
Structural Guidance for Transformer Language Models

Peng Qian1 Tahira Naseem2 Roger Levy1 Ramón Fernandez Astudillo2

1 Department of Brain and Cognitive Sciences, MIT 2 IBM Research
pqian@mit.edu tnaseem@us.ibm.com

rplevy@mit.edu ramon.astudillo@ibm.com

Abstract

Transformer-based language models pre-
trained on large amounts of text data have
proven remarkably successful in learning
generic transferable linguistic representations.
Here we study whether structural guidance
leads to more human-like systematic linguistic
generalization in Transformer language
models without resorting to pre-training on
very large amounts of data. We explore two
general ideas. The “Generative Parsing” idea
jointly models the incremental parse and
word sequence as part of the same sequence
modeling task. The “Structural Scaffold” idea
guides the language model’s representation
via additional structure loss that separately
predicts the incremental constituency parse.
We train the proposed models along with a
vanilla Transformer language model baseline
on a 14 million-token and a 46 million-token
subset of the BLLIP dataset, and evaluate
models’ syntactic generalization perfor-
mances on SG Test Suites and sized BLiMP.
Experiment results across two benchmarks
suggest converging evidence that generative
structural supervisions can induce more robust
and humanlike linguistic generalization in
Transformer language models without the
need for data intensive pre-training.

1 Introduction

Pre-trained Transformer architectures have led to
huge progress in building more human-like lan-
guage processing systems (Radford et al.; Devlin
et al., 2019; Brown et al., 2020, among others).
These models achieve impressive perplexity results
on language modelling datasets, perform well on
grammatical judgments (Warstadt et al., 2020), and
provide useful linguistic representations that ben-
efit a wide range of downstream tasks. Probing
analyses also suggest that these models learn to im-
plicitly encode syntactic information (Hewitt and

Manning, 2019; Clark et al., 2019) that may sup-
port better linguistic generalization than recurrent
neural network architectures (RNNs).

However, the Transformer architecture (Vaswani
et al., 2017) is an interesting subject of study be-
yond its success in transfer-learning settings. Trans-
former models lack the inductive biases of RNNs.
Rather than maintaining vector-valued state and
updating it in a recurrent manner, auto-regressive
Transformer models encode all past decisions si-
multaneously at each inference step, thanks to a
self-attention mechanism. The only notion of se-
quence order is also given by position embeddings
summed to content embeddings in both input and
auto-regressive signals.

Previous works have shown the advantage of
structural supervision in RNNs in learning to main-
tain syntactic states and non-local dependencies
(Kuncoro et al., 2018; Wilcox et al., 2019; Futrell
et al., 2019). It remains an open question whether
Transformer language models can similarly benefit
from generative structural supervision, and what
form of structural supervision would more effec-
tively induce human-like syntactic generalization.

This work hypothesizes that the Transformer lan-
guage model may benefit from explicit generative
structural supervision to systematically generalize
syntactic knowledge. Here we explore two ma-
jor classes of structural guidance for Transformer
language models based on joint modeling of lan-
guage and constituency parses. The “generative
parsing as language modeling” approach builds a
Transformer-parameterized model to learn to pre-
dict actions that incrementally build constituency
trees along with terminal words, following prior
work on RNNs (Dyer et al., 2016; Choe and Char-
niak, 2016). The “structural scaffolding” approach
follows the general idea of regularizing hidden rep-
resentation through multi-task learning objective,
with prior success in various NLP tasks (Zhang



S

NP

The birds

VP

sang ADVP

〈BOS〉 NT(S) NT(NP) The birds REDUCE NT(VP) sang NT(ADVP) · · ·

w0 w1 w2 w3

y0:1 y1:2 y2:3 y3:4

w1 w2 w3

w0 w1 w2

(a) Vanilla language model

NT(S) NT(NP) The birds REDUCE

〈BOS〉 NT(S) NT(NP) The birds

(b) Parsing as Language Modelling

w1 w2 w3

w0 w1 w2

y0:1 y1:2 y2:3

w1 w2 w3

w0 w1 w2

y0:1 y1:2〈PAD〉

(c) Language models with Structural Scaffold

Figure 1: Top: Illustration of a partial constituency tree and corresponding transitions. Bottom: unidirectional
transformer language model (a) without explicit structural supervision, (b) for modelling generative action parsing
sequence, and (c) with structural scaffold for predicting the local incremental parsing state.

and Weiss, 2016; Søgaard and Goldberg, 2016;
Swayamdipta et al., 2018).

We test these two approaches on two subsets of
the BLLIP dataset (Charniak et al., 2000) and evalu-
ate models’ syntactic generalization performances
on SG Test Suites (Hu et al., 2020) and a sam-
pled subset of the BLiMP Benchmark (Warstadt
et al., 2020). We show evidence that generative
structural supervision indeed induces more robust
and human-like linguistic generalization in Trans-
former language models and explore the different
trade-offs involved in the presented methods.

2 Models

Here we explore joint modelling of structures and
words parametrized with Transformers by consid-
ering both a sentence W and its constituency parse
Y and modeling the joint distribution P (W,Y ).

2.1 Generative Parsing as Language
Modeling

A language model can be described formally as a
probability distribution over strings of a language
w1, · · · , wT , usually left-to-right factored.

p(W ) = p(w1, · · · , wT ) =
T∏
t=1

p(wt | w<t) (1)

There are many possible approaches that can com-
bine both language modeling and syntax model-
ing tasks. As long as both tasks share some of
the parameters they can be considered a case of
multi-task learning (Caruana, 1997). Of interest

here is the model proposed in Recurrent Neural
Network Grammars (RNNGs; Dyer et al., 2016)
and parsing as language model (LSTM-LM; Choe
and Charniak, 2016). Both approaches model the
joint distribution of words W and constituency tree
components Y as

p(Y,W ) = p(a1, · · · , aR) =
R∏
t=1

p(at | a<t) (2)

where at are transitions of a state machine that
generates both the sentence and the tree. These
transitions are similar to the well-established transi-
tion sets used for transition-based parsing (Earley,
1970) but adapted to generate both text and parse
simultaneously. For the reminder of this work, we
will consider each at to be integer valued and in-
dexing a dictionary of transitions. A transition a
can be a word w or a transition action that gener-
ates a component of the constituency tree y. The
actions include non-terminal symbols that open and
label a new constituent with the label x, indicated
as NT(x), or a REDUCE action closing the closest
open constituent. An example of a partial parse tree
and transitions can be found at the top of Figure 1.

RNNG and LSTM-LM parametrize the same fac-
torization in Equation 2 in different ways. RNNG
utilizes stack-LSTMs, which allow it to dynami-
cally create representations for partial tree compo-
nents by composition. The LSTM-LM, however,
uses a flat parametrization treating the transitions
as a sequence in a conventional language model
learnt with an LSTM (Hochreiter and Schmidhu-
ber, 1997). It should also be noted that the LSTM-



LM is designed as a parser, while RNNG is also
used as a language model. In order to derive a lan-
guage model from a joint model, it is is necessary
to marginalize over all possible parse trees

p(W ) =
∑

Y ∈Y(W )

p(Y,W ) (3)

which is an intractable problem since there is an
exponentially large number of possible trees. The
original RNNG work (Dyer et al., 2016) proposes
an approximate solution based on importance sam-
pling. In this work we use the word-synchronous
beam search approximation introduced in Stern
et al. (2017).

The marginalized likelihood language model in
Equation 3 is desirable because it makes no statis-
tical independence assumption between language
and syntax and shares all parameters across both
tasks, with the exception of action specific embed-
dings. Particularly relevant for this work is the fact
that both word and non-word transitions are pre-
dicted as language model output indiscriminately
and are available at each prediction step through its
history a<t.

In this work we propose to parametrize Eq 2
with a Transformer language model (Vaswani et al.,
2017). This is equivalent to the flat parametrization
of the LSTM-LM but using a Transformer language
model instead. Unlike LSTM-LM, which is a pars-
ing model, we derive from it a language model by
marginalization as in the RNNG. A Transformer
language model can be succinctly described as a
neural network of vertically stacked layers where
the m-th layer is given by

hm<t = FFm

O ·


Am

1 (hm−1<t )

Am
2 (hm−1<t )
· · ·

Am
N (hm−1<t )


 . (4)

Here hm−1<t ∈ RH×t is the output of the previous
decoder layer for all previous predictions of the
model at time step t and H is the size of the hid-
den vector. The input to the first layer i.e. h0<t

are the embeddings of all previous transitions a<t

concatenated with a start symbol. Each embedding
is the sum of both a content embedding, dictionary
vector that is being indexed, and a position embed-
ding that encodes the absolute or relative position
of each action in the sequence.
FFm() is a feed-forward layer, Am

1 () · · ·AM
N ()

are multiple self-attention heads and O ∈ RH×H

is a matrix multiplication performed on the con-
catenated output of the attention heads. Both the
feed-forward and the projection of N attention
heads through O are wrapped around with residual,
dropout and layer normalization operations that are
here removed for clarity.

Each attention head comprises a simple inner
product attention mechanism

Am
n (hm−1<t ) = V m

n · hm−1<t ·
softmax

(
(Km

n · hm−1<t )T ·Qm
n · hm−1<t +M

)
(5)

where V m
n ,Km

n , Qm
n ∈ RH/N×H are value, key

and query projection matrices respectively and the
softmax operation is normalized over columns to
sum to one. The matrixM∈ {−∞, 0}t×t is used
to prevent the model from attending to future states
during training, enabling efficient parallelization.
It is displayed here due to its relevance for the next
section.

Similarly to other models, to derive a distribution
over all possible transitions, including words, non-
terminal symbols and the REDUCE operation, we
can use a softmax together with an inner product

p(at | a<t) = softmax(EW∪Y · hm<t)at (6)

where EW∪Y are the embeddings for the joint vo-
cabulary of words, non-terminals and REDUCE
transitions. Henceforth, we refer to this model as
Parsing as Language Model, or PLM for short.

Unlike LSTMs or the RNNG, the Transformer
has direct access to all past decisions through self-
attention and relies on position embeddings to en-
code word order. Thus, in principle, there is no
structural bias for the model to favor past deci-
sions that are close in time to inform current pre-
diction. On one hand, this potential ability to use
long distance information can enable a less local,
more human like processing of language, but on
the other hand, it can also result in an additional
learning burden, especially if there is not sufficient
learning data available. Also worth noting for the
experiments proposed here is that the total num-
ber of parameters of a typical Transformer greatly
exceeds that of an LSTM or a RNNG model.

2.2 Incorporating RNNG-like characteristics

As previously mentioned, unlike any of the other
models, the RNNG is able to create partial tree rep-
resentations by composition using stack-LSTMs.



S

NP

The birds 〈BOS〉 NT(S) NT(NP) The birds

BUFFER head

〈BOS〉 NT(S) NT(NP) The birds

STACK head

Figure 2: Illustration of how the generated incremental
constituency parse is used to inform attention patterns
in the structure-guided attention heads.

This changes the RNNG model structure dynami-
cally as a function of the partial parse, a very de-
sirable property to derive syntax-aware represen-
tations. Moreover, the fact that Recurrent Neural
Networks such as LSTMs summarize all informa-
tion about previous time steps on two hidden vec-
tors, creates a bottleneck that forces the model to
focus on the local state. This is a situation where a
syntax-aware representation can provide additional
value by enabling the local state to better encom-
pass past structures. We conjecture that a similarly
constrained local state might benefit Transformer
models in learning linguistic regularities, especially
in a limited training data scenario.

In an attempt to capture a similar effect in the
Transformer, we explore here the idea of masking
some attention heads to reflect the parser state as
in the stack-Transformer (Astudillo et al., 2020).
In the stack-Transformer, two attention heads are
specialized to attend only to the contents of buffer
and stack respectively for dependency and seman-
tic parsing tasks. Here we choose to specialize
two heads as well for each layer in Equation 4, as
depicted in Fig. 2. One attention head attends to
the contents of the last open constituent whereas
another head attends all other past decisions not
involving that constituent. The rest of the heads are
left free as in the original Transformer architecture.
To constrain the attention heads, we only need to
alter the maskM in Equation 5 to depend on head
index n and past actionsMn(a<t), which results
in a negligible computation overhead.

This hard masking makes the model structure
change dynamically depending on the partial parse
and it forces some heads to focus on the local syn-

tactic state. Nevertheless, unlike the RNNG, it does
not create new representations of partial parses that
can be composed in a recurrent manner at each time
step, and some attention heads can still operate un-
restricted. We hypothesize that structure-aware at-
tention mechanism may still help the model achieve
better generalization. The symbolic representation
induces a strong inductive bias to how the model
should use the structure that it generates on the fly.
We henceforth refer to this model PLM-mask.

2.3 Scaffolding by Learning to Predict Local
Parse States

Given the strong coupling between the tasks, the
marginal likelihood Transformer language model
of the previous section can be expected to be
strongly influenced by the additional syntax predic-
tion task. This comes however at a big cost. First,
sequences combine both words and non-terminal
and reduce transitions, yielding longer sentences
than those of a normal language model R > T .
Furthermore the approximated marginalization is
computationally intensive and also introduces an
approximation error.

One well-established regime that allows joint
modeling of tasks at a low complexity is that of the
syntactic scaffold (Zhang and Weiss, 2016; Søgaard
and Goldberg, 2016; Swayamdipta et al., 2018).
Scaffolding adds an additional structure prediction
task at one of the layers of the model as a separate
layer and only during training. This is a minimally
intrusive change since it just branches some hidden
vector of the network and computes an additional
loss. It also has no influence on test runtime and
avoids expensive steps such as marginalization.

However, applying the idea of syntactic scaffold-
ing to our present scenario poses one difficulty. If
we use a standard language model predicting words
w and predict the non-word symbols y separately,
we face the problem that the two sequences have
different lengths. To overcome this in a straight-
forward way, we predict the n-gram of non-word
actions yt:t+n(t) corresponding to the partial parse
synchronous with step t when we predict word wt.
We use a secondary softmax layer for this action
n-gram prediction.

p(yt:t+n | y<t) = softmax(EY ∗ · hm<t)yt:t+n (7)

Here EY ∗
is the vocabulary of all transition n-

grams excluding words found in the train corpus
plus a blank symbol. Note that since Scaffolding



operates only at train time, we do not need to worry
about generalization of these n-grams to test time.

The models are thus trained to minimize the loss
function − log p(Y,W ) where

p(Y,W ) =
∏T

t=1 p(wt | w<t)

+
∏T

t=1 p(yt:t+n(t) | w<t) (8)

The scaffold can be set so that the synchronous
non-word action n-grams yt:t+n(t) are predicted ei-
ther before (Figure 1c, left) or after (Figure 1c,
right) producing wt. We considered both vari-
ants in our experiments to empirically assess their
impact on performance. We refer to this model
as Transformer Language Model with Syntactic
Scaffold, or ScLM in short, and its two versions
ScLM-past and ScLM-next, for past and next n-
gram prediction.

3 Experiments

3.1 Model Training

All models, including the baseline vanilla language
models (LM in short), the syntactic scaffold mod-
els, and the generative parsing models, are based
on the same architecture of GPT-2 small (Radford
et al.) (117M parameters, 12 layers, H = 768) and
use the same BPE tokenizer, but with randomly
initialized weights. We believe this would give us
a fair comparison to pretrained GPT-2 as well, in
order to evaluate whether structural guidance helps
improve sample efficiency. We implemented all the
proposed models using Huggingface’s Transformer
package (Wolf et al., 2020)1.

As our goal here is to study whether structural
guidance helps models learn robust humanlike gen-
eralization of syntactic knowledge, we train our
model on the BLLIP dataset (Charniak et al., 2000),
an English newswire style corpus used in Hu et al.
(2020). This makes the results here more com-
parable to the results reported in previous work,
especially with RNNGs. We train the proposed
models and the baseline vanilla Transformer lan-
guage models on BLLIP-MD, a 14 million-token
corpus, and BLLIP-LG, a 46 million-token corpus,
both of which are auto-parsed using a state-of-the-
art constituency parser (Kitaev and Klein, 2018).
We used the parsed sentences to generate oracle
parsing action sequence for PLM and PLM-mask.
We collected a list of word-synchronous parsing

1Code available at https://github.com/IBM/
transformers-struct-guidance

action sequences from the train and development
oracle of BLLIP-LG and use it to parametrize the
action n-gram vocabulary of ScLMs trained on
both BLLIP-MD and BLLIP-LG. There are 3756
action n-gram types from the corpora, including
one padding token and one blank token.

All models were trained with learning rate 10−5,
AdamW optimizer, and minibatch of size 5. We
trained the models with multiple seeds within the
capacity of our resources, in order to accommodate
potential variance. In total, there are three seeds of
LM, four of ScLM-past, four of ScLM-next, three
of PLM, and three of PLM-mask for BLLIP-MD,
and the same number of seeds of each model type
for BLLIP-LG. Models were trained until conver-
gence, as suggested by the loss of the development
set during training.

3.2 Targeted Syntactic Evaluation

To assess whether a trained model systematically
generalizes its syntactic knowledge, we employ tar-
geted syntactic evaluation paradigm (Marvin and
Linzen, 2018). Specifically, we measure models’
performance on two held-out test datasets, a collec-
tion of syntactic generalization test suites from Hu
et al. (2020) and BLiMP Benchmark from Warstadt
et al. (2020). These two datasets cover a wide range
of English syntactic phenomena.

Tests from Hu et al. (2020), which we refer
as SG Test Suites, consist of hand-designed test
suites for evaluating fine-grained syntactic gener-
alization in incremental processing of a linguistic
input. The general method is to compare mod-
els’ surprisals p(continuation|prefix) of grammati-
cal and ungrammatical continuations given certain
sentence prefixes. We report the accuracy averaged
across SG test suites. BLiMP Benchmark features
minimal pairs of a grammatical sentence W and
an ungrammatical counterpart W ∗. To evaluate a
model on these minimal pairs, one simply com-
pares the likelihood of W and W ∗ assigned by the
model.

As is implied by the evaluation methods, we
need to marginalize out the structure variables for
PLM or PLM-mask models in order to estimate
the surprisal of a continuation, given a sentence
prefix or the likelihood of a complete sentence.
We follow similar setup as in Futrell et al. (2019);
Wilcox et al. (2019) applying word-synchronous
beam search (Stern et al., 2017) to find a list Yk of
k incremental parses given a sentence prefix w<t.

https://github.com/IBM/transformers-struct-guidance
https://github.com/IBM/transformers-struct-guidance


BLLIP-MD BLLIP-LG
0.55

0.60

0.65

0.70

0.75

0.80
A

cc
ur

ac
y

Model Performance on SG Test Suites

RNNG
LM
ScLM-past

ScLM-next
PLM

PLM-mask
GPT-2

BLLIP-MD BLLIP-LG
0.55

0.60

0.65

0.70

0.75

0.80

A
cc

ur
ac

y

Model Performance on BLiMP-10% Test Suites

LM
ScLM-past

ScLM-next
PLM

PLM-mask
GPT-2

Figure 3: Comparing models’ overall accuracy across
test suites from SG Test Suites (top) and BLiMP-10%
(bottom). RNNG performances are from Hu et al.
(2020).

We then sum the joint probability p(w<t, y<t) over
the list of incremental parses given by the model to
approximate the likelihood of p(w<t). We set the
parse beam size to 100, word-synchronous beam
size k as 10, and fast track size of 5. Since the
search process can be computationally intensive,
the large number of items in BLiMP benchmark
poses a computational challenge. We therefore
select the first 10% out of the 1000 items in each
of the 67 tests of BLiMP Benchmark. We report
the accuracy over the 100 items and refer to this
down-sized BLiMP Benchmark as BLiMP-10%.

We compare models’ performance on the SG
Test Suites and BLiMP-10% in Figure 3. Each bar
shows a model’s performance averaged across mul-
tiple seeds on a given benchmark, with each dot
plotting the accuracy of a specific seed. Overall,
syntactic generalization performance improves as
the training data size increases from BLLIP-MD

(14 million tokens) to BLLIP-LG (42 million to-
kens). Models with structural guidance achieve
higher accuracy than the vanilla Transformer lan-
guage model trained on the same set of raw text
data without explicit structural information. We

also include the results for the RNNGs taken from
Hu et al. (2020). RNNG lags behind all Trans-
former models by a large margin in average scores.
We also notice that among different forms of struc-
tural guidance, generative parsing as language mod-
eling is the most effective in improving syntac-
tic generalization performance against the baseline
transformer language models. We didn’t observe
consistent benefits of adding dynamic masking
mechanism to PLM. While scaffolding approach
slightly improves vanilla Transformer language
models, it still falls behind the best performance
of the model trained with generative parsing. We
hypothesize that our scaffold did not fully exploit
the compositional structure in the local parses by
modelling each action n-gram as a distinct type,
while the generative parsing models only predict
actions in a relatively small set of non-terminal ac-
tion space, which might make it easier for PLM and
PLM-mask to learn compositional generalization.
We leave it for future work to design new scaffolds
that can take advantage of the combinatorial nature
of syntactic structure.

For completeness, we also ran the pre-trained
GPT-2 model on the syntactic suites. This yielded
a score of 0.808 on the SG Test Suites and 0.827 on
BLiMP-10% for the small version of pre-trained
GPT-2. Among models trained on BLLIP-LG, the
average accuracy score on the SG Test Suites is
0.723 for PLMs, 0.748 for PLM-masks, and 0.665
for LMs. Similar trend is observed on BLiMP-10%
as well, where among models trained on BLLIP-
LG the average accuracy is 0.751 for PLMs, 0.753
for PLM-masks, and 0.708 for LMs. The pro-
posed PLM method is able to close the gap be-
tween GPT-2 small and the same model trained
with BLLIP-LG by about half, while the improve-
ment for BLiMP is more modest but still signi-
ficative. It remains an open question whether scal-
ing syntactic supervision to a larger dataset than
BLLIP-LG would bring the generalization perfor-
mance of PLM models closer to that of the pre-
trained GPT-2 model.

3.2.1 Relationship between Perplexity and
Syntactic Generalization Performance

We compare perplexity on the BLLIP held-out test
set against syntactic generalization performance
in Figure 4. Perplexities of PLM and PLM-mask
models are computed setting the parse tree equal
to the gold parse in Equation 3 to approximate the
likelihood. Note that, unlike Hu et al. (2020), all



50 60
Word-level Perplexity

0.625

0.650

0.675

0.700

0.725

0.750
S

G
 A

cc
ur

ac
y

Model
LM
ScLM-past
ScLM-next
PLM
PLM-mask

Corpus
BLLIP-MD
BLLIP-LG

Corpus
BLLIP-MD
BLLIP-LG

50 60
Word-level Perplexity

0.68

0.70

0.72

0.74

0.76

B
Li

M
P

-1
0%

 A
cc

ur
ac

y

Model
LM
ScLM-past
ScLM-next
PLM
PLM-mask

Corpus
BLLIP-MD
BLLIP-LG

Corpus
BLLIP-MD
BLLIP-LG

Figure 4: Comparison between model perplexity on
BLLIP test data and syntactic generalization perfor-
mance on SG Test Suites (top) and BLiMP-10% (bot-
tom).

our models use the same BPE vocabulary and word
tokenization from GPT-2. The only exception are
the additional parsing actions in the vocabulary y.

From Figure 4, both perplexity and syntactic gen-
eralization performance improve with dataset size.
However, for both training dataset sizes, we see that
structural guidance can improve syntactic general-
ization. PLM models consistently perform better
than vanilla models. While all models achieve very
similar perplexity results after being trained on a
specific dataset, their syntactic generalization per-
formances differ dramatically.

3.2.2 Effect of Structural Guidance on
Learning Specific Syntactic Structures

In addition to comparing model’s aggregated per-
formances, we also compare their generalization
performances in the clustered subsets of tests in SG
Test Suites and BLiMP-10%. These subsets con-
sist of several related tests that target specific type
of syntactic phenomenon, such as NPI licensing,
subject-verb agreement, filler-gap dependencies,
etc. We also include the results for the RNNGs
taken from Hu et al. (2020).

Results in Figure 5 show converging evidence
that structural guidance in the form of generative

parsing can robustly improve learning of subject-
verb agreement and NPI licensing, and helps the
model to better capture incremental processing phe-
nomenon such as garden-path effects, but seems
to slightly hurt the performance on gross syntactic
state. While overall the RNNG shows a poor per-
formance this is mostly due to its very low scores
for licensing suites. Excluding these suites only
the RNNG shows a performance close to the PLM
model, even outperforming it clearly for the gross
syntactic state suites. In this category and binding
PLM variants seem inferior to all other models.

4 Related Work

Multitask learning (Caruana, 1997) has been ap-
plied to a variety of NLP tasks with traditional
modeling approaches (Miller et al., 2000; Sutton
and McCallum, 2005; Sutton et al., 2007) as well as
more recent neural models (Collobert et al., 2011;
Li et al., 2020a). A recurring theme has been the
use of structure in the form of syntactic trees to
benefit other NLP tasks. Among the early works
exploring this direction, Punyakanok et al. (2008)
showed that syntactic parses can benefit Semantic
Role Labeling (SRL). Poon and Domingos (2009)
extended this idea to induce first-order logic repre-
sentation in a unsupervised fashion, by clustering
the dependency structures. In both cases syntax
forms part of a pipeline and is not strictly supervi-
sion for the end task.

This trend continued with the rise of neural mod-
els. Collobert et al. (2011) improved deep convolu-
tion neural network for syntactic chunking models
with additional POS supervision. Zhang and Weiss
(2016); Søgaard and Goldberg (2016) observe the
benefits of POS supervision at different depths of a
neural network model with impact on dependency
parsing, tagging and CCG super tagging perfor-
mance. He et al. (2019) perform a syntax-based
pruning of semantic roles, showing benefits in a
multilingual setting. More recently, Sachan et al.
(2020) incorporate a syntactic graph recurrent neu-
ral network into BERT models for better semantic
role labeling. However, their method shows little
or no benefit of syntax modeling for Named Entity
Recognition and relation linking task. Neural ma-
chine translation (Chen et al., 2018) and text gen-
eration (Li et al., 2020a) have also been shown to
benefit from syntactic modeling. In a recent work,
Li et al. (2020b) use syntactic modeling in BERT
based transformers to achieve performance gains



0.05
0.15
0.25
0.35
0.45
0.55
0.65

A
cc

ur
ac

y
Licensing (10 suites)

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75

Long-Distance Dependencies (8 suites)

0.3
0.4
0.5
0.6
0.7
0.8

Agreement (3 suites)

BLLIP-MD BLLIP-LG
0.55
0.60
0.65
0.70
0.75
0.80
0.85

A
cc

ur
ac

y

Garden-Path Effects (6 suites)

BLLIP-MD BLLIP-LG
0.70
0.75
0.80
0.85
0.90
0.95

Gross Syntactic State (4 suites)

BLLIP-MD BLLIP-LG
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

Center Embedding (2 suites)

Model Performance on Specific Clusters of SG Test Suites

RNNG
LM
ScLM-past
ScLM-next
PLM
PLM-mask

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

A
cc

ur
ac

y

Anaphor Agreement (2 suites)

0.55

0.60

0.65

0.70

Argument Structure (9 suites)

0.60

0.65

0.70

0.75

Binding (7 suites)

0.60

0.65

0.70

0.75

Control/Raising (5 suites)

0.70

0.75

0.80

0.85

A
cc

ur
ac

y

Determiner-Noun Agreement (8 suites)

0.50
0.55
0.60
0.65
0.70
0.75
0.80

Ellipsis (2 suites)

0.60

0.65

0.70

0.75

Filler Gap (7 suites)

0.55
0.60
0.65
0.70
0.75
0.80
0.85

Irregular Forms (2 suites)

BLLIP-MD BLLIP-LG
0.40

0.45

0.50

0.55

0.60

A
cc

ur
ac

y

Island Effects (8 suites)

BLLIP-MD BLLIP-LG
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

NPI Licensing (7 suites)

BLLIP-MD BLLIP-LG
0.55

0.60

0.65

0.70

0.75

Quantifiers (4 suites)

BLLIP-MD BLLIP-LG
0.70

0.75

0.80

0.85

Subject-Verb Agreement (6 suites)

Model Performance on Specific Clusters of BLiMP-10% Test Suites

LM ScLM-past ScLM-next PLM PLM-mask

Figure 5: Model performance comparison by specific linguistic phenomena clustered in SG Test Suites (top) and
BLiMP-10% (bottom). RNNG performances are from Hu et al. (2020).

on several text classification benchmarks. Other
works have found that structural supervision in the
form of intermediate fine-tuning (e.g., on CCG
super tagging) is not helpful or even harmful (Pruk-
sachatkun et al., 2020; Warstadt et al., 2019).

The focus of our work is on gauging the impact
of joint modeling on syntactic generalization perfor-
mance. In this direction, the work of Swayamdipta
et al. (2018) is close to the scaffolding version of
our model. They predict multiple labels, extracted
from syntactic information, as auxiliary task and
show positive effects on shallow semantic parsing
and co-reference resolution. We use however a sin-
gle feature, constituency parsing n-gram, which is
closer to prior work relying on Part-of-Speech in-
formation. In addition, we explore impact of using
preceding structure as feature vs postceding struc-
ture, which as shown plays a role in the learning
process.

In terms of modeling objective and syntactic rep-

resentations, our method is closest to the works of
Choe and Charniak (2016); Dyer et al. (2016) that
jointly model syntax and language. A more recent
work from Peng et al. (2019) uses Rational Neural
Networks language model that can derive binary
unlabeled constituents from attention weights and
can supervise the attention to attain a structural
inductive bias. The proposed models show lower
language modeling perplexity compared to their
structure agnostic counterparts. We also extend
here the idea of syntax-aware language modeling
to transformer-based language models.

Finally, our approach relates to the other works
that propose ways of incorporating structural in-
formation into Transformer-based models. This
includes the use of dependency or tree structure for
constraining self-attention patterns (Strubell et al.,
2018; Wang et al., 2019; Zhang et al., 2020), guid-
ing cross-attention (Chen et al., 2018; Astudillo
et al., 2020), modelling syntactic distance (Du et al.,



2020), using syntactic information to guide the
computation flow in the model (Shen et al., 2021),
or through knowledge distillation (Kuncoro et al.,
2020). Our structured masking in parsing as lan-
guage modeling approach is close in spirit to the
methods that modify attention mechanism accord-
ing to syntactic connections (Astudillo et al., 2020);
This work, however, primarily aims to study the
impact of structural guidance on syntactic general-
ization. Therefore, we resort to simpler methods of
incorporating structure to minimize the impact of
modeling intricacies.

5 Conclusion

Our work explores two forms of syntactic super-
vision as structural guidance for Transformer lan-
guage models. Experiments suggest that generative
parsing approach can effectively improve system-
atic generalization of learned syntactic knowledge
in small training data regime, while a naive syntac-
tic scaffold approach does not improve the baseline
to the same extent despite reduced computation
cost at inference time. Future work may explore
alternative structural guidance strategies that com-
bine the best of both approaches.

Acknowledgments

The authors would like to thank the anonymous
reviewers for their helpful comments. This work
was supported by the MIT-IBM Watson AI Lab.

References
Ramón Fernandez Astudillo, Miguel Ballesteros,

Tahira Naseem, Austin Blodgett, and Radu Flo-
rian. 2020. Transition-based parsing with stack-
transformers. page 1001–1007.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Rich Caruana. 1997. Multitask learning. Machine
learning, 28(1):41–75.

Eugene Charniak, Don Blaheta, Niyu Ge, Keith Hall,
John Hale, and Mark Johnson. 2000. Bllip 1987-89
wsj corpus release 1. Linguistic Data Consortium,
Philadelphia, 36.

Kehai Chen, Rui Wang, Masao Utiyama, Eiichiro
Sumita, and Tiejun Zhao. 2018. Syntax-directed
attention for neural machine translation. In Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, volume 32.

Do Kook Choe and Eugene Charniak. 2016. Parsing
as language modeling. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2331–2336, Austin, Texas.
Association for Computational Linguistics.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for
NLP, pages 276–286, Florence, Italy. Association
for Computational Linguistics.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of machine learning research,
12(ARTICLE):2493–2537.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Wenyu Du, Zhouhan Lin, Yikang Shen, Timothy J.
O’Donnell, Yoshua Bengio, and Yue Zhang. 2020.
Exploiting syntactic structure for better language
modeling: A syntactic distance approach. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6611–
6628, Online. Association for Computational Lin-
guistics.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network
grammars. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 199–209, San Diego, California.
Association for Computational Linguistics.

Jay Earley. 1970. An efficient context-free parsing al-
gorithm. Communications of the ACM, 13(2):94–
102.

Richard Futrell, Ethan Wilcox, Takashi Morita, Peng
Qian, Miguel Ballesteros, and Roger Levy. 2019.
Neural language models as psycholinguistic sub-
jects: Representations of syntactic state. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 32–42, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

Shexia He, Zuchao Li, and Hai Zhao. 2019. Syntax-
aware multilingual semantic role labeling. arXiv
preprint arXiv:1909.00310.

https://doi.org/10.18653/v1/D16-1257
https://doi.org/10.18653/v1/D16-1257
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.acl-main.591
https://doi.org/10.18653/v1/2020.acl-main.591
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/N19-1004
https://doi.org/10.18653/v1/N19-1004


John Hewitt and Christopher D. Manning. 2019. A
structural probe for finding syntax in word repre-
sentations. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4129–4138, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Jennifer Hu, Jon Gauthier, Peng Qian, Ethan Wilcox,
and Roger Levy. 2020. A systematic assessment
of syntactic generalization in neural language mod-
els. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics,
pages 1725–1744, Online. Association for Compu-
tational Linguistics.

Nikita Kitaev and Dan Klein. 2018. Constituency
parsing with a self-attentive encoder. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), Melbourne, Australia. Association for Com-
putational Linguistics.

Adhiguna Kuncoro, Chris Dyer, John Hale, Dani Yo-
gatama, Stephen Clark, and Phil Blunsom. 2018.
LSTMs can learn syntax-sensitive dependencies
well, but modeling structure makes them better. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1426–1436, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Adhiguna Kuncoro, Lingpeng Kong, Daniel Fried,
Dani Yogatama, Laura Rimell, Chris Dyer, and Phil
Blunsom. 2020. Syntactic structure distillation pre-
training for bidirectional encoders. Transactions
of the Association for Computational Linguistics,
8:776–794.

Yinghao Li, Rui Feng, Isaac Rehg, and Chao Zhang.
2020a. Transformer-based neural text genera-
tion with syntactic guidance. arXiv preprint
arXiv:2010.01737.

Zhongli Li, Qingyu Zhou, Chao Li, Ke Xu, and Yunbo
Cao. 2020b. Improving bert with syntax-aware local
attention. arXiv preprint arXiv:2012.15150.

Rebecca Marvin and Tal Linzen. 2018. Targeted syn-
tactic evaluation of language models. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1192–1202,
Brussels, Belgium. Association for Computational
Linguistics.

Scott Miller, Heidi Fox, Lance Ramshaw, and Ralph
Weischedel. 2000. A novel use of statistical parsing
to extract information from text. In 1st Meeting of
the North American Chapter of the Association for
Computational Linguistics.

Hao Peng, Roy Schwartz, and Noah A. Smith. 2019.
PaLM: A hybrid parser and language model. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3644–
3651, Hong Kong, China. Association for Computa-
tional Linguistics.

Hoifung Poon and Pedro Domingos. 2009. Unsu-
pervised semantic parsing. In Proceedings of the
2009 conference on empirical methods in natural
language processing, pages 1–10.

Yada Pruksachatkun, Jason Phang, Haokun Liu,
Phu Mon Htut, Xiaoyi Zhang, Richard Yuanzhe
Pang, Clara Vania, Katharina Kann, and Samuel R
Bowman. 2020. Intermediate-task transfer learning
with pretrained models for natural language under-
standing: When and why does it work? arXiv
preprint arXiv:2005.00628.

Vasin Punyakanok, Dan Roth, and Wen-tau Yih. 2008.
The importance of syntactic parsing and inference in
semantic role labeling. Computational Linguistics,
34(2):257–287.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. Language mod-
els are unsupervised multitask learners.

Devendra Singh Sachan, Yuhao Zhang, Peng Qi, and
William Hamilton. 2020. Do syntax trees help pre-
trained transformers extract information? arXiv
preprint arXiv:2008.09084.

Yikang Shen, Shawn Tan, Alessandro Sordoni, Siva
Reddy, and Aaron Courville. 2021. Explicitly mod-
eling syntax in language models with incremental
parsing and a dynamic oracle. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1660–1672, On-
line. Association for Computational Linguistics.

Anders Søgaard and Yoav Goldberg. 2016. Deep multi-
task learning with low level tasks supervised at lower
layers. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 231–235, Berlin,
Germany. Association for Computational Linguis-
tics.

Mitchell Stern, Daniel Fried, and Dan Klein. 2017. Ef-
fective inference for generative neural parsing. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
1695–1700, Copenhagen, Denmark. Association for
Computational Linguistics.

Emma Strubell, Patrick Verga, Daniel Andor,
David Weiss, and Andrew McCallum. 2018.
Linguistically-informed self-attention for semantic
role labeling. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 5027–5038.

https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/P18-1132
https://doi.org/10.18653/v1/P18-1132
https://doi.org/10.1162/tacl_a_00345
https://doi.org/10.1162/tacl_a_00345
https://doi.org/10.18653/v1/D18-1151
https://doi.org/10.18653/v1/D18-1151
https://www.aclweb.org/anthology/A00-2030
https://www.aclweb.org/anthology/A00-2030
https://doi.org/10.18653/v1/D19-1376
https://doi.org/10.1162/coli.2008.34.2.257
https://doi.org/10.1162/coli.2008.34.2.257
https://www.aclweb.org/anthology/2021.naacl-main.132
https://www.aclweb.org/anthology/2021.naacl-main.132
https://www.aclweb.org/anthology/2021.naacl-main.132
https://doi.org/10.18653/v1/P16-2038
https://doi.org/10.18653/v1/P16-2038
https://doi.org/10.18653/v1/P16-2038
https://doi.org/10.18653/v1/D17-1178
https://doi.org/10.18653/v1/D17-1178


Charles Sutton and Andrew McCallum. 2005. Joint
parsing and semantic role labeling. Technical report,
MASSACHUSETTS UNIV AMHERST DEPT OF
COMPUTER SCIENCE.

Charles Sutton, Andrew McCallum, and Khashayar Ro-
hanimanesh. 2007. Dynamic conditional random
fields: Factorized probabilistic models for labeling
and segmenting sequence data. Journal of Machine
Learning Research, 8(3).

Swabha Swayamdipta, Sam Thomson, Kenton Lee,
Luke Zettlemoyer, Chris Dyer, and Noah A. Smith.
2018. Syntactic scaffolds for semantic structures.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 3772–3782, Brussels, Belgium. Association
for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30, pages 5998–6008. Cur-
ran Associates, Inc.

Yaushian Wang, Hung-Yi Lee, and Yun-Nung Chen.
2019. Tree transformer: Integrating tree structures
into self-attention. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1061–1070, Hong Kong, China. As-
sociation for Computational Linguistics.

Alex Warstadt, Yu Cao, Ioana Grosu, Wei Peng, Ha-
gen Blix, Yining Nie, Anna Alsop, Shikha Bordia,
Haokun Liu, Alicia Parrish, et al. 2019. Investi-
gating bert’s knowledge of language: Five analysis
methods with npis. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2870–2880.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.
Bowman. 2020. BLiMP: The benchmark of linguis-
tic minimal pairs for English. Transactions of the As-
sociation for Computational Linguistics, 8:377–392.

Ethan Wilcox, Peng Qian, Richard Futrell, Miguel
Ballesteros, and Roger Levy. 2019. Structural super-
vision improves learning of non-local grammatical
dependencies. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 3302–3312, Minneapolis, Minnesota.
Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,

Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Yuan Zhang and David Weiss. 2016. Stack-
propagation: Improved representation learning for
syntax. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1557–1566, Berlin,
Germany. Association for Computational Linguis-
tics.

Zhuosheng Zhang, Yuwei Wu, Junru Zhou, Sufeng
Duan, Hai Zhao, and Rui Wang. 2020. Sg-net: Syn-
tax guided transformer for language representation.
IEEE Transactions on Pattern Analysis and Machine
Intelligence.

https://doi.org/10.18653/v1/D18-1412
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/D19-1098
https://doi.org/10.18653/v1/D19-1098
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.18653/v1/N19-1334
https://doi.org/10.18653/v1/N19-1334
https://doi.org/10.18653/v1/N19-1334
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/P16-1147
https://doi.org/10.18653/v1/P16-1147
https://doi.org/10.18653/v1/P16-1147

