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Abstract

This paper presents a multilingual study of
word meaning representations in context. We
assess the ability of both static and contextual-
ized models to adequately represent different
lexical-semantic relations, such as homonymy
and synonymy. To do so, we created a new
multilingual dataset that allows us to perform
a controlled evaluation of several factors such
as the impact of the surrounding context or the
overlap between words, conveying the same or
different senses. A systematic assessment on
four scenarios shows that the best monolingual
models based on Transformers can adequately
disambiguate homonyms in context. However,
as they rely heavily on context, these models
fail at representing words with different senses
when occurring in similar sentences. Experi-
ments are performed in Galician, Portuguese,
English, and Spanish, and both the dataset
(with more than 3,000 evaluation items) and
new models are freely released with this study.

1 Introduction

Contrary to static vector models, which represent
the different senses of a word in a single vector
(Erk, 2012; Mikolov et al., 2013), contextualized
models generate representations at token-level (Pe-
ters et al., 2018; Devlin et al., 2019), thus being
an interesting approach to model word meaning in
context. In this regard, several studies have shown
that clusters produced by some contextualized word
embeddings (CWEs) are related to different senses
of the same word (Reif et al., 2019; Wiedemann
et al., 2019), or that similar senses can be aligned in
cross-lingual experiments (Schuster et al., 2019).

However, more systematic evaluations of pol-
ysemy (i.e., word forms that have different re-
lated meanings depending on the context (Apres-
jan, 1974)), have shown that even though CWEs
present some correlations with human judgments

(Nair et al., 2020), they fail to predict the similarity
of the various senses of a polysemous word (Haber
and Poesio, 2020).

As classical datasets to evaluate the capabilities
of vector representations consist of single words
without context (Finkelstein et al., 2001) or heavily
constrained expressions (Kintsch, 2001; Mitchell
and Lapata, 2008), new resources with annotations
of words in free contexts have been created, includ-
ing both graded similarities (Huang et al., 2012;
Armendariz et al., 2020) or binary classification
of word senses (Pilehvar and Camacho-Collados,
2019; Raganato et al., 2020). However, as these
datasets largely include instances of polysemy, they
are difficult to solve even for humans (in fact, the
highest reported human upper bound is about 80%)
as the nuances between different senses depend
on non-linguistic factors such as the annotator pro-
cedure or the target task (Tuggy, 1993; Kilgarriff,
1997; Hanks, 2000; Erk, 2010).

In this paper, we rely on a more objective
and simple task to assess how contextualized ap-
proaches (both neural network models and con-
textualized methods of distributional semantics)
represent word meanings in context. In particu-
lar, we observe whether vector models can iden-
tify unrelated meanings represented by the same
word form (homonymy) and the same sense con-
veyed by different words (synonymy). In contrast
to polysemy, there is a strong consensus concern-
ing the representation of homonymous senses in
the lexicon, and it has been shown that homonyms
are cognitively processed differently than polyse-
mous words (Klepousniotou et al., 2012; MacGre-
gor et al., 2015). In this regard, exploratory experi-
ments in English suggest that some CWEs correctly
model homonymy, approximating the contextual-
ized vectors of a homonym to those of its para-
phrases (Lake and Murphy, 2020), and showing
stronger correlation with human judgments to those
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of polysemous words (Nair et al., 2020). However,
as homonyms convey unrelated meanings depend-
ing on the context, it is not clear whether the good
performance of CWEs actually derives from the
contextualization process or simply from the use
of explicit lexical cues present in the sentences.

Taking the above into account, we have created
a new multilingual dataset (in Galician, Portuguese,
English, and Spanish) with more than 3,000 evalu-
ation items. It allows for carrying out more than 10
experiments and controlling factors such as the
surrounding context, the word overlap, and the
sense conveyed by different word forms. We use
this resource to perform a systematic evaluation
of contextualized word meaning representations.
We compare different strategies using both static
embeddings and current models based on deep ar-
tificial neural networks. The results suggest that
the best monolingual models based on Transform-
ers (Vaswani et al., 2017) can identify homonyms
having different meanings adequately. However,
as they strongly rely on the surrounding context,
words with different meanings are represented very
closely when they occur in similar sentences. Apart
from the empirical conclusions and the dataset, this
paper also contributes with new BERT and fastText
models for Galician.1

Section 2 presents previous studies about word
meaning representation. Then, Section 3 introduces
the new dataset used in this paper. In Section 4
we describe the models and methods to obtain the
vector representations. Finally, the experiments and
results are discussed in Section 5, while Section 6
draws some conclusions of our study.

2 Related Work

A variety of approaches has been implemented
to compute word meaning in context by means
of standard methods of distributional semantics
(Schütze, 1998; Kintsch, 2001; McDonald and
Brew, 2004; Erk and Padó, 2008). As composi-
tional distributional models construct sentence rep-
resentations from their constituents vectors, they
take into account contextualization effects on mean-
ing (Mitchell and Lapata, 2008; Baroni and Zam-
parelli, 2010; Baroni, 2013). However, these ap-
proaches often have scalability problems as their
representations grow exponentially with the size
of the sentences. Therefore, the datasets used to

1Dataset, models, and code are available at https://
github.com/marcospln/homonymy_acl21/.

evaluate them are composed of highly restricted
phrases (Grefenstette and Sadrzadeh, 2011).

The rise of artificial neural networks on natural
language processing popularized the use of vector
representations, and the remarkable performance of
neural language models (Melamud et al., 2016; Pe-
ters et al., 2018) led to a productive line of research
exploring to what extent these models represent lin-
guistic knowledge (Rogers et al., 2020). However,
few of these works have focused on lexical seman-
tics, and most of the relevant results in this field
come from evaluations in downstream tasks. In this
regard, Wiedemann et al. (2019) found that clusters
of BERT embeddings (Devlin et al., 2019) seem
to be related to word senses, while Schuster et al.
(2019) observed that clusters of polysemous words
correspond to different senses in a cross-lingual
alignment of vector representations.

Probing LSTMs on lexical substitution tasks,
Aina et al. (2019) showed that these architectures
rely on the lexical information from the input em-
beddings, and that the hidden states are biased to-
wards contextual information. On an exploration of
the geometric representations of BERT, Reif et al.
(2019) found that different senses of a word tend
to appear separated in the vector space, while sev-
eral clusters seem to correspond to similar senses.
Recently, Vulić et al. (2020) evaluated the perfor-
mance of BERT models on several lexical-semantic
tasks in various languages, including semantic sim-
ilarity or word analogy. The results show that using
special tokens ([CLS] or [SEP]) hurts the quality of
the representations, and that these tend to improve
across layers until saturation. As this study uses
datasets of single words (without context), type-
level representations are obtained by averaging the
contextualized vectors over various sentences.

There are several resources to evaluate word
meaning in free contexts, such as the Stanford Con-
textual Word Similarity (Huang et al., 2012) and
CoSimLex (Armendariz et al., 2020), both repre-
senting word similarity on a graded scale, or the
Word-in-Context datasets (WiC), focused on binary
classifications (i.e., each evaluation item contains
two sentences with the same word form, having the
same or different senses) (Pilehvar and Camacho-
Collados, 2019; Raganato et al., 2020). These
datasets include not only instances of homonymy
but mostly of polysemous words. In this regard,
studies on polysemy using Transformers have ob-
tained diverse results: Haber and Poesio (2020)

https://github.com/marcospln/homonymy_acl21/
https://github.com/marcospln/homonymy_acl21/
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found that BERT embeddings correlate better with
human ratings of co-predication than with similar-
ity between word senses, thus suggesting that these
representations encode more contextual informa-
tion than word sense knowledge. Nevertheless, the
results of Nair et al. (2020) indicate that BERT rep-
resentations are correlated with human scores of
polysemy. An exploratory experiment of the latter
study also shows that BERT discriminates between
polysemy and homonymy, which is also suggested
by other pilot evaluations reported by Lake and
Murphy (2020) and Yu and Ettinger (2020).

Our study follows this research line pursuing ob-
jective and unambiguous lexical criteria such as the
representation of homonyms and synonyms. In this
context, there is a broad consensus in the psycholin-
guistics literature regarding the representation of
homonyms as different entries in the lexicon (in
contrast to polysemy, for which there is a long dis-
cussion on whether senses of polysemous words
are stored as a single core representation or as in-
dependent entries (Hogeweg and Vicente, 2020)).
In fact, several studies have shown that homonyms
are cognitively processed differently from polyse-
mous words (Klepousniotou et al., 2012; Rabagliati
and Snedeker, 2013). In contrast to the different
senses of polysemous words, which are simulta-
neously activated, the meanings of homonyms are
in conflict during processing, with the not relevant
ones being deactivated by the context (MacGre-
gor et al., 2015). To analyze how vector models
represent homonymy and synonymy in context, we
have built a new multilingual resource with a strong
inter-annotator agreement, presented below.

3 A New Multilingual Resource of
Homonymy and Synonymy in Context

This section briefly describes some aspects of
lexical semantics relevant to our study, and then
presents the new dataset used in the paper.

Homonymy and homography: Homonymy is a
well-known type of lexical ambiguity that can be
described as the relation between distinct and unre-
lated meanings represented by the same word form,
such as match, meaning for instance ‘sports game’
or ‘stick for lighting fire’. In contrast to polysemy
(where one lexeme conveys different related senses
depending on the context, e.g., newspaper as an
organization or as a set of printed pages), it is of-
ten assumed that homonyms are different lexemes
that have the same lexical form (Cruse, 1986), and

therefore they are stored as independent entries in
the lexicon (Pustejovsky, 1998).

There are two main criteria for homonymy iden-
tification: Diachronically, homonyms are lexical
items that have different etymologies but are acci-
dentally represented by the same word form, while
a synchronic perspective strengthens unrelatedness
in meaning. Even if both approaches tend to iden-
tify similar sets of homonyms, there may be am-
biguous cases that are diachronically but not syn-
chronically related (e.g., two meanings of banco
–‘bench’ and ‘financial institution’– in Portuguese
or Spanish could be considered polysemous as they
derive from the same origin,2 but as this is a purely
historical association, most speakers are not aware
of the common origin of both senses). In this study,
we follow the synchronic perspective, and consider
homonymous meanings those that are clearly unre-
lated (e.g., they unambiguously refer to completely
different concepts) regardless of their origin.

It is worth mentioning that as we are dealing
with written text we are actually analyzing homo-
graphs (different lexemes with the same spelling)
instead of homonyms. Thus, we discard instances
of phonologically identical words which are written
differently, such as the Spanish hola ‘hello’ and ola
‘wave’, both representing the phonological form
/ola/. Similarly, we include words with the same
spelling representing different phonological forms,
e.g., the Galician-Portuguese sede, which corre-
sponds to both /sede/ ‘thirst’, and /sEde/ ‘head-
quarters’.

In this paper, homonymous senses are those unre-
lated meanings conveyed by the same (homonym)
word form. For instance, coach may have two
homonymous senses (‘bus’ and ‘trainer’), which
can be conveyed by other words (synonyms) in
different contexts (e.g., by bus or trainer).

Structure of the dataset: We have created a new
resource to investigate how vector models represent
word meanings in context. In particular, we want
to observe whether they capture (i) different senses
conveyed by the same word form (homonymy), and
(ii) equivalent senses expressed by different words
(synonymy). The resource contains controlled sen-
tences so that it allows us to observe how the con-
text and word overlap affect word representations.

To allow for different comparisons with the same

2In fact, several dictionaries organize them in a single en-
try: https://dicionario.priberam.org/banco,
https://dle.rae.es/banco.

https://dicionario.priberam.org/banco
https://dle.rae.es/banco
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Sense Sentences 1-3 Sentence 4 Sentence 5

(1)
We’re going to the airport by coach.

[. . . ] the coach was badly

delayed by roadworks.

They had to travel

everywhere by bus.
We’re going to the airport by bus.

We’re going to the airport by bicycle.

(2)
That man was appointed as the new coach.

She has recently joined

the amateur team as coach.

They need a new trainer
for the young athletes.

That man was appointed as the new trainer.

That man was appointed as the new president.

Table 1: Example sentences for two senses of coach in English (‘bus’ and ‘trainer’). Sentences 1 to 3 include, in
the same context, the target word, a synonym, and a word with a different sense (in italic), respectively. Sentences
4 and 5 contain the target word and a synonym in different contexts, respectively.

and different contexts, we have included five sen-
tences for each meaning (see Table 1 for examples):
three sentences containing the target word, a syn-
onym, and a word with a different sense, all of
them in the same context (sentences 1 to 3), and
two additional sentences with the target word and a
synonym, representing the same sense (sentences 4
and 5, respectively). Thus, for each sense we have
four sentences (1, 2, 4, 5) with a word conveying
the same sense (both in the same and in different
contexts) and another sentence (3) with a different
word in the same context as sentences 1 and 2.

From this structure, we can create datasets of
sentence triples, where the target words of two of
them convey the same sense, and the third one has a
different meaning. Thus, we can generate up to 48
triples for each pair of senses (24 in each direction:
sense 1 vs. sense 2, and vice-versa). These datasets
allow us to evaluate several semantic relations at
the lexical level, including homonymy, synonymy,
and various combinations of homonymous senses.
Interestingly, we can control for the impact of the
context (e.g., are contextualized models able to
distinguish between different senses occurring in
the same context, or do they incorporate excessive
contextual information into the word vectors?), the
word overlap (e.g., can a model identify different
senses of the same word form depending on the
context, or it strongly depends on lexical cues?),
or the POS-tag (e.g., are homonyms with different
POS-tags easily disambiguated?).

Construction of the dataset: We compiled data
for four languages: Galician, Portuguese, Spanish,
and English.3 We tried to select sentences compati-
ble with the different varieties of the same language

3Galician is generally considered a variety of a single
(Galician-)Portuguese language. However, they are divided
in this resource, as Galician has recently been standardized
using a Spanish-based orthography that formally separates it
from Portuguese (Samartim, 2012).

(e.g., with the same meaning in UK and US English,
or in Castilian and Mexican Spanish). However,
we gave priority to the European varieties when
necessary (e.g., regarding spelling variants).

The dataset was built using the following pro-
cedure: First, language experts (one per language)
compiled lists of homonyms using dedicated re-
sources for language learning, together with Word-
Net and other lexicographic data (Miller, 1995;
Montraveta and Vázquez, 2010; Guinovart, 2011;
Rademaker et al., 2014). Only clear and unam-
biguous homonyms were retained (i.e., those in
the extreme of the homonymy-polysemy-vagueness
scale (Tuggy, 1993)). These homonyms were
then enriched with frequency data from large cor-
pora: Wikipedia and SLI GalWeb (Agerri et al.,
2018) for Galician, and a combination of Wikipedia
and Europarl for English, Spanish and Portuguese
(Koehn, 2005). From these lists, each linguist se-
lected the most frequent homonyms, annotating
them as ambiguous at type or token level (absolute
homonymy and partial homonymy in Lyons’ terms
(Lyons, 1995)). As a substantial part were noun-
verb pairs, only a few of these were included. For
each homonym, the language experts selected from
corpora two sentences (1 and 4) in which the target
words were not ambiguous.4 They then selected
a synonym that could be used in sentence 1 with-
out compromising grammaticality (thus generating
sentence 2), and compiled an additional sentence
for it (5), trying to avoid further lexical ambiguities
in this process.5 For each homonym, the linguists
selected a word with a different meaning (for sen-

4Sentences were selected, adapted, and simplified using
GDEX-inspired constraints (Kilgarriff et al., 2008) (i.e., avoid-
ing high punctuation ratios, unnecessary subordinate clauses,
etc.), which resulted in the creation of new sentences.

5In most cases, this synonym is the same as that of sentence
2, but this is not always the case. Besides, in some cases we
could not find words conveying the same sense, for which we
do not have sentences 2 and 5.
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Language Hom. Senses Sent. Triples Pairs WiC κ

Galician 22 47 (4) 227 1365 823 197 0.94
English 14 30 (5) 138 709 463 129 0.96

Portuguese 11 22 (1) 94 358 273 81 0.96
Spanish 10 23 (3) 105 645 391 101 0.95

Total 57 122 564 3077 1950 508 0.94

Table 2: Characteristics of the dataset. First three columns display the number of homonyms (Hom), senses, and
sentences (Sent), respectively. Senses in parentheses are the number of homonymous pairs with different POS-
tags). Center columns show the size of the evaluation data in three formats: triples, pairs, and WiC-like pairs,
followed by the Cohen’s κ agreements and their micro-average. The total number of homonyms and senses is the
sum of the language-specific ones, regardless of the fact that some senses occur in more than one language.

tence 3), trying to maximize the following criteria:
(i) to refer unambiguously to a different concept,
and to preserve (ii) semantic felicity and (iii) gram-
maticality. The size of the final datasets varies
depending on the initial lists and on the ease of
finding synonyms in context.

Results: Apart from the sentence triples ex-
plained above, the dataset structure allows us to
create evaluation sets with different formats, such
as sentence pairs to perform binary classifications
as in the WiC datasets. Table 2 shows the num-
ber of homonyms, senses, and sentences of the
multilingual resource, together with the size of the
evaluation datasets in different formats.

As the original resource was created by one an-
notator per language, we ensured its quality as fol-
lows: We randomly extracted sets of 50 sentence
pairs and gave them to other annotators (5 for Gali-
cian, and 1 for each of the other three varieties, all
of them native speakers of the target language). We
then computed the Cohen’s κ inter-annotator agree-
ment (Cohen, 1960) between the original resource
and the outcome of this second annotation (see the
right column of Table 2). We obtained a micro-
average κ = 0.94 across languages, a result which
supports the task’s objectivity. Nevertheless, it is
worth noting that few sentences have been carefully
modified after this analysis, as it has shown that
several misclassifications were due to the use of
an ambiguous synonym. Thus, it is likely that the
final resource has higher agreement values.

4 Models and Methods

This section introduces the models and procedures
to obtain vector representations followed by the
evaluation method.

4.1 Models

We have used static embeddings and CWEs based
on Transformers, comparing different ways of ob-
taining the vector representations in both cases:

Static embeddings: We have used skip-gram
fastText models of 300 dimensions (Bojanowski
et al., 2017).6 For English and Spanish, we have
used the official vectors trained on Wikipedia. For
Portuguese, we have used the model provided by
Hartmann et al. (2017), and for Galician we have
trained a new model (see Appendix C for details).7

Contextualized embeddings: We have evalu-
ated multilingual and monolingual models:8

Multilingual models: We have used the official
multilingual BERT (mBERT cased, 12 layers) (De-
vlin et al., 2019), XLM-RoBERTa (Base, 12 layers)
(Conneau et al., 2020), and DistilBERT (Distilm-
BERT, 6 layers) (Sanh et al., 2019).

Monolingual models: For English, we have
used the official BERT-Base model (uncased). For
Portuguese and Spanish, BERTimbau (Souza et al.,
2020) and BETO (Cañete et al., 2020) (both cased).
For Galician, we trained two BERT models (with 6
and 12 layers; see Appendix C).

4.2 Obtaining the vectors

Static models: These are the methods used to
obtain the representations from the static models:

Word vector (WV): Embedding of the target
word (homonymous senses with the same word
form will have the same representation).

6In preliminary experiments we also used word2vec and
GloVe models, obtaining slightly lower results than fastText.

7These Portuguese and Galician models obtained better
results (0.06 on average) than the official ones.

8To make a fair comparison we prioritized base models
(12 layers), but we also report results for large (24 layers) and
6 layers models when available.
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Language Exp1 Exp2 Exp3 Exp4 Total Full
Galician 122 105 183 149 278 229 135 135 718 618 1365 1157
English 77 52 89 58 144 91 68 68 378 269 709 494
Portuguese 45 41 37 37 80 74 41 41 203 193 358 342
Spanish 65 49 87 71 146 110 59 59 357 289 645 517

Table 3: Number of instances of each experiment and language. Numbers on the right of each column are those
triples where the three target words belong to the same morphosyntactic category (left values are the total number
of triples). Total are the sums of the four experiments, while Full refers to all the instances of the dataset.

Sentence vector (Sent): Average embedding of
the whole sentence.

Syntax (Syn): Up to four different representa-
tions obtained by adding the vector of the target
word to those of their syntactic heads and depen-
dents. This method is based on the assumption
that the syntactic context of a word characterizes
its meaning, providing relevant information for its
contextualized representation (e.g., in ‘He swims to
the bank’, bank may be disambiguated by combin-
ing its vector with the one of swim).9 Appendix D
describes how heads and dependents are selected.

Contextualized models: For these models, we
have evaluated the following approaches:

Sentence vector (Sent): Vector of the sentence
built by averaging all words (except for the special
tokens [CLS] and [SEP]), each of them represented
by the standard approach of concatenating the last
4 layers (Devlin et al., 2019).

Word vector (WV): Embedding of the target
word, combining the vectors of the last 4 layers.
We have evaluated two operations: vector concate-
nation (Cat), and addition (Sum).

Word vector across layers (Lay): Vector of the
target word on each layer. This method allows us to
explore the contextualization effects on each layer.

Vectors of words split into several sub-words
are obtained by averaging the embeddings of their
components. Similarly, MWEs vectors are the av-
erage of the individual vectors of their components,
both for static and for contextualized embeddings.

4.3 Measuring sense similarities

Given a sentence triple where two of the target
words (a and b) have the same sense and the third
(c) a different one, we evaluate a model as fol-
lows (in a similar way as other studies (Kintsch,
2001; Lake and Murphy, 2020)): First, we obtain

9We have also evaluated a contextualization method using
selectional preferences inspired by Erk and Padó (2008), but
the results were almost identical to those of the WV approach.

three cosine similarities between the vector repre-
sentations: sim1 = cos(a, b); sim2 = cos(a, c);
sim3 = cos(b, c). Then, an instance is labeled as
correct if those words conveying the same sense
(a and b) are closer together than the third one (c).
In other words, sim1 > sim2 and sim1 > sim3:
Otherwise, the instance is considered as incorrect.

5 Evaluation

This section presents the experiments performed
using the new dataset and discusses their results.

5.1 Experiments

Among all the potential analyses of our data, we
have selected four evaluations to assess the behav-
ior of a model by controlling factors such as the
context and the word overlap:

Homonymy (Exp1): The same word form in
three different contexts, two of them with the same
sense (e.g., coach in sentences [1:1, 1:4, 2:1]10 in
Table 1). This test evaluates if a model correctly
captures the sense of a unique word form in con-
text. Hypothesis: Static embeddings will fail as
they produce the same vector in the three cases,
while models that adequately incorporate contex-
tual cues should correctly identify the outlier sense.

Synonyms of homonymous senses (Exp2): A
word is compared with its synonym and with the
synonym of its homonym, all three in different con-
texts (e.g., coach=bus 6=trainer in [1:1, 1:5, 2:2]).
This test assesses if there is a bias towards one of
the homonymous senses, e.g., the most frequent
one (MacGregor et al., 2015). Hypothesis: Mod-
els with this type of bias may fail, so as in Exp1,
they should also appropriately incorporate contex-
tual information to represent these examples.

Synonymy vs homonymy (Exp3): We compare
a word to its synonym and to a homonym, all in

10First and second digits refer to the sense and sentence ids.
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different contexts (e.g., coach=bus 6=coach in [1:1,
1:5, 2:1]). Here we evaluate whether a model ad-
equately represents both (i) synonymy in context
–two word forms with the same sense in different
contexts– and (ii) homonymy –one of the former
word forms having a different meaning. Hypothe-
sis: Models relying primarily on lexical knowledge
are likely to represent homonyms closer than syn-
onyms (giving rise to an incorrect output), but those
integrating contextual information will be able to
model the three representations correctly.

Synonymy (Exp4): Two synonyms vs. a differ-
ent word (and sense), all of them in the same con-
text (e.g., [2:1, 2:2, 2:3]). It assesses to what extent
the context affects word representations of differ-
ent word forms. Hypothesis: Static embeddings
may pass this test as they tend to represent type-
level synonyms closely in the vector space. Highly
contextualized models might be puzzled as differ-
ent meanings (from different words) occur in the
same context, so that the models should have an
adequate trade-off between lexical and contextual
knowledge.

Table 3 displays the number of sentence triples
for each experiment as well as the total number
of triples of the dataset. To focus on the semantic
knowledge encoded in the vectors –rather than on
the morphosyntactic information–, we have evalu-
ated only those triples in which the target words of
the three sentences have the same POS-tag (num-
bers on the right).11 Besides, we have also carried
out an evaluation on the full dataset.

5.2 Results and discussion

Table 4 contains a summary of the results of each
experiment in the four languages. For reasons
of clarity, we include only fastText embeddings
and the best contextualized model (BERT). Results
for all models and languages can be seen in Ap-
pendix A. BERT models have the best performance
overall, both on the full dataset and on the selected
experiments, except for Exp4 (in which the three
sentences share the context) where the static mod-
els outperform the contextualized representations.

In Exp1 and Exp2, where the context plays a
crucial role, fastText models correctly labeled be-
tween 50%/60% of the examples (depending on
the language and vector type, with better results

11On average, BERT-base models achieved 0.24 higher re-
sults (Add) when tested on all the instances (including different
POS-tags) of the four experiments.

for Sent and Syn). For BERT, the best accuracy
surpasses 0.98 (Exp1 in English), with an average
across languages of 0.78, and where word vectors
outperform sentence representations. These high
results and the fact that WVs work better in general
than Sent may be indicators that Transformers are
properly incorporating contextual knowledge.

Solving Exp3 requires both dealing with contex-
tual effects and homonymy (as two words have the
same form but different meaning) so that static em-
beddings hardly achieve 0.5 accuracy (Sent, with
lower results for both WV and Syn). BERT’s per-
formance is also lower than in Exp1 and Exp2,
with an average of 0.67 and Sent beating WVs in
most cases, indicating that the word vectors are not
adequately representing the target senses.

Finally, fastText obtains better results than BERT
on Exp4 (where the three instances have the same
context), reaching 0.81 in Spanish with an aver-
age across languages of 0.64 (always with WVs).
BERT’s best performance is 0.41 (in two lan-
guages) with an average of 0.42, suggesting that
very similar contexts may confound the model.

To shed light on the contextualization process
of Transformers, we have analyzed their perfor-
mance across layers. Figure 1 shows the accuracy
curves (vs. the macro-average Sent and WV vec-
tors of the contextualized and static embeddings)
for five Transformers models on Galician, the lan-
guage with the largest dataset (see Appendix A for
equivalent figures for the other languages).

In Exp1 to Exp3 the best accuracies are obtained
at upper layers, showing that word vectors appro-
priately incorporate contextual information. This is
true especially for the monolingual BERT versions,
as the multilingual models’ representations show
higher variations. Except for Galician, Exp1 has
better results than Exp2, as the former primarily
deals with context while the latter combines contex-
tualization with lexical effects. In Exp3 the curves
take longer to rise as initial layers rely more on
lexical than on contextual information. Further-
more, except for English (which reaches 0.8), the
performance is low even in the best hidden layers
(≈ 0.4). In Exp4 (with the same context in the
three sentences), contextualized models cannot cor-
rectly represent the word senses, being surpassed
in most cases by the static embeddings.

Finally, we have observed how Transformers rep-
resentations vary across the vector space. Figure 2
shows the UMAP visualizations (McInnes et al.,
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Model Vec. Exp1 Exp2 Exp3 Exp4 Macro Micro Full
Galician

BERT-base
Sent 0.695 0.758 0.751 0.178 0.596 0.618 0.727
Cat 0.705 0.799 0.293 0.422 0.555 0.513 0.699

fastText
Sent 0.562 0.685 0.476 0.141 0.466 0.468 0.618
WV 0.21 0.564 0 0.526 0.325 0.286 0.461
Syn (3) 0.533 0.658 0.197 0.185 0.393 0.362 0.567

English

BERT-base
Sent 0.788 0.655 0.736 0.221 0.6 0.599 0.7
Add 0.981 0.81 0.758 0.441 0.748 0.732 0.839

fastText
Sent 0.596 0.5 0.505 0.147 0.437 0.431 0.543
WV 0.308 0.552 0.033 0.574 0.366 0.335 0.48
Syn (3) 0.442 0.69 0.231 0.176 0.385 0.357 0.546

Portuguese

BERT-base
Sent 0.683 0.432 0.635 0.22 0.493 0.518 0.564
Add 0.854 0.541 0.378 0.366 0.535 0.508 0.67

fastText
Sent 0.61 0.622 0.527 0.171 0.482 0.487 0.55
WV 0.024 0.541 0 0.634 0.3 0.244 0.453
Syn (3) 0.659 0.459 0.176 0.195 0.372 0.337 0.508

Spanish

BERT-base
Sent 0.755 0.592 0.536 0.186 0.517 0.516 0.595
Add 0.857 0.704 0.409 0.441 0.603 0.564 0.74

fastText
Sent 0.449 0.338 0.445 0.085 0.329 0.346 0.429
WV 0.122 0.62 0.018 0.814 0.393 0.346 0.479
Syn (3) 0.367 0.577 0.173 0.237 0.339 0.318 0.553

Table 4: Summary of the BERT and fastText results. Macro and Micro refer to the macro-average and micro-
average results across the four experiments, respectively. Full are the micro-average values on the whole dataset.

Figure 1: Results across layers and models for Galician. Sent and WV (dashed) are macro-average values.
MacroAvg|Syn is the macro-average per layer (Transformers) and the macro-average of the Syn strategy (fastText).

2018) of the contextualization processes of Exp1
and Exp3 examples in English. In 2a, the similar
vectors of match in layer 1 are being contextualized

across layers, producing a suitable representation
since layer 7. However, 2b shows how the model is
not able to adequately represent match close to its
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(a) Exp1:
Sentence 2: “Chelsea have a match with United next week.”.
Sentence 3: “You should always strike a match away from
you.”

(b) Exp3:
Sentence 2: “A game consists of two halves lasting 45 minutes,
meaning it is 90 minutes long.”.
Sentence 3: “He was watching a football stadium.”

Figure 2: UMAP visualizations of word contextualization across layers (1 to 12) in Exp1 and Exp3 in English
(BERT-base). In both cases, sentence 1 is “He was watching a football match.”, and the target word in sentence 3
is the outlier.

synonym game, as the vectors seem to incorporate
excessive information (or at least limited lexical
knowledge) from the context. Additional visualiza-
tions in Galician can be found in Appendix B.

In sum, the experiments performed in this study
allow us to observe how different models generate
contextual representations. In general, our results
confirm previous findings which state that Trans-
formers models increasingly incorporate contextual
information across layers. However, we have also
found that this process may deteriorate the rep-
resentation of the individual words, as it may be
incorporating excessive contextual information, as
suggested by Haber and Poesio (2020).

6 Conclusions and Further Work

This paper has presented a systematic study of word
meaning representation in context. Besides static
word embeddings, we have assessed the ability
of state-of-the-art monolingual and multilingual
models based on the Transformers architecture to
identify unambiguous cases of homonymy and syn-
onymy. To do so, we have presented a new dataset
in four linguistic varieties that allows for controlled
evaluations of vector representations.

The results of our study show that, in most cases,
the best contextualized models adequately identify
homonyms conveying different senses in various
contexts. However, as they strongly rely on the sur-
rounding contexts, they misrepresent words having
different senses in similar sentences.

In further work, we plan to extend our dataset

with multiword expressions of different degrees of
idiomaticity and to include less transparent –but
still unambiguous– contexts of homonymy. Finally,
we also plan to systematically explore how multilin-
gual models represent homonymy and synonymy
in cross-lingual scenarios.
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Appendices

A Complete results

Figure 3 and Table 5 include the results for all languages and models. We also include large variants
(BERT and XLM-RoBERTa) when available. For static embeddings, we report results for the best Syn
setting, which combines up to three syntactically related words with the target word (see Appendix D).

Figure 3: Results across layers and models for English (top), Portuguese (middle), and Spanish (bottom). Sent
and WV (dashed) are macro-average values. MacroAvg|Syn is the macro-average per layer (Transformers) and the
macro-average of the Syn strategy (fastText).
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B Contextualization process

(a) Sent. 1: “Ten que haber algún erro nos cálculos porque o
resultado non é correcto.”
Sent. 2: “Segundo os meus cálculos acabaremos en tres días.”
Sent. 3: “Tivo varios cálculos biliares.”

(b) Sent. 1: “De sobremesa tomou queixo con marmelo.”
Sentence 2: “Fomos a unhas xornadas gastronómicas do
queixo.”
Sentence 3: “Achegouse a ela e pasoulle a man polo queixo.”

(c) Sentence 1: “Eran tantos que parecían un banco de xurelos.”
Sent.2: “Desde a rocha víanse pequenos cardumes de robaliza.”
Sentence 3: “Este asento de pedra é algo incómodo.”

(d) Sent.1: “Apuntou todos os números de teléfono na axenda.”
Sentence 2: “Anotou todos os números de teléfono na axenda.”
Sentence 3: “Riscou todos os números de teléfono na axenda.”.

(e) Sent. 1: “Vai ter lugar a elección da próxima sede dos
Xogos Olímpicos.”
Sent. 2: “A localización do evento será decidida esta semana.”
Sent. 3: “Vou á fonte por auga, que teño sede.”

(f) Sentence 1: “Encántalle comer o bolo de pan antes da sopa.”
Sentence 2: “O molete tiña a codia un pouco dura.”
Sentence 3: “Para atraeren as robalizas iscaban bolo vivo.”

Figure 4: Examples in Galician using BERT-base (English translations of the sentences in Appendix E).
First row shows examples of Ex1. In Figure 4a cálculos is correctly contextualized since layer 3. In Figure 4b, the
outlier sense of queixo is not correctly contextualized in any layer.
Second row shows examples of Exp2 (4c) and Exp4 (4d). In Figure 4c, the synonymys banco and cardume are
closer to the outlier asento in layer 1 (and from 4 to 7), but the contextualization process is not able to correctly
represent the senses in the vector space. In Figure 4d, the result is correct from layer 7 to 11, but in general the
representations of words in similar sentences point towards a similar region.
Third row incudes examples of Exp3. In Figure 4e, the occurrences of the homonym sede are correctly contextual-
ized as the one in the first sentence approaches its synonym localización in upper layers. The equivalent example
of Figure 4f is not adequately solved by the model, as both senses of bolo are notoriously distanct from molete,
synonym of the first homonymous sense.
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C Galician models

Training corpus: We combined the SLI GalWeb
(Agerri et al., 2018), CC-100 (Wenzek et al., 2020),
the Galician Wikipedia (April 2020 dump), and
other news corpora crawled from the web. Fol-
lowing Raffel et al. (2020), sentences with a high
ratio of punctuation and symbols, and duplicates
were removed. The final corpus has 555M words
(633M tokens tokenized with FreeLing (Padró and
Stanilovsky, 2012; Garcia and Gamallo, 2010)).
The corpus was divided into 90%/10% splits for
train and development.

fastText model: We trained a fastText skip-gram
model for 15 iterations with 300 dimensions, win-
dow size of 5, negative sampling of 25, and a min-
imum word frequency of 5. We used the same
90% split used to train the BERT models, but with
automatic tokenization (≈ 600M tokens).

BERT models: We used the 90% train split of
the corpus (with the original tokenization) to train
two BERT models, with 6 and 12 layers:

BERT-small (6 layers): This model has been
trained from scratch using a vocabulary of 52,000
(sub-)words and a batch size of 208. It has been
training during 1M steps (≈ 20 epochs) in 14 days.

BERT-base (12 layers): Following Kuratov
and Arkhipov (2019), we initialized the model from
the official pre-trained mBERT, therefore having
the same vocabulary size (119,547). We trained
it on the Galician corpus during 600k steps (≈ 13
epochs in 28 days) with a batch size of 198.

Both models were trained with the Transform-
ers library (Wolf et al., 2020) on a single NVIDIA
Titan XP GPU (12GB), a block size of 128, a learn-
ing rate of 0.0001, a masked language modeling
(MLM) probability of 0.15, and a weight decay of
0.01. They have been trained only with the MLM
objective.

D Syntax (Syn method)

To get the heads and dependents of each target word
we have used the following hierarchies: For nouns:
HeadV erb (the head verb, if any)> DepV erb (de-
pendents of the head verb with one of the following
relations: obj, nmod, obl)> DepAdj (a dependent
adjective)> DepNoun (a dependent noun). For
verbs: Head (only if it is a verb or a noun)> Obj
(its direct object, if any)> Arg (a dependent with
one of these relations: nsubj, nmod, obl). Using

these hierarchies we have evaluated representations
built by adding from 1 to 4 vectors to the one of
each target word. As shown in Table 5, combin-
ing 3 syntactically related words to the target one
obtains the best results.

For the experiments, we have parsed the datasets
using the 2.5 Universal Dependencies models pro-
vided by UDPipe (Straka et al., 2019).

E English translations (Figure 4)

Figure 4a, sentence 1: “There must be some error
in the calculations because the result is incorrect”.
Sentence 2: “According to my calculations we will
finish in three days”. Sentence 3: “[He/she] had
several gallstones”.

Figure 4b, sentence 1: “For dessert [he/she] ate
cheese with quince”. Sentence 2: “We went to a
cheese gastronomy days”. Sentence 3: “[He/She]
approached her and ran his hand over her chin”.

Figure 4c, sentence 1: “They were so many that
they looked like a school of mackerel”. Sentence 2:
“From the rock small shoals of sea bass could be
seen”. Sentence 3: “This stone seat is somewhat
uncomfortable”.

Figure 4d, sentences 1 and 2: “[He/She] wrote
down all the phone numbers on the phone book.”
Sentence 3: “[He/She] crossed out all the phone
numbers on the phone book”.

Figure 4e, sentence 1: “The choice of the next
venue for the Olympics will take place”. Sentence
2: “The location of the event will be decided this
week”. Sentence 3: “I’ll get water from the spring,
I am thirsty”.

Figure 4f, sentence 1: “[He/She] loves to eat the
bread cake before soup”. Sentence 2: “The bread
had a slightly hard crust”. Sentence 3: “They used
live sand lance to attrack sea bass”.


