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Abstract

Most previous studies integrate cognitive lan-
guage processing signals (e.g., eye-tracking
or EEG data) into neural models of natural
language processing (NLP) just by directly
concatenating word embeddings with cogni-
tive features, ignoring the gap between the
two modalities (i.e., textual vs. cognitive)
and noise in cognitive features. In this pa-
per, we propose a CogAlign approach to these
issues, which learns to align textual neural
representations to cognitive features. In Co-
gAlign, we use a shared encoder equipped
with a modality discriminator to alternatively
encode textual and cognitive inputs to capture
their differences and commonalities. Addition-
ally, a text-aware attention mechanism is pro-
posed to detect task-related information and to
avoid using noise in cognitive features. Ex-
perimental results on three NLP tasks, namely
named entity recognition, sentiment analysis
and relation extraction, show that CogAlign
achieves significant improvements with mul-
tiple cognitive features over state-of-the-art
models on public datasets. Moreover, our
model is able to transfer cognitive information
to other datasets that do not have any cogni-
tive processing signals. The source code for
CogAlign is available at https://github.

com/tjunlp-lab/CogAlign.git.

1 Introduction

Cognitive neuroscience, from a perspective of lan-
guage processing, studies the biological and cogni-
tive processes and aspects that underlie the mental
language processing procedures in human brains
while natural language processing (NLP) teaches
machines to read, analyze, translate and generate
human language sequences (Muttenthaler et al.,
2020). The commonality of language process-
ing shared by these two areas forms the base of
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cognitively-inspired NLP, which uses cognitive
language processing signals generated by human
brains to enhance or probe neural models in solving
a variety of NLP tasks, such as sentiment analysis
(Mishra et al., 2017; Barrett et al., 2018), named
entity recognition (NER) (Hollenstein and Zhang,
2019), dependency parsing (Strzyz et al., 2019),
relation extraction (Hollenstein et al., 2019a), etc.

In spite of the success of cognitively-inspired
NLP in some tasks, there are some issues in the
use of cognitive features in NLP. First, for the inte-
gration of cognitive processing signals into neural
models of NLP tasks, most previous studies have
just directly concatenated word embeddings with
cognitive features from eye-tracking or EEG, ignor-
ing the huge differences between these two types
of representations. Word embeddings are usually
learned as static or contextualized representations
of words in large-scale spoken or written texts gen-
erated by humans. In contrast, cognitive language
processing signals are collected by specific medi-
cal equipments, which record the activity of human
brains during the cognitive process of language
processing. These cognitive processing signals are
usually assumed to represent psycholinguistic in-
formation (Mathias et al., 2020) or cognitive load
(Antonenko et al., 2010). Intuitively, information in
these two types of features (i.e., word embeddings
and cognitive features) is not directly comparable
to each other. As a result, directly concatenating
them could be not optimal for neural models to
solve NLP tasks.

The second issue with the incorporation of cogni-
tive processing signals into neural models of NLP is
that not all information in cognitive processing sig-
nals is useful for NLP. The recorded signals contain
information covering a wide variety of cognitive
processes, particularly for EEG (Williams et al.,
2019; Eugster et al., 2014). For different tasks, we
may need to detect elements in the recorded signals,

https://github.com/tjunlp-lab/CogAlign.git
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Figure 1: Neural Architecture of the proposed CogAlign. For inference, only the components in the red dashed
box are used.

which are closely related to specific NLP tasks, and
neglect features that are noisy to the tasks.

In order to address the two issues, we propose
CogAlign, a multi-task neural network that learns
to align neural representations of texts to cogni-
tive processing signals, for several NLP tasks. As
shown in Figure 1, instead of simply concatenating
cognitive features with word embeddings, we use
two private encoders to separately encode cognitive
processing signals and word embeddings. The two
encoders will learn task-specific representations
for cognitive and textual inputs in two disentan-
gled spaces. To align the representations of neural
network with cognitive processing signals, we fur-
ther introduce an additional encoder that is shared
by both data sources. We alternatively feed cog-
nitive and textual inputs into the shared encoder
and force it to minimize an adversarial loss of the
discriminator stacked over the shared encoder. The
discriminator is task-agnostic so that it can focus
on learning both differences and deep commonal-
ities between neural representations of cognitive
and textual features in the shared encoder. We want
the shared encoder to be able to transfer knowledge
of cognitive language processing signals to other
datasets even if cognitive processing signals are not
available for those datasets. Therefore, CogAlign
does not require cognitive processing signals as
inputs during inference.

Partially inspired by the attentive pooling net-
work (Santos et al., 2016), we propose a text-aware
attention mechanism to further align textual inputs
and cognitive processing signals at the word level.

The attention network learns a compatibility matrix
of textual inputs to cognitive processing signals.
The learned text-aware representations of cognitive
processing signals also help the model to detect
task-related information and to avoid using other
noisy information contained in cognitive process-
ing signals.

In a nutshell, our contributions are listed as fol-
lows:

• We present CogAlign that learns to align neu-
ral representations of natural language to cog-
nitive processing signals at both word and sen-
tence level. Our analyses show that it can
learn task-related specific cognitive process-
ing signals.

• We propose a text-aware attention mechanism
that extracts useful cognitive information via
a compatibility matrix.

• With the adversarially trained shared encoder,
CogAlign is capable of transferring cognitive
knowledge into other datasets for the same
task, where no recorded cognitive processing
signals are available.

• We conduct experiments on incorporating eye-
tracking and EEG signals into 3 different NLP
tasks: NER, sentiment analysis and relation
extraction, which show CogAlign achieves
new state-of-the-art results and significant im-
provements over strong baselines.
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2 Related Work

Eye-tracking for NLP. Eye-tracking data have
proved to be associated with language comprehen-
sion activity in human brains by numerous research
in neuroscience (Rayner, 1998; Henderson and Fer-
reira, 1993). In cognitively motivated NLP, several
studies have investigated the impact of eye-tracking
data on NLP tasks. In early works, these signals
have been used in machine learning approaches to
NLP tasks, such as part-of-speech tagging (Barrett
et al., 2016), multiword expression extraction (Ro-
hanian et al., 2017), syntactic category prediction
(Barrett and Søgaard, 2015). In neural models, eye-
tracking data are combined with word embeddings
to improve various NLP tasks, such as sentiment
analysis (Mishra et al., 2017) and NER (Hollen-
stein and Zhang, 2019). Eye-tracking data have
also been used to enhance or constrain neural atten-
tion in (Barrett et al., 2018; Sood et al., 2020b,a;
Takmaz et al., 2020).

EEG for NLP. Electroencephalography (EEG)
measures potentials fluctuations caused by the ac-
tivity of neurons in cerebral cortex. The explo-
ration of EEG data in NLP tasks is relatively lim-
ited. Chen et al. (2012) improve the performance
of automatic speech recognition (ASR) by using
EEG signals to classify the speaker’s mental state.
Hollenstein et al. (2019a) incorporate EEG signals
into NLP tasks, including NER, relation extraction
and sentiment analysis. Additionally, Muttenthaler
et al. (2020) leverage EEG features to regularize
attention on relation extraction.

Adversarial Learning. The concept of adversar-
ial training originates from the Generative Adver-
sarial Nets (GAN) (Goodfellow et al., 2014) in com-
puter vision. Since then, it has been also applied
in NLP (Denton et al., 2015; Ganin et al., 2016).
Recently, a great variety of studies attempt to intro-
duce adversarial training into multi-task learning
in NLP tasks, such as Chinese NER (Cao et al.,
2018), crowdsourcing learning (Yang et al., 2018),
cross-lingual transfer learning (Chen et al., 2018;
Kim et al., 2017), just name a few. Different from
these studies, we use adversarial learning to deeply
align cognitive modality to textual modality at the
sentence level.

3 CogAlign

CogAlign is a general framework for incorporat-
ing cognitive processing signals into various NLP

tasks. The target task can be specified at the predic-
tor layer with corresponding task-specific neural
network. CogAlign focuses on aligning cognitive
processing signals to textual features at the word
and encoder level. The text-aware attention aims at
learning task-related useful cognitive information
(thus filtering out noises) while the shared encoder
and discriminator collectively learns to align repre-
sentations of cognitive processing signals to those
of textual inputs in a unified semantic space. The
matched neural representations can be transferred
to another datasets of the target task even though
cognitive processing signals is not present. The
neural architecture of CogAlign is visualized in
Figure 1. We will elaborate the components of
model in the following subsections.

3.1 Input Layer
The inputs to our model include textual word em-
beddings and cognitive processing signals.

Word Embeddings. For a given word xi from
the dataset of a target NLP task (e.g., NER), we ob-
tain the vector representation hwordi by looking up a
pre-trained embedding matrix. The obtained word
embeddings are fixed during training. For NER,
previous studies have shown that character-level
features can improve the performance of sequence
labeling (Lin et al., 2018). We therefore apply a
character-level CNN framework (Chiu and Nichols,
2016; Ma and Hovy, 2016) to capture the character-
level embedding. The word representation of word
xi in NER task is the concatenation of word em-
bedding and character-level embedding.

Cognitive Processing Signals. For cognitive in-
puts, we can obtain word-level eye-tracking and
EEG via data preprocessing (see details in Section
5.1). Thus, for each word xi, we employ two cog-
nitive processing signals heyei and heegi . The cogni-
tive input hcogi can be either a single type of signal
or a concatenation of different cognitive processing
signals.

3.2 Text-Aware Attention
As not all information contained in cognitive pro-
cessing signals is useful for the target NLP task,
we propose a text-aware attention mechanism to as-
sign text sensitive weights to cognitive processing
signals. The main process of attention mechanism
consists of learning a compatibility matrix between
word embeddings Hword ∈ Rdw×N and cogni-
tive representations Hcog ∈ Rdc×N from the input
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layer and preforming cognitive-wise max-pooling
operation over the matrix. The compatibility matrix
G ∈ Rdw×dc can be computed as follows:

G = tanh(HwordUHcogT ) (1)

where dw and dc are the dimension of word embed-
dings and cognitive representations, respectively,
N is the length of the input, and U ∈ RN×N is a
trainable parameter matrix.

We then obtain a vector gcog ∈ Rdc , which is
computed as the importance score for each element
in the cognitive processing signals with regard to
the word embeddings, by row-wise max-pooling
over G. Finally, we compute attention weights and
the text-aware representation of cognitive process-
ing signals Hcog ′ as follows:

αcog = softmax(gcog) (2)

Hcog ′ = αcogHcog (3)

3.3 Encoder Layer

We adopt Bi-LSTMs to encode both cognitive and
textual inputs following previous works (Hollen-
stein and Zhang, 2019; Hollenstein et al., 2019a).
In this work, we employ two private Bi-LSTMs
and one shared Bi-LSTM as shown in Figure 1,
where private Bi-LSTMs are used to encode cogni-
tive and textual inputs respectively and the shared
Bi-LSTM is used for learning shared semantics of
both types of inputs. We concatenate the outputs of
private Bi-LSTMs and shared Bi-LSTM as input
to the task-specific predictors of subsequent NLP
tasks. The hidden states of the shared Bi-LSTM
are also fed into the discriminator.

3.4 Modality Discriminator

We alternatively feed cognitive and textual inputs
into the shared Bi-LSTM encoder. Our goal is that
the shared encoder is able to map the representa-
tions of the two different sources of inputs into
the same semantic space so as to learn the deep
commonalities of two modalities (cognitive and
textual). For this, we use a self-supervised discrim-
inator to provide supervision for training the shared
encoder.

Particularly, the discriminator is acted as a clas-
sifier to categorize the alternatively fed inputs into
either the textual or cognitive input. For the hidden

state of modality k, we use a self-attention mecha-
nism to first reduce the dimension of the output of
the shared Bi-LSTM Hs

k ∈ Rdh×N :

α = softmax(vT tanh(WsH
s
k + bs)) (4)

hsk =
N∑
i=1

αiH
s
ki

(5)

where Ws ∈ Rdh×dh , bs ∈ Rdh , v ∈ Rdh are
trainable parameters in the model, hsk is the output
of self-attention mechanism. Then we predict the
category of the input by softmax function:

D(hsk) = softmax(Wdh
s
k + bd) (6)

where D(hsk) is the probability that the shared en-
coder is encoding an input with modality k.

3.5 Predictor Layer
Given a sample X , the final cognitively augmented
representation after the encoder layer can be for-
mulated as H

′
= [Hp;Hs] ∈ R2dh×N . Hp and

Hs are the result of private Bi-LSTM and shared
Bi-LSTM, respectively.

For sequence labeling tasks like NER, we em-
ploy the conditional random field (CRF) (Lafferty
et al., 2001) as the predictor as Bi-LSTM-CRF is
widely used in many sequence labeling tasks (Ma
and Hovy, 2016; Luo et al., 2018) due to the excel-
lent performance and also in cognitively inspired
NLP (Hollenstein and Zhang, 2019; Hollenstein
et al., 2019a). Firstly, we project the feature repre-
sentation H

′
onto another space of which dimen-

sion is equal to the number of NER tags as follows:

oi =Wnh
′
i + bn (7)

We then compute the score of a predicted tag
sequence y for the given sample X:

score(X, y) =

N∑
i=1

(oi,yi + Tyi−1,yi) (8)

where T is a transition score matrix which defines
the transition probability of two successive labels.

Sentiment analysis and relation extraction can
be regarded as multi-class classification tasks, with
3 and 11 classes, respectively. For these two tasks,
we use a self attention mechanism to reduce the
dimension of H

′
and obtain the probability of a

predicted class via the softmax function.
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4 Training and Inference

4.1 Adversarial Learning
In order to learn the deep interaction between cog-
nitive and textual modalities in the same semantic
space, we want the shared Bi-LSTM encoder to
output representations that can fool the discrimi-
nator. Therefore we adopt the adversarial learning
strategy. Particularly, the shared encoder acts as the
generator that tries to align the textual and cogni-
tive modalities as close as possible so as to mislead
the discriminator. The shared encoder and discrim-
inator works in an adversarial way.

Additionally, to further increase the difficulty
for the discriminator to distinguish modalities, we
add a gradient reversal layer (GRL) (Ganin and
Lempitsky, 2015) in between the encoder layer
and predictor layer. The gradient reversal layer
does nothing in the forward pass but reverses the
gradients and passes them to the preceding layer
during the backward pass. That is, gradients with
respect to the adversarial loss ∂LAdv

∂θ are replaced
with −∂LAdv

∂θ after going through GRL.

4.2 Training Objective
CogAlign is established on a multi-task learning
framework, where the final training objective is
composed of the adversarial loss LAdv and the loss
of the target task LTask. For NER, we exploit
the negative log-likelihood objective as the loss
function. Given T training examples (Xi; yi)1,
LTask is defined as follows:

LTask = −
T∑
i=1

logp(yi|Xi) (9)

where y denotes the ground-truth tag sequence.
The probability of y is computed by the softmax
function:

p(y|X) =
escore(X,y)∑
ỹ∈Y e

score(X,ỹ)
(10)

For sentiment analysis and relation extraction
tasks, the task objective is similar to that of NER.
The only difference is that the label of the task is
changed from a tag sequence to a single class.

The adversarial loss LAdv is defined as:

LAdv = min
θs

(max
θd

K∑
k=1

Tk∑
i=1

logD(S(Xi
k))) (11)

1X can be either textual or cognitive input as we alterna-
tively feed word embeddings and cognitive processing signals
into CogAlign.

where θs and θd denote the parameters of the shared
Bi-LSTM encoders S and modality discriminator
D, respectively, Xi

k is the representation of sen-
tence i in a modality k. The joint loss of CogAlign
is therefore defined as:

L = LTask + LAdv (12)

4.3 Inference

After training, the shared encoder learns a unified
semantic space for representations of both cog-
nitive and textual modality. We believe that the
shared space embeds knowledge from cognitive
processing signals. For inference, we therefore
only use the textual part and the shared encoder
(components in the red dashed box in Figure 1).
The private encoder outputs textual-modality-only
representations while the shared encoder generates
cognitive-augmented representations. The two rep-
resentations are concatenated to feed into the pre-
dictor layer of the target task. This indicates that
we do not need cognitive processing signals for the
inference of the target task. It also means that we
can pretrain CogAlign with cognitive processing
signals and then transfer it to other datasets where
cognitive processing signals are not available for
the same target task.

5 Experiments

We conducted experiments on three NLP tasks,
namely NER, sentiment analysis and relation ex-
traction with two types of cognitive processing sig-
nals (eye-tracking and EEG) to validate the effec-
tiveness of the proposed CogAlign.

5.1 Dataset and Cognitive Processing Signals

We chose a dataset2 with multiple cognitive pro-
cessing signals: Zurich Cognitive Language Pro-
cessing Corpus (ZuCo) (Hollenstein et al., 2018).
This corpus contains simultaneous eye-tracking
and EEG signals collected when 12 native En-
glish speakers are reading 1,100 English sentences.
Word-level signals can be divided by the duration
of each word.

The dataset includes two reading paradigms: nor-
mal reading and task-specific reading where sub-
jects exercise some specific task. In this work,
we only used the data of normal reading, since
this paradigm accords with human natural read-
ing. The materials for normal reading paradigm

2The data is available here: https://osf.io/q3zws/
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EARLY first fixation duration (FFD) the duration of word w that is first fixated
first pass duration (FPD) the sum of the fixations before eyes leave the word w

LATE

number of fixations (NFIX) the number of times word w that is fixated
fixation probability (FP) the probability that word w is fixated
mean fixation duration (MFD) the average fixation durations for word w
total fixation duration (TFD) the total duration of word w that is fixated
n re-fixations (NR) the number of times word w that is fixated after the first fixation
re-read probability (RRP) the probability of word w that is fixated more than once

CONTEXT

total regression-from duration (TRD) the total duration of regressions from word w
w-2 fixation probability (w-2 FP) the fixation probability of the word w-2
w-1 fixation probability (w-1 FP) the fixation probability of the word w-1
w+1 fixation probability (w+1 FP) the fixation probability of the word w+1
w+2 fixation probability (w+2 FP) the fixation probability of the word w+2
w-2 fixation duration (w-2 FD) the fixation duration of the word w-2
w-1 fixation duration (w-1 FD) the fixation duration of the word w-1
w+1 fixation duration (w+1 FD) the fixation duration of the word w+1
w+2 fixation duration (w+2 FD) the fixation duration of the word w+2

Table 1: Eye-tracking features used in the NER task.

consist of two datasets: 400 movie reviews from
Stanford Sentiment Treebank (Socher et al., 2013)
with manually annotated sentiment labels, includ-
ing 123 neutral, 137 negative and 140 positive sen-
tences; 300 paragraphs about famous people from
Wikipedia relation extraction corpus (Culotta et al.,
2006) labeled with 11 relationship types, such as
award, education.

We also tested our model on NER task. For NER,
the selected 700 sentences in the above two tasks
are annotated with three types of entities: PERSON,
ORGANIZATION, and LOCATION. All annotated
datasets3 are publicly available. The cognitive pro-
cessing signals and textual features used for each
task in this work are the same as (Hollenstein et al.,
2019a).

Eye-tracking Features. Eye-tracking signals
record human gaze behavior while reading. The
eye-tracking data of ZuCo are collected by an in-
frared video-based eye tracker EyeLink 1000 Plus
with a sampling rate of 500 Hz. For NER, we
used 17 eye-tracking features that cover all stages
of gaze behaviors and the effect of context. Ac-
cording to the reading process, these features are
divided into three groups: EARLY, the gaze behav-
ior when a word is fixated for the first time; LATE,
the gaze behavior over a word that is fixated many
times; CONTEXT, the eye-tracking features over
neighboring words of the current word. The 17 eye-
tracking features used in the NER task are shown
in the Table 1. In the other two tasks, we employed
5 gaze behaviors, including the first fixation dura-
tion (FFD), the number of fixations (NFIX), the
total fixation duration (TFD), the first pass duration

3https://github.com/DS3Lab/zuco-nlp/

(FPD), the gaze duration (GD) that is the duration
of the first time eyes move to the current word until
eyes leave the word.

EEG Features. EEG signals record the brain’s
electrical activity in the cerebral cortex by plac-
ing electrodes on the scalp of the subject. In the
datasets we used, EEG signals are recorded by a
128-channel EEG Geodesic Hydrocel system (Elec-
trical Geodesics, Eugene, Oregon) at a sampling
rate of 500 Hz with a bandpass of 0.1 to 100 Hz.
The original EEG signals recorded are of 128 di-
mensions. Among them, 23 EEG signals are re-
moved during preprocessing since they are not re-
lated to the cognitive processing (Hollenstein et al.,
2018). After preprocessing, we obtained 105 EEG
signals. The left EEG signals are divided into 8
frequency bands by the frequency of brain’s electri-
cal signals: theta1 (t1, 4-6 Hz), theta2 (t2, 6.5-8
Hz), alpha1 (a1, 8.5-10 Hz), alpha2 (a2, 10.5-13
Hz), beta1 (b1, 13.5-18 Hz), beta2 (b2, 18.5-30
Hz), gamma1 (g1, 30.5-40 Hz) and gamma2 (g2,
40-49.5 Hz). The frequency bands reflects the dif-
ferent functions of brain cognitive processing. For
NER, we used 8 EEG features that are obtained by
averaging the 105 EEG signals at each frequency
band. For the other two tasks, EEG features were
obtained by averaging the 105 signals over all fre-
quency bands. All used EEG features are obtained
by averaging over all subjects and normalization.

5.2 Settings

We evaluated three NLP tasks in terms of precision,
recall and F1 in our experiments. Word embed-
dings of all NLP tasks were initialized with the
publicly available pretrained GloVe (Pennington
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Signals Model NER Sentiment Analysis Relation Extraction
P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

Base∗ 89.34 78.60 83.48 59.47 59.42 58.27 79.52 75.67 75.25

eye

(Hollenstein et al., 2019a) 86.2 84.3 85.1 65.1 61.9 62.0 61.4 61.7 61.5
Base 90.56 81.05 85.43∗ 64.26 61.96 61.19∗ 82.01 78.23 77.95∗

Base+TA 90.75 81.77 85.93∗ 64.63 62.71 61.41∗ 83.26 76.47 78.04∗

CogAlign 90.76 82.52 86.41∗ 62.86 64.10 62.30∗ 78.33 82.06 78.56∗

EEG

(Hollenstein et al., 2019a) 86.7 81.5 83.9 68.3 64.8 65.1 60.5 60.2 60.3
Base 89.82 80.55 84.76∗ 64.09 60.29 59.79∗ 82.79 77.16 77.61∗

Base+TA 89.54 82.22 85.62∗ 62.20 62.19 60.91∗ 80.83 78.46 77.81∗

CogAlign 89.87 83.08 86.21∗ 63.11 65.38 62.81∗ 77.94 82.60 78.66∗

eye
+EEG

(Hollenstein et al., 2019a) 85.1 83.2 84.0 66.3 59.3 60.8 59.8 60.0 59.8
Base 89.70 81.11 85.11∗ 62.86 61.49 60.84∗ 79.00 76.52 77.72∗

Base+TA 90.75 82.94 86.31∗ 65.22 63.88 63.23∗ 82.24 77.53 78.12∗

CogAlign 91.28 83.02 86.79∗ 65.11 65.94 65.40∗ 78.66 82.07 78.93∗

Table 2: Results of CogAlign and other methods on the three NLP tasks augmented with eye-tracking features (eye),
EEG features (EEG), and both (eye+EEG). ‘Base∗’ denotes that the model does not use any cognitive processing
signals. ‘Base’ is a neural model that consist of a textual private encoder and textual predictor, and combines
cognitive processing signals with word embeddings via direct concatenation, similar to previous works. ‘Base+TA’
is a neural model where direct concatenation in the base model is replaced by the text-aware attention mechanism.
Significance is indicated with the asterisks: * = p<0.01.

et al., 2014) vectors of 300 dimensions. For NER,
we used 30-dimensional randomly initialized char-
acter embeddings. We set the dimension of hidden
states of LSTM to 50 for both the private Bi-LSTM
and shared Bi-LSTM. We performed 10-fold cross
validation for NER and sentiment analysis and 5-
fold cross validation for relation extraction.

5.3 Baselines

We compared our model with previous state-of-
the-art methods on ZuCo dataset. The method by
Hollenstein et al. (2019a) incorporates cognitive
processing signals into their model via direct con-
catenation mentioned before.

5.4 Results

Results of CogAlign on the three NLP tasks are
shown in Table 2. From the table, we observe that:

• By just simply concatenating word embed-
dings with cognitive processing signals, the
Base model is better than the model without
using any cognitive processing signals, indi-
cating that cognitive processing signals (either
eye-tracking or EEG signals) can improve all
three NLP tasks. Notably, the improvements
gained by eye-tracking features are larger than
those obtained by EEG signals while the com-
bination of both does not improve over only
using one of them. We conjecture that this
may be due to the low signal-to-noise ratio of
EEG signals, which further decreases when
two signals are combined together.

• Compared with the Base model, the Base+TA
achieves better results on all NLP tasks. The

text-aware attention gains an absolute im-
provement of 0.88, 2.04, 0.17 F1 on NER,
sentiment analysis, and relation extraction, re-
spectively. With Base+TA, the best results for
most tasks are obtained by the combination of
eye-tracking and EEG signals. This suggests
that the proposed text-aware attention may
have alleviated the noise problem of cognitive
processing signals.

• The proposed CogAlign achieves the highest
F1 over all three tasks, with improvements of
0.48, 2.17 and 0.87 F1 over Base+TA on NER,
sentiment analysis and relation extraction, re-
spectively, which demonstrates the effective-
ness of our proposed model. In addition, Co-
gAlign with both cognitive processing signals
obtains new state-of-the-art performance in
all NLP tasks. This suggests that CogAlign
is able to effectively augment neural models
with cognitive processing signals.

5.5 Ablation Study

To take a deep look into the improvements con-
tributed by each part of our model, we perform
ablation study on all three NLP tasks with two
cognitive processing signals. The ablation test in-
cludes: (1) w/o text-aware attention, removing
text-aware attention mechanism; (2) w/o cognitive
loss, discarding the loss of the cognitive predic-
tor whose inputs are cognitive processing signals;
(3) w/o modality discriminator, removing the dis-
criminator to train parameters with the task loss.
Table 3 reports the ablation study results.
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Model NER Sentiment Analysis Relation Extraction
P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

CogAlign (eye+EEG) 91.28 83.02 86.79∗ 65.11 65.94 65.40∗ 78.66 82.07 78.93∗

- text-aware attention 90.51 82.45 86.19∗ 64.75 65.30 63.90∗ 77.67 83.14 78.68∗

- cognitive loss 90.20 81.11 85.45∗ 64.48 65.42 63.77∗ 77.79 81.24 77.75∗

- modality discriminator 89.63 83.66 86.09∗ 64.11 66.24 63.28∗ 78.61 80.71 78.46∗

Table 3: Ablation study on the three NLP tasks. Significance is indicated with the asterisks: * = p<0.01.

(a) without adv (b) with adv

Figure 2: The visualization of hidden states from the
shared Bi-LSTM layer. ‘adv’ denotes the adversarial
learning. Red dots are the hidden representations of
cognitive processing signals while blue dots hidden rep-
resentations of textual inputs. Both are at the word level
via t-SNE (Van der Maaten and Hinton, 2008).

The absence of the text-aware attention, cogni-
tive loss and modality discriminator results in a
significant drop in performance. This demonstrates
that these components all contribute to the effective
incorporation of cognitive processing signals into
neural models of the three target tasks. CogAlign
outperforms both (2) w/o cognitive loss and (3)
w/o modality discriminator by a great margin, in-
dicating that the cognitive features can significantly
enhance neural models.

Furthermore, we visualize the distribution of hid-
den states learned by the shared Bi-LSTM to give a
more intuitive demonstration of the effect of adver-
sarial learning. In Figure 2, clearly, the modality
discriminator with adversarial learning forces the
shared Bi-LSTM encoder to align textual inputs to
cognitive processing signals in the same space.

6 Analysis

6.1 Text-aware Attention Analysis

In addition to denoising the cognitive processing
signals, the text-aware attention mechanism also
obtains the task-specific features. To have a clear
view of the role that the text-aware attention mecha-
nism plays in CogAlign, we randomly choose sam-
ples and visualize the average attention weights
over each signal in Figure 3.

For eye-tracking, signals reflecting the late syn-

(a) eye-tracking

(b) EEG

Figure 3: The visualization of attention weights over
cognitive processing signals by the text-aware attention
in the three NLP tasks. Darker colors represent higher
attention weights.

tactic processing, such as ‘NFIX’ (number of fix-
ation), ‘TFD’ (total fixation duration), play an im-
portant role in the three tasks. These results are
consistent with findings in cognitive neuroscience.
In cognitive neuroscience, researchers have shown
that readers tend to gaze at nouns repeatedly (Furt-
ner et al., 2009) (related to the eye-tracking signal
NFIX, the number of fixations) and there is a de-
pendency relationship between regression features
and sentence syntactic structures (Lopopolo et al.,
2019). In other NLP tasks that infused eye-tracking
features, the late gaze features have also proved to
be more important than early gaze features, such as
multiword expression extraction (Rohanian et al.,
2017). Moreover, from the additional eye-tracking
used in NER, we can find that the cognitive features
from the neighboring words are helpful to identify
entity, such as ‘w-2 FP’ (w-2 fixation probability),
‘w+1 FP’ (w+1 fixation probability).

Since a single EEG signal has no practical mean-
ing, we only visualize the attention weights over
EEG signals used in the NER task. Obviously,
attentions to ‘t1’ (theta1) and ‘a2’ (alpha2) are
stronger than other signals, suggesting that low fre-
quency electric activities in the brain are obvious
when we recognize an entity.
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Model Wikigold SST
P (%) R (%) F1 (%) P (%) R (%) F1 (%)

baseline 80.70 70.67 75.19 56.67 57.58 56.40
baseline (two encoders) 80.16 73.39 75.73 56.76 58.05 56.89
CogAlign (eye) 80.39 72.59 76.17 58.05 59.69 57.27
CogAlign (EEG) 80.54 71.91 75.93 57.25 58.34 57.10
CogAlign (eye+EEG) 81.71 74.17 77.76 58.60 58.33 58.32

Table 4: Results of CogAlign in transfer learning to other datasets without cognitive processing signals. ‘baseline’
is a model trained and tested with one encoder for textual inputs. ‘baseline (+ZuCo text)’ is the baseline trained
with both Zuco textual data and target dataset (i.e., Wikigold or SST). ‘baseline (two encoders)’ is the same as
CogAlign (the inference version), where cognitive processing signals are replaced by textual inputs.

6.2 Transfer Learning Analysis

The cognitively-inspired NLP is limited by the col-
lection of cognitive processing signals. Thus, we
further investigate whether our model can transfer
cognitive features to other datasets without cogni-
tive processing signals for the same task. We enable
transfer learning in CogAlign with a method similar
to the alternating training approach (Luong et al.,
2016) that optimizes each task for a fixed number
of mini-batches before shifting to the next task. In
our case, we alternately feed instances from the
ZuCo dataset and those from other datasets built
for the same target task but without cognitive pro-
cessing signals into CogAlign. Since CogAlign is
a multi-task learning framework, model parame-
ters can be updated either by data with cognitive
processing signals or by data without such signals,
where task-specific loss is used in both situations.
Please notice that only textual inputs are fed into
trained CogAlign for inference.

To evaluate the capacity of CogAlign in trans-
ferring cognitive features, we select benchmark
datasets for NER and sentiment analysis: Wikigold
(Balasuriya et al., 2009) and Stanford Sentiment
Treebank (Socher et al., 2013). Since no other
datasets use the same set of relation types as that
in ZuCo dataset, we do not test the relation extrac-
tion task for transfer learning. To ensure that the
same textual data are used for comparison, we add
a new baseline model (baseline (+Zuco text)) that is
trained on the combination of textual data in ZuCo
and benchmark dataset. Additionally, as CogAlign
uses two encoders for inference (i.e., the textual
encoder and shared encoder), for a fair comparison,
we setup another baseline (baseline (two encoders))
that also uses two encoders fed with the same tex-
tual inputs. The experimental setup is the same as
mentioned before.

Results are shown in the Table 4. We can ob-
serve that CogAlign consistently outperforms the

two baselines. It indicates that CogAlign is able
to effectively transfer cognitive knowledge (either
eye-tracking or EEG) from ZuCo to other datasets.
Results show that the best performance is achieved
by transferring both eye-tracking and EEG signals
at the same time.

7 Conclusions

In this paper, we have presented CogAlign, a frame-
work that can effectively fuse cognitive processing
signals into neural models of various NLP tasks by
learning to align the textual and cognitive modal-
ity at both word and sentence level. Experiments
demonstrate that CogAlign achieves new state-of-
the-art results on three NLP tasks on the Zuco
dataset. Analyses suggest that the text-aware at-
tention in CogAlign can learn task-related cogni-
tive processing signals by attention weights while
the modality discriminator with adversarial learn-
ing forces CogAlign to learn cognitive and textual
representations in the unified space. Further ex-
periments exhibit that CogAlign is able to transfer
cognitive information from Zuco to other datasets
without cognitive processing signals.
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