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Abstract
Multi-label text classification is one of the fun-
damental tasks in natural language process-
ing. Previous studies have difficulties to dis-
tinguish similar labels well because they learn
the same document representations for differ-
ent labels, that is they do not explicitly ex-
tract label-specific semantic components from
documents. Moreover, they do not fully ex-
plore the high-order interactions among these
semantic components, which is very helpful to
predict tail labels. In this paper, we propose
a novel label-specific dual graph neural net-
work (LDGN), which incorporates category
information to learn label-specific components
from documents, and employs dual Graph
Convolution Network (GCN) to model com-
plete and adaptive interactions among these
components based on the statistical label co-
occurrence and dynamic reconstruction graph
in a joint way. Experimental results on three
benchmark datasets demonstrate that LDGN
significantly outperforms the state-of-the-art
models, and also achieves better performance
with respect to tail labels.

1 Introduction

Automatically labeling multiple labels of docu-
ments is a fundamental and practical task in nat-
ural language processing. Recently, with the
growth of data scale, multi-label text classifica-
tion(MLTC) has attracted more attention, since it
is often applied to many fields such as sentiment
analysis (Liu and Chen, 2015; Li et al., 2016),
emotion recognition (Wang et al., 2016; Jabreel
and Moreno, 2019), web page tagging (Jain et al.,
2016) and so on. However, the number of labels
and documents and the complex relations of labels
render it an unsolved and challenging task.

Existing studies for multi-label text classifica-
tion mainly focus on learning enhanced document
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representation (Liu et al., 2017) and modeling la-
bel dependency (Zhang et al., 2018; Yang et al.,
2018; Tsai and Lee, 2019) to improve classifica-
tion performance. Although they have explored
the informative words in text content, or consid-
ered the label structure and label semantics to cap-
ture label correlations, these models cannot dis-
tinguish similar labels well (e.g., the categories
Prices vs Consumer Prices in Reuters News).

The main reason is that most of them neglect
the semantic connections between labels and in-
put documents and they learn the same document
representations for different labels, which cannot
issue the label similarity problem. More specif-
ically, they do not explicitly consider the corre-
sponding semantic parts of each label in the docu-
ment.

Recently, some studies (You et al., 2019; Xiao
et al., 2019; Du et al., 2019) have used attention
mechanism to explore the above semantic connec-
tions, and learn a label-specific document repre-
sentation for classification. These methods have
obtained promising results in MLTC, which shows
the importance of exploring semantic connections.
However, they did not further study the interac-
tions between label-specific semantic components
which can be guided by label correlations, and
thus these models cannot work well on predict-
ing tail labels which is also a challenging issue in
MLTC. To handle these issues, a common way to
explore the semantic interactions between label-
specific parts in document is to utilize the statisti-
cal correlations between categories to build a label
co-occurrence graph for guiding interactions.

Nevertheless, statistical correlations have three
drawbacks. First, the co-occurrence patterns be-
tween label pairs obtained from training data are
incomplete and noisy. Specifically, the label co-
occurrences that appear in the test set but do not
appear in the training set may be ignored, while
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some rare label co-occurrences in the statistical
correlations may be noise. Second, the label co-
occurrence graph is built in global, which may
be biased for rare label correlations. And thus
they are not flexible to every sample document.
Third, statistical label correlations may form a
long-tail distribution, i.e., some categories are very
common while most categories have few of doc-
uments. This phenomenon may lead to models
failing to predict low-frequency labels. Thus, our
goal is to find a way to explore the complete and
adaptive interactions among label-specific seman-
tic components more accurately.

In this paper, we investigate: (1) how to explic-
itly extract the semantic components related to the
corresponding labels from each document; and (2)
how to accurately capture the more complete and
more adaptive interactions between label-specific
semantic components according to label depen-
dencies. To solve the first challenge, we ex-
ploit the attention mechanism to extract the label-
specific semantic components from the text con-
tent, which can alleviate the label similar problem.
To capture the more accurate high-order interac-
tions between these semantic components, we first
employ one Graph Convolution Network (GCN)
to learn component representations using the sta-
tistical label co-occurrence to guide the informa-
tion propagation among nodes (components) in
GCN. Then, we use the component representa-
tions to reconstruct the adjacency graph dynami-
cally and re-learn the component representations
with another GCN, and thus we can capture the
latent interactions between these semantic compo-
nents. Finally, we exploit final component repre-
sentations to predict labels. We evaluate our model
on three real-world datasets, and the results show
that the proposed model LDGN outperforms all
the comparison methods. Further studies demon-
strate our ability to effectively alleviate the tail la-
bels problem, and accurately capture the mean-
ingful interactions between label-specific seman-
tic components.

The contributions of this paper are as follows:

• We propose a novel label-specific dual graph
neural network (LDGN), which incorporates
category information to extract label-specific
components from documents, and explores
the interactions among these components.

• To model the accurate and adaptive interac-
tions, we jointly exploit global co-occurrence

patterns and local dynamic relations. To
make up the deficiency of co-occurrences, we
employ the local reconstruction graph which
is built by every document dynamically.

• We conduct a series of experiments on three
public datasets, and experimental results
demonstrate that our model LDGN signifi-
cantly outperforms the state-of-the-art mod-
els, and also achieves better performance
with respect to tail labels.

2 Model

As depicted in Figure 1, our model LDGN
is composed of two major modules: 1) label-
specific document representation 2) dual graph
neural network for semantic interaction learn-
ing. Specifically, label-specific document repre-
sentation learning describes how to extract label-
specific semantic components from the mixture
of label information in each document; and the
dual graph neural network for semantic interaction
learning illustrates how to accurately explore the
complete interactions among these semantic com-
ponents under the guidance of the prior knowledge
of statistical label co-occurrence and the posterior
information of dynamic reconstruction graph.
Problem Formulation: Let D = {xi, yi}N
be the set of documents, which consists of N
document xi and its corresponding label yi ∈
{0, 1}|C|, where |C| denotes the total number of
labels. Each document xi contains J words xi =
wi1, wi2, . . . , wiJ . The target of multi-label text
classification is to learn the mapping from input
text sequence to the most relevant labels.

2.1 Label-specific Document Representation

Given a document x with J words, we first em-
bed each word wj in the text into a word vector
ewj ∈ Rd, where d is the dimensionality of word
embedding vector. To capture contextual infor-
mation from two directions of the word sequence,
we first use a bidirectional LSTM to encode word-
level semantic information in document represen-
tation. And we concatenate the forward and back-
ward hidden states to obtain the final word se-
quence vector h ∈ R|J |×D.

After that, to explicitly extract the correspond-
ing semantic component related to each label from
documents, we use a label guided attention mech-
anism to learn label-specific text representation.
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Figure 1: The architecture of the proposed network LDGN.

Firstly, we randomly initialize the label represen-
tation C ∈ R|C|×dc , and compute the label-aware
attention values. Then, we can induce the label-
specific semantic components based on the label
guided attention. The formula is as follows:

αij =
exp

(
hjc

T
i

)∑
j exp

(
hjc

T
i

) , (1)

ui =
∑
j

αijhj , (2)

where αij indicates how informative the j-th text
feature vector is for the i-th label. ui ∈ RD de-
notes the semantic component related to the label
ci in this document.

2.2 Dual Graph Neural Network
Interaction Learning with Statistical Label Co-
occurrence To capture the mutual interactions
between the label-specific semantic components,
we build a label graph based on the prior knowl-
edge of label co-occurrence, each node in which
correlates to a label-specific semantic component
ui. And then we apply a graph neural network to
propagate message between nodes.

Formally, we define the label graph G = (V, E),
where nodes refer to the categories and edges re-
fer to the statistical co-occurrence between nodes
(categories). Specifically, we compute the proba-
bility between all label pairs in the training set and
get the matrix As ∈ R|C|×|C|, where As

ij denotes
the conditional probability of a sample belonging
to category Ci when it belongs to category Cj .

Then, we utilize GCN (Kipf and Welling, 2017)
to learn the deep relationships between label-
specific semantic components guided by the statis-
tical label correlations. GCNs are neural networks

operating on graphs, which are capable of enhanc-
ing node representations by propagating messages
between neighboring nodes.

In multi-layer GCN, each GCN layer takes the
component representations from previous layer Hl

as inputs and outputs enhanced component repre-
sentations, i.e., Hl+1. The layer-wise propagation
rule is as follows:

Hl+1 = σ
(
ÂsHlWl

)
, (3)

where σ (·) denotes LeakyReLU (Maas et al.,
2013) activation function. Wl ∈ RD×D′

is a
transformation matrix to be learned. Â denotes
the normalized adjacency matrix, and the normal-
ization method (Kipf and Welling, 2017) is:

Â = D−
1
2AD−

1
2 , (4)

where D is a diagonal degree matrix with entries
Dij = ΣjAij

Depending on how many convolutional layers
are used, GCN can aggregate information only
about immediate neighbors (with one convolu-
tional layer) or any nodes at most K-hops neigh-
bors (if K layers are stacked). See (Kipf and
Welling, 2017) for more details about GCN.

We use a two-layer GCN to learn the interac-
tions between label-specific components. The first
layer takes the initialized component representa-
tions U ∈ R|C|×D in Equation 2 as inputs H0;
and the last layer outputs H2 ∈ R|C|×D′

with D′

denoting the dimensionality of final node repre-
sentations.

However, the statistical label correlations ob-
tained by training data are incomplete and noisy.
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And the co-occurrence patterns between label
pairs may form a long-tail distribution.
Re-learning with Dynamic Reconstruction
Graph To capture the more complete and
adaptive interactions between these components,
we exploit the above component representations
H2 to reconstruct the adjacency graph dynam-
ically, which can make up the deficiency of
co-occurrence matrix. And then we re-learn the
interactions among the label-specific components
guided by the posterior information of dynamic
reconstruction graph.

Specifically, we apply two 1×1 convolution lay-
ers and dot product to get the dynamic reconstruc-
tion graph AD as follows:

AD = f
((

Wa ∗H2
)T (

Wb ∗H2
))

, (5)

where Wa ∈ Rd1×D′
and Wb ∈ Rd1×D′

are the weights of two convolution layers, f is
the sigmoid activation function. And then we
normalize the reconstruction adjacency matrix as
Equation 4, and obtain the normalized adjacency
matrix ÂD of reconstruction graph.

In a similar way as Equation 3, we apply an-
other 2-layer GCN to learn the deep correlations
between components with the dynamic recon-
struction graph. The first layer of this GCN takes
the component representations H2 as inputs, and
the last layer outputs the final component repre-
sentations H4 ∈ R|C|×D′

.

2.3 Multi-label Text Classification
After the above procedures, we concatenate the
two types of component representations HO =
[H2,H4] and feed it into a fully connected layer
for prediction: ŷ = σ(W1H

O) , where W1 ∈
R2D′×1 and σ is the sigmoid function.

We use y ∈ R|C| to represent the ground-truth
label of a document, where yi = 0, 1 denotes
whether label i appears in the document or not.
The proposed model LDGN is trained with the
multi-label cross entropy loss:

L =
C∑
c=1

yc log (ŷc) + (1− yc) log (1− ŷc) .

(6)

3 Experiment

3.1 Experimental Setup
Datasets We evaluate the proposed model
on three benchmark multi-label text classifica-

tion datasets, which are AAPD (Yang et al.,
2018), EUR-Lex (Mencia and Fürnkranz, 2008)
and RCV1 (Lewis et al., 2004). The statistics of
these three datasets are listed in Table 1.

Dataset Ntrain Ntest L L W

RCV1 23,149 781,265 101 3.18 259.47
AAPD 54,840 1,000 54 2.41 163.42

EUR-Lex 11,585 3,865 3,954 5.32 1225.2

Table 1: Statistics of the datasets. Ntrain and Ntest

denote the number of training and testing samples re-
spectively. L is the total number of classes, L is the
average number of labels per sample and W is the av-
erage number of words per sample.

Evaluation Metric Following the settings of
previous work (You et al., 2019; Xiao et al., 2019),
we use precision at top K (P@k) and Normalized
Discounted Cumulated Gains at top K (nDCG@k)
for performance evaluation. The definition of two
metrics can be referred to You et al. (2019).
Implementation Details For a fair compari-
son, we apply the same dataset split as previous
work (Xiao et al., 2019), which is also the origi-
nal split provided by dataset publisher (Yang et al.,
2018; Mencia and Fürnkranz, 2008).

The word embeddings in the proposed network
are initialized with the 300-dimensional word vec-
tors, which are trained on the datasets by Skip-
gram (Mikolov et al., 2013) algorithm. The hid-
den sizes of Bi-LSTM and GCNs are set to 300
and 512, respectively. We use the Adam optimiza-
tion method (Kingma and Ba, 2014) to minimize
the cross-entropy loss, the learning rate is initial-
ized to 1e-3 and gradually decreased during the
process of training. We select the best parameter
configuration based on performance on the valida-
tion set and evaluate the configuration on the test
set. Our code is available on GitHub1.

3.2 Baselines
We compare the proposed model with recent
deep learning based methods for MLTC, including
seq2seq models, deep embedding models, and la-
bel attention based models. And it should be noted
that, because of different application scenarios, we
did not choose the label tree-based methods and
extreme text focused methods as baseline models.

• XML-CNN (Liu et al., 2017): a CNN-based
1https://github.com/Makwen1995/LDGN MLTC
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Models AAPD EUR-Lex

P@1 P@3 P@5 N@3 N@5 P@1 P@3 P@5 N@3 N@5

XML-CNN 74.38 53.84 37.79 71.12 75.93 70.40 54.98 44.86 58.62 53.10
SGM 75.67 56.75 35.65 72.36 75.35 70.45 60.37 43.88 60.72 55.24

DXML 80.54 56.30 39.16 77.23 80.99 75.63 60.13 48.65 63.96 53.60
AttentionXML 83.02 58.72 40.56 78.01 82.31 67.34 52.52 47.72 56.21 50.78

EXAM 83.26 59.77 40.66 79.10 82.79 74.40 61.93 50.98 65.12 59.43
LSAN 85.28 61.12 41.84 80.84 84.78 79.17 64.99 53.67 68.32 62.47
LDGN 86.24 61.95 42.29 83.32 86.85 81.03 67.79 56.36 71.81 66.09

Table 2: Comparisons with state-of-the-art methods on both AAPD and EUR-Lex datasets. The experimental
results of all baseline models are directly cited from paper (Xiao et al., 2019).

model which uses CNN and a dynamic pooling
layer to extract high-level feature for MLTC.

• SGM (Yang et al., 2018): a sequence generation
model which models label correlations as an or-
dered sequence.

• DXML (Zhang et al., 2018): a deep embedding
method which models the feature space and la-
bel graph structure simultaneously.

• AttentionXML (You et al., 2019): a label tree-
based deep learning model which uses a prob-
abilistic label tree and multi-label attention to
capture informative words in extreme-scale data.

• EXAM (Du et al., 2019): a novel framework that
leverages the label information to compute the
word-level interactions.

• LSAN (Xiao et al., 2019): a label-specific atten-
tion network model based on self-attention and
label-attention mechanism.

The SotA model (i.e., LSAN) used BiLSTM
model for text representations. For a fair compar-
ison, we also take BiLSTM as text encoder in our
model.

3.3 Experimental Results and Analysis

Table 2 and Table 3 demonstrate the performance
of all the compared methods based on the three
datasets. For fair comparison, the experimental
results of baseline models are directly cited from
previous studies (Xiao et al., 2019). We also bold
the best result of each column in all tables.

From the Table 2 and Table 3, we can observe
that the proposed LDGN outperforms all other

Models RCV1

P@1 P@3 P@5 N@3 N@5

XML-CNN 95.75 78.63 54.94 89.89 90.77
SGM 95.37 81.36 53.06 91.76 90.69

DXML 94.04 78.65 54.38 89.83 90.21
AttentionXML 96.41 80.91 56.38 91.88 92.70

EXAM 93.67 75.80 52.73 86.85 87.71
LSAN 96.81 81.89 56.92 92.83 93.43
LDGN 97.12 82.26 57.29 93.80 95.03

Table 3: Comparisons with state-of-the-art methods on
the RCV1 dataset. The experimental results of base-
lines are directly cited from (Xiao et al., 2019).

baselines on three datasets. The outstanding re-
sults confirm the effectiveness of label-specific se-
mantic interaction learning with dual graph neural
network, which include global statistical patterns
and local dynamic relations.

It is observed that the performance of XML-
CNN is worse than other comparison methods.
The reason is that it only exploits the text content
of documents for classification but ignores the la-
bel correlations which have been proven very im-
portant for multi-label classification problem.

The label tree-based model AttentionXML
performs better than the seq2seq method (SGM)
and the deep embedding method (DXML). Al-
though both DXML and SGM employ a label
graph or an ordered sequence to model the rela-
tionship between labels, they ignore the interac-
tions between labels and document content. And
AttentionXML uses multi-label attention which
can focus on the most relevant parts in content and
extract different semantic information for each la-
bel.

Compared with other label attention based
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Figure 2: Performance on tail labels.

methods (AttentionXML, EXAM), LSAN per-
forms the best because it takes the semantic
correlations between document content and la-
bel text into account simultaneously, which ex-
ploits an adaptive fusion to integrate self-attention
and label-attention mechanisms to learn the label-
specific document representation.

In conclusion, the proposed network LDGN
outperforms sequence-to-sequence models, deep
embedding models, and label attention based
models, and the metrics P@k and nDCG@k
of multi-label text classification obtain significant
improvement. Specifically, on the AAPD dataset,
LDGN increases the P@1 of the LSAN method
(the best baseline) from 85.28% to 86.24%, and
increases nDCG@3 and nDCG@5 from 80.84%
to 83.33%, 84.78% to 86.85% , respectively. On
the EUR-Lex dataset, the metric P@1 is boosted
from 79.17% to 81.03%, and P@5 and nDCG@5
are increased from 53.67% to 56.36%, 62.47%
to 66.09%, respectively. On the RCV1 dataset,
the P@k of our model increased by 0.3% at av-
erage, and LDGN achieves 1% and 1.6% abso-
lute improvement on nDCG@3, 5 compared with
LSAN. The improvements of the proposed LDGN
model demonstrate that the semantic interaction
learning with joint global statistical relations and
local dynamic relations are generally helpful and
effective, and LDGN can capture the deeper cor-
relations between categories than LSAN.

3.4 Ablation Test
We perform a series of ablation experiments to
examine the relative contributions of dual graph-
based semantic interactions module. To this end,
LDGN is compared with its three variants:(1)S:
Graph-based semantic interactions only with sta-
tistical label co-occurrence; (2)D: Graph-based se-
mantic interactions only with dynamic reconstruc-
tion graph; (3)no-G:Removing the dual graph

82

83

84

85

86

87

88

P@1 N@5

S D no-G S+D

(a) AAPD

60

65

70

75

80

85

P@1 N@5

S D no-G S+D

(b) EUR-Lex

Figure 3: Ablation test of LDGN on two datasets.

neural network. For a fair comparison, both S and
D use 4-layer GCN which is the same as LDGN.

As presented in Figure 3, S and D perform bet-
ter than no-G, which demonstrates that exploring
either statistical relations or dynamic relations can
correctly capture the effective semantic interac-
tions between label-specific components. D per-
forms better than S, indicating the model with lo-
cal dynamic relations is adaptive to data and has
better stability and robustness, which also shows
that the model with local dynamic relations can
capture semantic dependencies more effectively
and accurately. The performance of S+D (i.e.,
LDGN) combining two aspect relations obtains
significant improvement, which shows dynamic
relations can make up the deficiency of statistical
co-occurrence and correct the bias of global corre-
lations. Thus, it is necessary to explore their joint
effects to further boost the performance.

3.5 Performance on tail labels

In order to prove the effectiveness of the proposed
LDGN in alleviating the tail labels problem, we
evaluate the performance of LDGN by propensity
scored precision at k (PSP@k), which is calcu-
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Figure 4: The Visualization of label attention weights. (The attention weights of ’physics.soc’ for words are shaded
in blue, and the attention scores of class CS.CY and CS.CE are shaded in green and yellow color respectively.
Darker color represents higher weight score.)

lated as follow:

PSP@k =
1

k

k∑
l=1

yrank(l)

Prank(l)
, (7)

where Prank(l) is the propensity score (Jain
et al., 2016) of label rank(l). Figure 2 shows the
results of LDGN and LSAN on three datasets.

As shown in Figure 2(a), Figure 2(b) and Fig-
ure 2(c), the proposed LDGN performs better
in predicting tail labels than the LSAN model
(the best baseline) on three datasets. Specif-
ically, on the RCV1 dataset, LDGN achieves
0.97% and 1.35% absolute improvement in term
of PSP@3 and PSP@5 compared with LSAN.
On the AAPD dataset, the PSP@k increased by
at least 0.63% up to 0.90%. And on the EUR-Lex
dataset, LDGN achieves 1.94%, 3.64% and 4.93%
absolute improvement on PSP@1, 3, 5 compared
with LSAN. The reason for the improvement in
the EUR-Lex dataset is more obvious is that the
semantic interactions learning is more useful to
capture related information in the case of a large
number of labels.

The results prove that LDGN can effectively al-
leviate the problem of predicting tail labels.

3.6 Case Study
To further verify the effectiveness of our label at-
tention module and dual graph neural network in
LDGN, we present a typical case and visualize
the attention weights on the document words and
the similarity scores between label-specific com-
ponents. We show a test sample from original
AAPD dataset, and the document belongs to three
categories, ‘Physics and Society’ (physics.soc),
‘Computers and Society’ (cs.cy) and ‘Computa-
tional Engineering, Finance, and Science’ (cs.ce).
Visualization of Attention We can observe
from the Figure 4 that different labels focus on
different parts in the document text, and each la-
bel has its own concerned words. For example,

Figure 5: The Visualization of two adjacency matrices
of dual GNN. Darker color represents higher weight.

the more important parts in the ‘physics.soc’ cate-
gory are ‘digitalization power grid’, ‘energy man-
agement’. And the words that the ‘cs.ce’ cate-
gory focuses on are ‘consuming systems’, ‘vary-
ing prices’, ‘laying foundations’, ‘lower ’ and etc.
For class ‘cs.cy’, the concerned words are ‘sam-
ples dutch distribution’, ‘evolutions’ and ‘topolo-
gies’. The corresponding related words of the
three categories can reflect the semantics of the
categories.
Visualization of Interactions To gain a clearer
view of the importance of our dual graph-based
interactions learning module, we display two
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heatmaps in Figure 5 to visualize the partial graph
structure of dual GCN. The edge weights shown
in the heatmaps are obtained by global label co-
occurrence and local dynamic relations (i.e., com-
puted by Equation 5), respectively.

As presented in heatmaps, different relations
between categories are captured by dual GCN. In
global statistical relations, ‘cs.cy’ is highly linked
with ‘physics.soc’ and wrong label ‘nlin.ao’,
while the true label ‘cs.ce’ is isolated. And in lo-
cal dynamic relations, ‘cs.cy’ is more related to
‘cs.ce’, and the correlations between wrong label
‘nlin.ao’ and true labels are reduced. This demon-
strates that local dynamic relations can capture the
latent relations that do not appear in global rela-
tions, and correct the bias of global correlations.

4 Related Work

Multi-label Text Classification The existing
methods for MLTC mainly focus on learning en-
hanced document representation (Liu et al., 2017)
and modeling label dependency (Nam et al., 2017;
Yang et al., 2018; Tsai and Lee, 2019) to improve
the classification performance.

With the wide application of neural network
methods for text representation, some innova-
tive models have been developed for this task,
which include traditional deep learning methods
and Seq2Seq based methods. Liu et al. (2017)
employed CNNs and dynamic pooling to learn
the text representation for MLTC. However, they
treated all words equally and cannot explored the
informative words in documents. The Seq2Seq
methods, such as MLC2Seq (Nam et al., 2017)
and SGM (Yang et al., 2018), employed a RNN
to encode the input text and an attention based
RNN decoder to generate predicted labels se-
quentially. Although they used attention mecha-
nism to capture the informative words in text con-
tent, these models cannot distinguish similar la-
bels well. There is a big reason that most of them
neglect the semantic connections between labels
and document, and learn the same document rep-
resentations for different labels.

Recently, some studies (You et al., 2019; Xiao
et al., 2019; Du et al., 2019) have used atten-
tion mechanism to explore the interactions be-
tween words and labels, and learned a label-
specific document representation for classifica-
tion. These methods have obtained promising re-
sults in MLTC, which shows the importance of ex-

ploring semantic connections. However, they did
not further study the interactions between label-
specific semantic components which can help to
predict low-frequency labels.

To handle these issues, a common way to ex-
plore the semantic interactions between label-
specific parts in document, is to utilize the label
graph based on statistical co-occurrences.
MLC with Label Graph In order to capture
the deep correlations of labels in a graph struc-
ture, many researches in image classification apply
node embedding and graph neural network models
to the task of multi-label image classification. Lee
et al. (2018) incorporated knowledge graphs for
describing the relationships between labels, and
the information propagation can model the de-
pendencies between seen and unseen labels for
multi-label zero-shot learning. Chen et al. (2019)
learned label representations with prior label cor-
relation matrix in GCN, and mapped the label rep-
resentations to inter-dependent classifiers, which
achieved superior performance.

However, there were few related approaches
for multi-label classification of text. Zhang
et al. (2018) established an explicit label co-
occurrence graph to explore label embedding in
low-dimension latent space.

Furthermore, the statistical label correlations
obtained by training data are incomplete and
noisy. And the co-occurrence patterns between la-
bel pairs may form a long-tail distribution.

Thus, our goal is to find a way to explore the
complete and adaptive interactions among label-
specific semantic components more accurately.

5 Conclusion

In this paper, we propose a graph-based network
LDGN to capture the semantic interactions re-
lated to corresponding labels, which jointly ex-
ploits global statistical patterns and local dynamic
relations to derive complete and adaptive depen-
dencies between different label-specific semantic
parts. We first exploit multi-label attention to ex-
tract the label-specific semantic components from
documents. Then, we employ GCN to learn com-
ponent representations using label co-occurrences
to guide the information propagation among com-
ponents. After that, we use the learned component
representations to compute the adjacency graph
dynamically and re-learn with GCN based on the
reconstruction graph. Extensive experiments con-
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ducted on three public datasets show that the pro-
posed LDGN model outperforms other state-of-
the-art models on multi-label text classification
task and also demonstrates much higher effective-
ness to alleviate the tail label problem. In the fu-
ture, we will improve the proposed model in effi-
ciency, for example we could construct a dynamic
graph for a few samples rather than each sample.
And besides, we will explore more information
about labels for MLC classification.
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