1 (with a probability
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of 39.17%) and a restatement (with a probability
of 19.81%), and S1 is also a result of thesis (with a
probability of 70.57%). Consequently, S2 is high-
relevant to the thesis as a potential result if “phys-
ical torture is acceptable”, which can be captured
by DISCOC. Finally, a 2-layer MLP with batch
normalization is applied to vl of the last claim to
predict its impact.

4 Experiments

4.1 Baseline Models
Majority. The baseline simply returns Impactful.

SVM. Durmus et al. (2019) created linguistic fea-
tures for a SVM classifier, such as named entity
types, POS tags, special marks, tf-idf scores for
n-grams, etc. We report the result from their paper.

HAN. HAN (Yang et al., 2016) computes docu-
ment vectors in a hierarchical way of encoding and
aggregation. We replace its BiGRU with BiLSTM
for the sake of comparison. And we also extend it
with pretrained encoders and transformer layers.

Flat-MLMs. Pretrained masked languages, e.g.,
RoBERTa, learn word representations and predict
masked words by self-attention. We use these en-
coders to encode the flat context concatenation like
[CTX] C0 [SEP] [CTX] · · · [CTX] C l−1 [SEP]
as Segment A and [CLS] C l [SEP] as Segment B.
After getting [CTX] and [CLS] representations, a
gated transformer layer and a MLP predict impacts.
As for XLNet, we follow its default setting so that
[CTX] and [CLS] are located at the end of claims.

Interval-MLMs. Flat-MLMs regard the context
path as a whole segment and ignore the real dis-
course structures except the adjacency, e.g., dis-
tances between two claims are missing. We borrow
the idea from BERT-SUM (Liu and Lapata, 2019):
segment embeddings of Ci are assigned depending
on whether the distance to C l is odd or even.

Context-MLMs. We also compare pretrained en-
coders with context masks. A context mask is to
localize the attention scope from the previous to
the next. That is, Ci can attends words in Ci−1 and
Ci+1 except for itself if 1 ≤ i < l; C0 can only
attend C0, C1, and C l can only attend C l−1, C l.

Memory-MLMs. XLNet utilizes memory to ex-
tend the capability of self-attention to learn super
long historical text information. We also extend
Flat-MLMs under this setting.

4.2 Model Configuration and Settings

We use pretrained base models 2 in DISCOC and
baselines. We follow the same finetuning setting:
classifiers are optimized by Adam (Kingma and
Ba, 2015) with a scheduler and a maximum learn-
ing rate 2e-5. The learning rate scheduler consists
of a linear warmup for the 6% steps and a linear
decay for the remaining steps. As for BiLSTM
and HAN, the maximum learning rate is 1e-3. The
hidden state dimension of linear layers, the hidden
units of LSTM layers, and projected dimensions
for attention are 128. The number of the multi-head
attention is set as 8. Dropout is applied after each
layer and the probability is 0.1. We pick the best
context path length l for each model by grid search
from 0 to 5 on validation data with the batch size
of 32 in 10 epochs. Each model runs five times.

4.3 Argument Impact Classification

Table 4 shows experimental results of different
models. It is not surprising that neural models can
easily beat traditional feature engineering methods
in overall performance. But linguistic features still
bring the highest precision. We also observe a sig-
nificant 3.49% improvement with context vectors
aggregating in HAN-BiLSTM compared with the
simple BiLSTM. This indicates that it is neces-
sary to model contexts with higher-level sentence
features. Models with pretrained encoders ben-
efit from representative embeddings, and HAN-
RoBERTa achieves a gain of 5.49%. Flat context
paths contain useful information to help detect the
argument impact, but they also involve some noise
from unrelated standpoints. Interval segment em-
beddings do not reduce noise but make BERT con-
fused. It is counterintuitive that the segment embed-
dings depend on whether the distance is odd or even
because BERT uses these for next sentence predic-
tion. Since XLNet uses relative segment encodings
instead of segment embeddings, Interval-XNet is
better than Flat-XLNet in all three metrics. On the
other hand, context masks bring another side effect
for BERT, RoBERTa, and XLNet. Although these
masks limit the attention scope at first sight, distant
word information is able to flow to words with the
increment of transformer layers. As a result, the
uncertainty and attention bias increase after adding
context masks. The memory storing context repre-
sentations is also not helpful. The main reason is

2BERT-base-uncased, RoBERTa-base, and XLNet-base-
cased are downloaded from huggingface.co

huggingface.co
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Model Precision Recall F1

Majority 19.43 33.33 24.55
SVM (Durmus et al., 2019) 65.67 38.58 35.42
BiLSTM 46.94 ± 1.08** 46.64 ± 0.71** 46.51 ± 1.11**
HAN-BiLSTM 51.93 ± 1.37** 49.08 ± 1.52** 50.00 ± 1.49**
HAN-BERT 53.72 ± 0.80** 53.45 ± 0.51** 53.46 ± 0.47**
HAN-RoBERTa 55.71 ± 1.12** 55.95 ± 0.90** 55.49 ± 0.62**
HAN-XLNet 53.91 ± 0.96** 55.56 ± 1.59** 54.53 ± 1.22**
BERT (Durmus et al., 2019) 57.19 ± 0.92 55.77 ± 1.05** 55.98 ± 0.70**
Flat-BERT 57.34 ± 1.56 57.07 ± 0.74* 56.75 ± 0.82**
Flat-RoBERTa 58.11 ± 1.34 56.40 ± 0.61** 56.69 ± 0.63**
Flat-XLNet 55.86 ± 1.74* 56.20 ± 1.17** 55.57 ± 0.95**
Interval-BERT 55.56 ± 2.03* 55.52 ± 1.44** 55.34 ± 1.50**
Interval-RoBERTa 58.31 ± 0.89 56.46 ± 1.44* 56.61 ± 1.24*
Interval-XLNet 57.54 ± 0.50 56.78 ± 1.63* 56.52 ± 1.00**
Context-BERT 54.96 ± 0.93** 56.09 ± 0.83** 55.44 ± 0.83**
Context-RoBERTa 57.28 ± 0.97 55.29 ± 0.26** 55.83 ± 0.54**
Context-XLNet 54.56 ± 0.71** 56.28 ± 1.22** 55.10 ± 0.72**
Memory-BERT 54.33 ± 0.83** 57.57 ± 0.67* 55.22 ± 0.61**
Memory-RoBERTa 55.08 ± 0.89** 55.55 ± 1.59** 54.76 ± 1.38**
Memory-XLNet 55.44 ± 1.15** 55.45 ± 1.25** 54.91 ± 0.96**
DISCOC 57.90 ± 0.70 59.41 ± 1.41 58.36 ± 0.52

Table 4: The averages and standard deviations of different models on the argument impact classification. The
marker * refers to p-value < 0.05 and the marker ** refers to p-value < 0.001 in t-test compared with DISCOC.

that the last claim’s update signal can not be used
to update previous context representations. That is,
Memory-models degenerate to models with frozen
path features or even worth. DISCOC that we
proposed can capture useful contexts and fuse in
a comprehensive manner. Finally, DISCOC out-
performs the second best model Flat-BERT over
1.61% and its backbone Flat-RoBERTa over 1.67%,
the previous best model BERT by 2.38%.

4.4 Ablation Study

Influence of the Context Path Length

Different claims have different contexts. We only
report the best performance with a fixed maximum
context path length in Table 4. Figure 5 shows F1
scores of models with different hyper-parameters.
DISCOC always benefits from longer discourse
contexts while other models get stuck in perfor-
mance fluctuation. Most models can handle one
context claim, which is consistent with our idea
of pair-wise encoding. DISCOC has consistent
performance gains; instead, other models cannot
learn long-distance structures better. Each token in
Flat-RoBERTa and Interval-RoBERTa can attend
all other tokens, and the two are the most com-
petitive baselines. However, Context-RoBERTa
and Memory-RoBERTa limit the attention scope
to the tokens of one previous claim, making mod-
els unable to make use of long-distance context
information.

Figure 5: F1 scores of different models on varying the
maximum path length.

Model Precision Recall F1

DISCOC 57.90 59.41 58.36
DISCOC (E-BERT) 57.84 59.46 58.04
DISCOC (w/o StanceE) 58.68 58.12 57.74
DISCOC (w/o DiscoE) 57.81 58.42 57.29
DISCOC (F-BiLSTM) 58.58 57.87 57.72
DISCOC (F-Conv) 58.20 58.53 57.82
DISCOC (w/o GTrans) 56.04 54.71 54.78

Table 5: Ablation Studies of DISCOC.

RoBERTa vs. BERT

As shown in Table 4, there is little difference be-
tween the performance of RoBERTa variants and
that of BERT variants. We conduct the experiment
for DISCOC (E-BERT) with BERT as the encoder
reported in Table 5. Its performance has achieved a
significant boost over 1.29% despite the small gap
between itself and DISCOC.
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Impactful Medium Impact Not Impactful

Reason-Contrast Conjunction-Reason Restatement-Reason
Restatement Conjunction-Contrast Contrast-Restatement

Reason Contrast-Conjunction Chosen Alternative
Restatement-Conjunction Conjunction-Restatement Restatement-Restatement

Restatement-Contrast Contrast-Contrast Reason-Restatement
Contrast-Instantiation Contrast-Reason Chosen Alternative-Reason

Conjunction-Instantiation Conjunction-Conjunction-Restatement Contrast
Restatement-Restatement Conjunction-Restatement-Conjunction Chosen Alternative-Conjunction

Reason-Conjunction Conjunction-Reason-Conjunction Result-Reason
Restatement-Result Conjunction-Conjunction Chosen Alternative-Restatement

Table 6: Discourse path patterns that corresponding to the largest top 10 coefficients of the binary LR.

Are Stances and Discourse Senses Helpful?
We also remove either the stance token embedding
or the discourse sense embeddings from DISCOC.
The results in Table 5 suggest that both sides of
structures are essential for modelling the correla-
tion between the parent claim and the child claim.
By comparison, discourse sense embeddings are
more vital.

Are Gated Transformers Necessary?
We add a gated transformer layer to gather sentence-
level vectors. Such gathering is necessary for the
proposed framework because each claim can only
attend limited contexts. BiLSTM and convolutions
can also be used for this purpose, so we replace
the gated transformer layer with a BiLSTM or a
convolutional layer. Moreover, we also remove
it to make predictions by ul directly. The results
in Table 5 show that the gated transformer is the
irreplaceable part of DISCOC because it retains the
contextualized representations and remains their
scales. Simple removing it hurts recall enormously.

4.5 What Makes Claims Impactful?

High-coefficient Discourse Relation Patterns
We use Logistic Regression to mine several inter-
esting discourse relation patterns. Detailed settings
are described in Appendix A, and results including
the most high-coefficient patterns are listed in Ta-
ble 6. We observe that some discourse relation path
patterns are distinguishing for classifying individ-
ual impact labels. Instantiation is a typical relation
that only occurs in the top patterns of Impactful.
Also, Restatement is relatively frequent for Impact-
ful (5 of top 10), but it is the relation between the
grandparent and the parent. Providing additional
resources (Restatement-Result) or objecting others’
repetitions (Restatement-Contrast) can increase the
persuasive power. For the Medium Impact class, its
top 10 significant patterns are the longest on aver-

Discourse Patterns DISCOC DISCOC (w/o DiscoE)

Reason-Contrast 65.56 43.33
Restatement 56.63 57.59

Reason 58.91 54.96
Conjunction-Reason 78.97 72.14
Conjunction-Contrast 80.64 66.17
Contrast-Conjunction 55.15 42.38
Restatement-Reason 38.00 37.35
Contrast-Restatement 66.10 76.24
Chosen Alternative 73.33 42.86

All 59.04 58.06

Table 7: F1 score differences between two best models
on top 9 discourse relation patterns and all patterns.

age. That indicates some views are usually consid-
ered ordinary in complex structures. Conjunction
is the dominant relation (8 of top 10) so that we
are suggested to avoid to go along with others. The
case of Not Impactful is a little clearer, in the sense
that it has a unique relation Chosen Alternative as
one of the most significant patterns. Restatement
also appears frequently, showing neither generaliza-
tion, nor specification, nor paraphrasing of others’
views can help make claims stand out.

Case Study

In Appendix A, we define Pr(r1, · · · , rl) as
the joint probability to generate the discourse
relation path (r1, · · · , rl) given the context
(C0, C1, · · · , C l−1) and the claim C l. For exam-
ple, the Pr(Reason,Contrast) is 56.59% which
corresponds to an Impactful claim “There is no ev-
idence for this” with its parent claim “Our bodies
know how to recognise and process current foods;
changing them through genetic modification will
create health issues”. Furthermore, we find 5 of
top 5 and 8 of top 10 are voted as Impactful claims
after sorting based on Pr(Reason,Contrast). For a
complex pattern Restatement-Restatement appear-
ing in both top patterns of the Impactful and the
Not Impactful, 3 cases with the maximum probabil-



3966

ities are Not Impactful while the following 7 cases
are Impactful. It is interesting that the thesis of
the top 3 claims is the same discussion about an
American politician. There are 25 Impactful claims
and 22 Not Impactful claims in this topic, 24 of
which are restatements of their parent claims. As
for Restatement-Reason, the most top pattern of
the Not Impactful, we find 7 of the top 10 claims
relevant to politics, 2 of them about globalization,
and one food-related. Therefore, there is no perfect
answer in these quite controversial topics, and that
is why Restatement and Reason appear frequently.

Empirical Results
On the other hand, we check the performance of
testing examples to verify the effectiveness of these
discourse relation patterns. We choose the best
model of DISCOC, whose F1 score is 59.04% as
well as the best model of DISCOC (w/o DiscoE)
whose F1 score is 58.06%. We select testing ex-
amples with specific discourse patterns, and perfor-
mance differences are shown in Table 7. DISCOC
benefits from 7 of the top 9 patterns and the perfor-
mance margins are even more significant than the
improvement of the overall results. Without giv-
ing discourse relation patterns, the model still has
trouble capturing such implicit context influences.
Empirical results support our idea that implicit dis-
course relations could affect the persuasiveness.

5 Related Work

There is an increasing interest in computational
argumentation to evaluate the qualitative impact
of arguments based on corpus extracted from Web
Argumentation sources such as CMV sub-forum
of Reddit (Tan et al., 2016). Studies explored
the importance and effectiveness of various fac-
tors on determining the persuasiveness and con-
vincingness of arguments, such as surface texture,
social interaction and argumentation related fea-
tures (Wei et al., 2016), characteristics of the source
and audience (Durmus and Cardie, 2019; Shmueli-
Scheuer et al., 2019; Durmus and Cardie, 2018),
sequence ordering of arguments (Hidey and McK-
eown, 2018), and argument structure features (Li
et al., 2020). The style feature is also proved to
be significant in evaluating the persuasiveness of
news editorial argumentation (Baff et al., 2020).
Habernal and Gurevych (2016) conducted experi-
ments in an entirely empirical manner, constructing
a corpus for argument quality label classification
and proposing several neural network models.

In addition to the features mentioned above, the
role of pragmatic and discourse contexts has shown
to be crucial by not yet fully explored. Zeng et al.
(2020) examined how the contexts and the dynamic
progress of argumentative conversations influence
the comparative persuasiveness of an argumenta-
tion process. Durmus et al. (2019) created a new
dataset based on argument claims and impact votes
from a debate platform kialo.com, and experiments
showed that incorporating contexts is useful to clas-
sify the argument impact.

Understanding discourse relations is one of the
fundamental tasks of natural language understand-
ing, and it is beneficial for various downstream
tasks such as sentiment analysis (Nejat et al., 2017;
Bhatia et al., 2015), machine translation (Li et al.,
2014) and text generation (Bosselut et al., 2018).
Discourse information is also considered indica-
tive for various tasks of computational argumen-
tation. Eckle-Kohler et al. (2015) analyzed the
role of discourse markers for discriminating claims
and premises in argumentative discourse and found
that particular semantic group of discourse markers
are highly predictive features. Hidey and McK-
eown (2018) concatenated sentence vectors with
discourse relation embeddings as sentence features
for persuasiveness prediction and showed that dis-
course embeddings helped improve performance.

6 Conclusion

In this paper, we explicitly investigate how dis-
course structures influence the impact and the per-
suasiveness of an argument claim. We present
DISCOC to produce discourse-dependent contex-
tualized representations. Experiments and ablation
studies show that our model improves its backbone
RoBERTa around 1.67%. Instead, HAN and other
attention mechanisms bring side effects. We dis-
cover distinct discourse relation path patterns and
analyze representatives. In the future, we plan to
explore discourse structures in other NLU tasks.
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A Discourse Relation Path Patterns

To explicitly explore important high-order dis-
course relation patterns, we model the process
of yielding a concrete discourse relation path
pdisco(C l) = (r1, · · · , rl) as a generative process.
For a given context path (C0, C1, · · · , C l−1) and
the claim C l, we define the pattern set as all pos-
sible patterns connected to C l. Mathematically, it
is denoted as P =

∑l
i=1 "l

j=iR, where " is the
Cartesian product.

We assume that every ri ∈ pdisco(C l) is indepen-
dent and identically distributed (i.i.d). Under this
assumption, the joint probability of a given path of
discourse relations (r1, · · · , rl) is

Pr(r1, · · · , rl) = Πl
i=1d

i[ri], (4)

where di is the discourse relation distribution
between Ci−1 and Ci, di[ri] is the probabil-
ity of a specific relation sense ri. Observing
the consistently increased performance of BiL-
STM on discourse relations in Figure 3 when
l starts from 1 to 3 and no noticeable en-
hancement with longer contexts, we analyze
path-generated distributions for up to three pre-
vious claims. We compute the joint proba-
bilities Pr(rl), P r(rl−1, rl), P r(rl−2, rl−1, rl) re-
spectively and then concatenate these probabilities
to get path pattern features x ∈ R(|R|+|R|2+|R|3)

where each dimension of x corresponds to the prob-
ability of a pattern belonging to P . Next, the fea-
ture vector x is fed into a logistic regression (LR)
model to train a one-vs-rest binary classifier for
each of the three impact labels.

We report the largest top 10 coefficients of con-
verged LR models in Table 6. Some relation path
patterns are shown distinguishing for classifying
individual impact labels. Coefficients vary differ-
ently among different LRs except for Restatement-
Restatement, which occurs in both Impactful and
Not Impactful. In general, Instantiation is a typi-
cal relation that only occurs in the top patterns of
Impactful. Also, Restatement is relatively frequent
for Impactful (5 of top 10), but it is the relation
between the grandparent and the parent. Providing
additional resources (Restatement-Result) or ob-
jecting others’ repetitions (Restatement-Contrast)
can increase the persuasive power. For the Medium
Impact class, its top 10 significant patterns are the
longest on average. That indicates some views are
usually considered ordinary in complex structures.
Conjunction is the dominant relation (8 of top 10)

so that we are suggested to avoid to go along with
others. The case of Not Impactful is a little clearer,
in the sense that it has a unique relation Chosen
Alternative as one of the most significant patterns.
Restatement also appears frequently, showing that
neither generalization, nor specification, nor para-
phrasing of others’ views can help make claims
stand out. These interesting correlations between
discourse relation path patterns and argument qual-
ity could be further analysis from the linguistic
perspective in future works.


