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Abstract

Analogies play a central role in human com-
monsense reasoning. The ability to recognize
analogies such as “eye is to seeing what ear is
to hearing”, sometimes referred to as analogi-
cal proportions, shape how we structure knowl-
edge and understand language. Surprisingly,
however, the task of identifying such analogies
has not yet received much attention in the lan-
guage model era. In this paper, we analyze
the capabilities of transformer-based language
models on this unsupervised task, using bench-
marks obtained from educational settings, as
well as more commonly used datasets. We find
that off-the-shelf language models can identify
analogies to a certain extent, but struggle with
abstract and complex relations, and results are
highly sensitive to model architecture and hy-
perparameters. Overall the best results were
obtained with GPT-2 and RoBERTa, while
configurations using BERT were not able to
outperform word embedding models. Our re-
sults raise important questions for future work
about how, and to what extent, pre-trained
language models capture knowledge about ab-
stract semantic relations.1

1 Introduction

One of the most widely discussed properties of
word embeddings has been their surprising abil-
ity to model certain types of relational similari-
ties in terms of word vector differences (Mikolov

While the title is probably self-explanatory, this is a small
note explaining it. BERT is to NLP what AlexNet is to CV is
making an analogy on what the BERT and AlexNet models
represented for Natural Language Processing (NLP) and Com-
puter Vision (CV), respectively. They both brought a paradigm
shift in how research was undertaken in their corresponding
disciplines and this is what the analogy refers to.

1Source code and data to reproduce our ex-
perimental results are available in the following
repository: https://github.com/asahi417/
analogy-language-model

Query: word:language

Candidates: (1) paint:portrait
(2) poetry:rhythm
(3) note:music
(4) tale:story
(5) week:year

Table 1: An example analogy task from the SAT
dataset. The third candidate is the answer to the query.

et al., 2013a; Vylomova et al., 2016; Allen and
Hospedales, 2019; Ethayarajh et al., 2019). The
underlying assumption is that when “a is to b what
c is to d” the word vector differences b − a and
d− c are expected to be similar, where we write x
for the embedding of a word x. While this assump-
tion holds for some types of syntactic relations,
for semantic relations this holds to a much more
limited degree than was suggested in early work
(Linzen, 2016; Schluter, 2018). Moreover, the most
commonly used benchmarks have focused on spe-
cific and well-defined semantic relations such as
“capital of”, rather than the more abstract notion of
relational similarity that is often needed for solving
the kind of psychometric analogy problems that
can be found in IQ tests and educational settings.
An example of such a problem is shown in Table 1.

Given the central role of analogy in human cog-
nition, it is nonetheless important to understand the
extent to which NLP models are able to solve these
more abstract analogy problems. Besides its value
as an intrinsic benchmark for lexical semantics,
the ability to recognize analogies is indeed impor-
tant in the contexts of human creativity (Holyoak
et al., 1996), innovation (Hope et al., 2017), com-
putational creativity (Goel, 2019) and education
(Pardos and Nam, 2020). Analogies are also a
prerequisite to build AI systems for the legal do-
main (Ashley, 1988; Walton, 2010) and are used in
machine learning (Miclet et al., 2008; Hug et al.,

https://github.com/asahi417/analogy-language-model
https://github.com/asahi417/analogy-language-model
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2016; Hüllermeier, 2020) and for ontology align-
ment (Raad and Evermann, 2015), among others.

Within NLP, however, the task of recognizing
analogies has received relatively little attention. To
solve such problems, Turney (2005) proposed La-
tent Relational Analysis (LRA), which was essen-
tially designed as a relational counterpart to Latent
Semantic Analysis (Landauer and Dumais, 1997).
Somewhat surprisingly, perhaps, despite the sub-
stantial progress that word embeddings and lan-
guage models (LMs) have enabled in NLP, LRA
still represents the current state-of-the-art in solv-
ing abstract word analogy problems. When go-
ing beyond a purely unsupervised setting, however,
GPT-3 was recently found to obtain slightly better
results (Brown et al., 2020).

The aim of this paper is to analyze the ability of
pre-trained LMs to recognize analogies. Our focus
is on the zero-shot setting, where LMs are used
without fine-tuning. To predict whether two word
pairs (a, b) and (c, d) are likely to be analogical,
we need a prompt, i.e. a template that is used to con-
struct the input to the LM, and a scoring function.
We extensively analyze the impact of both of these
choices, as well as the differences between differ-
ent LMs. When the prompt and scoring function
are carefully calibrated, we find that GPT-2 can out-
perform LRA, standard word embeddings as well
as the published results for GPT-3 in the zero-shot
setting. However, we also find that these results
are highly sensitive to the choice of the prompt, as
well as two hyperparameters in our scoring func-
tion, with the optimal choices not being consistent
across different datasets. Moreover, using BERT
leads to considerably weaker results, underperform-
ing even standard word embeddings in all of the
considered configurations. These findings suggest
that while transformer-based LMs learn relational
knowledge to a meaningful extent, more work is
needed to understand how such knowledge is en-
coded, and how it can be exploited.

2 Related work

2.1 Understanding Pre-trained LMs

Since their recent dominance in standard NLP
benchmarks (Peters et al., 2018a; Devlin et al.,
2019; Liu et al., 2019), pre-trained language mod-
els have been extensively studied. This has mainly
been done through probing tasks, which are aimed
at understanding the knowledge that is implicitly
captured by their parameters. After the initial focus

on understanding pre-trained LSTM-based LMs
(Peters et al., 2018b), attention has now shifted to-
ward transformer-based models. The main aspects
that have been studied in recent years are syntax
(Goldberg, 2019; Saphra and Lopez, 2019; Hewitt
and Manning, 2019; van Schijndel et al., 2019;
Jawahar et al., 2019; Tenney et al., 2019b) and se-
mantics (Ettinger, 2019; Tenney et al., 2019a). For
a more complete overview on analyses of the differ-
ent properties of transformer-based LMs, we refer
to Rogers et al. (2021).

Despite the rise in probing analyses for LMs
and the importance of analogical reasoning in hu-
man cognition, understanding the analogical capa-
bilities of LMs remains understudied. The most
similar works have focused on capturing relational
knowledge from LMs (in particular the type of
information available in knowledge graphs). For
instance, Petroni et al. (2019) analyzed to what
extent LMs could fill manually-defined templates
such as “Dante was born in [MASK]”. Follow-up
works extended this initial approach by automat-
ically generating templates and fine-tuning LMs
on them (Bouraoui et al., 2020; Jiang et al., 2020),
showing an improved performance. In this paper,
we focus on the analogical knowledge that is en-
coded in pre-trained LMs, without the extra step of
fine-tuning on additional data.

2.2 Word Analogy Probing

Word analogies have been used as a standard in-
trinsic evaluation task for measuring the quality of
word embeddings. Mikolov et al. (2013b) showed
that word embeddings, in particular Word2vec em-
beddings, were able to solve analogy problems by
simple vector operations (e.g. king - man + woman
= queen). The motivation for this task dates back
to the connectionism theory (Feldman and Ballard,
1982) in cognitive science. In particular, neural
networks were thought to be able to model emer-
gent concepts (Hopfield, 1982; Hinton, 1986) by
learning distributed representations across an em-
bedding space (Hinton et al., 1986), similar to the
properties that word embeddings displayed in the
analogy task. More recent works have proposed
new mathematical theories and experiments to un-
derstand the analogical capabilities of word embed-
dings, attempting to understand their linear alge-
braic structure (Arora et al., 2016; Gittens et al.,
2017; Allen and Hospedales, 2019) or by explic-
itly studying their compositional nature (Levy and
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Goldberg, 2014; Paperno and Baroni, 2016; Etha-
yarajh et al., 2019; Chiang et al., 2020).

However, recent works have questioned the im-
pressive results displayed by word embeddings
in this task. In many cases simple baselines ex-
cluding the input pair (or query) were competitive
(Linzen, 2016). Simultaneously, some researchers
have found that many relationships may not be
retrieved in the embedding space by simple linear
transformations (Drozd et al., 2016; Bouraoui et al.,
2018) and others argued that the standard evalu-
ation procedure has limitations (Schluter, 2018).
New datasets and measures have also been intro-
duced to address some of these issues (Gladkova
et al., 2016; Fournier et al., 2020). Finally, in the
context of bias detection, for which analogies have
been used as a proxy (Bolukbasi et al., 2016), it has
also been found that word analogies may misguide
or hide the real relationships existing in the vector
space (Gonen and Goldberg, 2019; Nissim et al.,
2020).

As far as language models are concerned, word
analogies have not been explored to the same ex-
tent as for word embeddings. Recently, Brown et al.
(2020) evaluated the unsupervised capabilities of
GPT-3 by evaluating it on the SAT analogies dataset
(Turney et al., 2003), which we also include in our
evaluation (see Section 3.2). However, the evalu-
ation is limited to a single dataset (i.e., SAT) and
model (i.e., GPT-3), and the general capabilities of
language models were not investigated.

Despite their limitations, analogy tests remain
appealing for evaluating the ability of embeddings
and language models to identify abstract relation-
ships. To mitigate the aforementioned methodolog-
ical issues, in this work we rely on analogy tests
from educational resources, where the task is to
complete analogical proportions, given only the
first word pair. In contrast, word embedding mod-
els have mostly been evaluated using a predictive
task, in which three of the four words are given.
Moreover, the considered datasets are focused on
abstract analogies, whereas the most commonly
used datasets only include well-defined semantic
relations such as “capital of”. For completeness,
however, we also show results on these standard
datasets. We furthermore experiment with several
simple baselines to understand possible artifacts
present in the different datasets.

3 Word Analogies

In this section, we describe the word analogy for-
mulation that is used for our experiments (Section
3.1). Subsequently, we provide an overview of the
datasets used in our experiments (Section 3.2).

3.1 Task Description

We frame the analogy task in terms of analogical
proportions (Prade and Richard, 2017). Given a
query word pair (hq, tq) and a list of candidate
answer pairs {(hi, ti)}ni=1, the goal is to find the
candidate answer pair that has the most similar
relation to the query pair. Table 1 shows a sample
query and candidate answers drawn from one of the
datasets used in our evaluation (see Section 3.2).

3.2 Analogy Datasets

We split analogy datasets in two types, based on
how the analogy problems were constructed.

3.2.1 Psychometric Analogy Tests
Word analogy tests are commonly used in assess-
ments of linguistic and cognitive ability. For in-
stance, in the past, such tests were included in the
SAT exams, which are a US college admission
test. Turney et al. (2003) collected a benchmark
of 374 word analogy problems, consisting primar-
ily of problems from these SAT tests. Aimed at
college applicants, these problems are designed to
be challenging for humans. A key challenge for
NLP systems is that solving these problems often
requires identifying fine-grained semantic differ-
ences between word pairs that belong to the same
coarse-grained relation. For instance, in the case
of Table 1, we could say that “a year consists of
weeks” like “language consists of words”, but the
week-year pair is nonetheless less similar to word-
language than note-music.

Another analogy benchmark was constructed by
Boteanu and Chernova (2015), who used word anal-
ogy problems from an educational resource2. They
used in particular UNIT 2 of the analogy problems
from the educational site. These problems have
the same form as those from the SAT benchmark,
but rather than college applicants, they are aimed
at children in grades 4 to 12 from the US school
system (i.e. from age 9 onwards). In this paper, we
will also include this UNIT 2 benchmark. More-
over, we have collected another benchmark from

2https://www.englishforeveryone.org/
Topics/Analogies.html

https://www.englishforeveryone.org/Topics/Analogies.html
https://www.englishforeveryone.org/Topics/Analogies.html
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Dataset Data size No. No.
(val / test) candidates groups

SAT 37 / 337 5 2
UNIT 2 24 / 228 5,4,3 9
UNIT 4 48 / 432 5,4,3 5
Google 50 / 500 4 2
BATS 199 / 1799 4 3

Table 2: High-level statistics of the analogy datasets
after unification: data size, number of candidates and
number of group partitions.

the UNIT 4 problems on the same website. These
UNIT 4 problems are organised in 5 difficulty
levels: high-beginning, low-intermediate, high-
intermediate, low-advanced and high-advanced.
The low-advanced level is stated to be at the level
of the SAT tests, whereas the high-advanced level
is stated to be at the level of the GRE test (which is
used for admission into graduate schools).

3.2.2 Lexical Semantics Benchmarks

Since the introduction of Word2vec (Mikolov et al.,
2013a), the problem of modelling analogies has
been commonly used as an intrinsic benchmark for
word embedding models. However, the datasets
that have been used in that context are focused
on well-defined and relatively coarse-grained rela-
tions. The Google analogy dataset (Mikolov et al.,
2013b) has been one of the most commonly used
benchmarks for intrinsic evaluation of word em-
beddings. This dataset contains a mix of semantic
and morphological relations such as capital-of and
singular-plural, respectively. However, its cover-
age has been shown to be limiting, and BATS (Glad-
kova et al., 2016) was developed in an attempt to
address its main shortcomings. BATS includes a
larger number of concepts and relations, which are
split into four categories: lexicographic, encyclope-
dic, and derivational and inflectional morphology.

As pointed out above, these datasets were tai-
lored to the evaluation of word embeddings in a
predictive setting. To provide an evaluation set-
ting which is comparable to the benchmarks ob-
tained from human analogy tests, we constructed
word analogy problems from the Google and BATS
datasets, by choosing for each correct analogy
pair a number of negative examples. The result-
ing benchmark thus follows the same format as
described in Section 3.1. To obtain sufficiently
challenging negative examples, for each query pair
(e.g. Paris-France) we extracted three negative in-

Figure 1: Solving a word analogy problem by selecting
one with the highest LM score among the candidates.

stances: (1) two random words from the head of the
input relation type (e.g. Rome-Oslo); (2) two ran-
dom words from the tail of the input relation type
(e.g. Germany-Canada); (3) a random word pair
from a relation type of the same high-level category
as the input relation type (e.g. Argentina-peso).3

3.2.3 Unification and Statistics
Table 2 provides an overview of our datasets. The
instances from each dataset are organised into
groups. In the case of Google and BATS, these
groups refer to the relation types (e.g. semantic or
morphological in the case of Google). In the case
of UNIT 2 and UNIT 4, the groups refer to the dif-
ficulty level. For the SAT dataset, we consider two
groups, capturing whether the instances come from
an actual SAT test or not. Finally, we randomly
sample 10% of each group in each dataset to con-
struct a validation set, and regard the remaining
data as the test set.

4 Methodology

In this section, we explain our strategy for using
pretrained LMs to solve analogy problems without
fine-tuning. First, in Section 4.1 we explain how
each relation pair is converted into a natural sen-
tence to be fed into the LM. In Section 4.2, we then
discuss a number of scoring functions that can be
used to select the most plausible answer candidate.
Finally, we take advantage of the fact that analog-
ical proportion is invariant to particular permuta-
tions, which allows for a natural extension of the
proposed scoring functions (Section 4.3). Figure 1
shows a high-level overview of our methodology.

4.1 Relation Pair Prompting
We define a prompting function Tt(w1, w2, w3, w4)
that takes four placeholders and a template type t,

3In order to avoid adding various correct answers to the
query, we avoided adding negative pairs from all country-of
type relations, and from similar lexicographic relations in
the BATS dataset with more than one relation type, namely
antonyms, synonyms, meronyms and hyponyms.
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and returns a sentence in which the placeholders
were replaced by the words w1, w2, w3, and w4.
For instance, given a query “word:language” and
a candidate “note:music”, the prompting function
produces

Tto-as(“word”, “language”, “note”, “music”) =

“word is to language as note is to music”

where we use the template type to-as here.
Using manually specified template types can re-

sult in a sub-optimal textual representation. For
this reason, recent studies have proposed auto-
prompting strategies, which optimize the template
type on a training set (Shin et al., 2020), paraphras-
ing (Jiang et al., 2020), additional prompt genera-
tion model (Gao et al., 2020), and corpus-driven
template mining (Bouraoui et al., 2020). How-
ever, none of these approaches can be applied to
unsupervised settings. Thus, we do not explore
auto-prompting methods in this work. Instead, we
will consider a number of different template types
in the experiments, and assess the sensitivity of the
results to the choice of template type.

4.2 Scoring Function
Perplexity. We first define perplexity, which is
widely used as a sentence re-ranking metric (Chan
et al., 2016; Gulcehre et al., 2015). Given a sen-
tence x, for autoregressive LMs such as LSTM
based models (Zaremba et al., 2014) and GPTs
(Radford et al., 2018, 2019; Brown et al., 2020),
perplexity can be computed as

f(x) = exp

− m∑
j=1

logPauto(xj |xj−1)

 (1)

where x is tokenized as [x1...xm] and Pauto(x|x)
is the likelihood from an autoregressive LM’s
next token prediction. For masked LMs such
as BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019), we instead use pseudo-
perplexity, which is defined as in (1) but
with Pmask(xj |x\j) instead of Pauto(xj |xj−1),
where x\j = [x1 . . . xj1〈mask〉xj+1 . . . xm] and
Pmask(xj |x\j) is the pseudo-likelihood (Wang and
Cho, 2019) that the masked token is xj .
PMI. Although perplexity is well-suited to capture
the fluency of a sentence, it may not be the best
choice to test the plausibility of a given analogical
proportion candidate. As an alternative, we pro-
pose a scoring function that focuses specifically

Figure 2: Positive and negative permutations for a rela-
tion pair (a:b)-(c:d).

on words from the two given pairs. To this end,
we propose to use an approximation of point-wise
mutual information (PMI), based on perplexity.

PMI is defined as the difference between a condi-
tional and marginal log-likelihood. In our case, we
consider the conditional likelihood of ti given hi
and the query pair (recall from Section 3.1 that
h and t represent the head and tail of a given
word pair, respectively), i.e. P (ti|hq, tq, hi), and
the marginal likelihood over hi, i.e. P (ti|hq, tq).
Subsequently, the PMI-inspired scoring function is
defined as

r(ti|hi, hq, tq) = logP (ti|hi, hq, tq)
− α · logP (ti|hq, tq) (2)

where α is a hyperparameter to control the effect
of the marginal likelihood. The PMI score corre-
sponds to the specific case where α = 1. However,
Davison et al. (2019) found that using a hyperpa-
rameter to balance the impact of the conditional and
marginal probabilities can significantly improve the
results. The probabilities in (2) are estimated by
assuming that the answer candidates are the only
possible word pairs that need to be considered. By
relying on this closed-world assumption, we can
estimate marginal probabilities based on perplex-
ity, which we found to give better results than the
masking based strategy from Davison et al. (2019).
In particular, we estimate these probabilities as

P (ti|hq, tq, hi) = −
f (Tt(hq, tq, hi, ti))

n∑
k=1

f (Tt(hq, tq, hi, tk))

P (ti|hq, tq) = −

n∑
k=1

f (Tt(hq, tq, hk, ti))

n∑
k=1

n∑
l=1

f (Tt(hq, tq, hk, tl))
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where n is the number of answer candidates for
the given query. Equivalently, since PMI is sym-
metric, we can consider the difference between the
logs of P (hi|hq, tq, ti) and P (hi|hq, tq). While
this leads to the same PMI value in theory, due to
the way in which we approximate the probabilities,
this symmetric approach will lead to a different
score. We thus combine both scores with an ag-
gregation function Ag. This aggregation function
takes a list of scores and outputs an aggregated
value. As an example, given a list [1, 2, 3, 4], we
write Amean([1, 2, 3, 4]) = 2.5 for the mean and
Aval1([1, 2, 3, 4]) = 1 for the first element. Given
such an aggregation function, we define the follow-
ing PMI-based score

sPMI(ti, hi|hq, tq) = Ag (r) (3)

where we consider basic aggregation operations
over the list r = [r(ti|hi, hq, tq), r(hi|ti, hq, tq)],
such as the mean, max, and min value. The choice
of using only one of the scores r(ti|hi, hq, tq),
r(hi|ti, hq, tq) is viewed as a special case, in which
the aggregation function g simply returns the first
or the second item.
mPPL. We also experiment with a third scoring
function, which borrows ideas from both perplexity
and PMI. In particular, we propose the marginal
likelihood biased perplexity (mPPL) defined as

smPPL(ti, hi|hq, tq) = log sPPL(ti, hi|hq, tq)
− αt · logP (ti|hq, tq)
− αh · logP (hi|hq, tq)

where αt and αh are hyperparameters, and sPPL is
a normalized perplexity defined as

sPPL(ti, hi|hq, tq) = −
f (Tt(hq, tq, hi, ti))

n∑
k=1

f (Tt(hq, tq, hk, tk))
.

The mPPL score extends perplexity with two bias
terms. It is motivated from the insight that treating
α as a hyperparameter in (2) can lead to better
results than fixing α = 1. By tuning αt and αh,
we can essentially influence to what extent answer
candidates involving semantically similar words to
the query pair should be favored.

4.3 Permutation Invariance

The formalization of analogical proportions dates
back to Aristotle (Barbot et al., 2019). According

to the standard axiomatic characterization, when-
ever we have an analogical proportion a : b :: c : d
(meaning “a is to b what c is to d”), it also holds
that c : d :: a : b and a : c :: b : d are ana-
logical proportions. It follows from this that for
any given analogical proportion a : b :: c : d
there are eight permutations of the four elements
a, b, c, d that form analogical proportions. These
eight permutations, along with the 16 “negative
permutations”, are shown in Figure 2.

To take advantage of the different permutations
of analogical proportions, we propose the following
Analogical Proportion (AP) score:

AP(hq, tq, hi, ti) = Agpos(p)− β · Agneg(n) (4)

p = [s(a, b|c, d)](a:b,c:d)∈P
n = [s(a, b|c, d)](a:b,c:d)∈N

where P and N correspond to the list of positive
and negative permutations of the candidate ana-
logical proportion hq : tq :: hi : ti in the order
shown in Figure 2, β is a hyperparameter to con-
trol the impact of the negative permutations, and
s(a, b|c, d) is a scoring function as described in
Section 4.2. Here Agpos and Agneg refer to the ag-
gregation functions that are used to combine the
scores for the positive and negative permutations
respectively, where these aggregation functions are
defined as in Section 4.2. To solve an analogy prob-
lem, we simply choose the answer candidate that
results in the highest value of AP(ti, hi, hq, tq).

5 Evaluation

In this section, we evaluate language models on the
five analogy datasets presented in Section 3.

5.1 Experimental Setting

We consider three transformer-based LMs of a dif-
ferent nature: two masked LMs, namely BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019),
and GPT-2, as a prominent example of an auto-
regressive language model. Each pretrained model
was fetched from the Huggingface transformers
library (Wolf et al., 2019), from which we use
bert-large-cased, roberta-large, and
gpt2-xl respectively. For parameter selection,
we run grid search on β, α, αh, αt, t, g, gpos, and
gneg for each model and select the configuration
which achieves the best accuracy on each validation
set. We experiment with the three scoring functions
presented in Section 4.2, i.e., sPPL (perplexity),
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Model Score Tuned SAT U2 U4 Google BATS Avg

L
M

BERT

sPPL
32.9 32.9 34.0 80.8 61.5 48.4

X 39.8 41.7 41.0 86.8 67.9 55.4

sPMI
27.0 32.0 31.2 74.0 59.1 44.7

X 40.4 42.5 27.8 87.0 68.1 53.2
smPPL X 41.8 44.7 41.2 88.8 67.9 56.9

GPT-2

sPPL
35.9 41.2 44.9 80.4 63.5 53.2

X 50.4 48.7 51.2 93.2 75.9 63.9

sPMI
34.4 44.7 43.3 62.8 62.8 49.6

X 51.0 37.7 50.5 91.0 79.8 62.0
smPPL X 56.7 50.9 49.5 95.2 81.2 66.7

RoBERTa

sPPL
42.4 49.1 49.1 90.8 69.7 60.2

X 53.7 57.0 55.8 93.6 80.5 68.1

sPMI
35.9 42.5 44.0 60.8 60.8 48.8

X 51.3 49.1 38.7 92.4 77.2 61.7
smPPL X 53.4 58.3 57.4 93.6 78.4 68.2

W
E

FastText - 47.8 43.0 40.7 96.6 72.0 60.0
GloVe - 47.8 46.5 39.8 96.0 68.7 59.8

Word2vec - 41.8 40.4 39.6 93.2 63.8 55.8

B
as

e PMI - 23.3 32.9 39.1 57.4 42.7 39.1
Random - 20.0 23.6 24.2 25.0 25.0 23.6

Table 3: Accuracy results on each analogy dataset, categorized into language models (LM), word embeddings
(WE), and baselines (Base). All LMs use the analogical proportion (AP) function described in Section 4.3. The
default configuration for AP includes α = αh = αt = β = 0, gpos = g = val1, and t = to-as. Note that
sPPL = smPPL with the default configuration. Average accuracy (Avg) across datasets is included in the last column.

sPMI and smPPL. Possible values for each hyperpa-
rameter (including the selection of six prompts and
an ablation test on the scoring function) and the
best configurations that were found by grid search
are provided in the appendix.

As baseline methods, we also consider three
pre-trained word embedding models, which have
been shown to provide competitive results in anal-
ogy tasks, as explained in Section 2.2: Word2vec
(Mikolov et al., 2013a), GloVe (Pennington et al.,
2014), and FastText (Bojanowski et al., 2017). For
the word embedding models, we simply represent
word pairs by taking the difference between their
embeddings4. We then choose the answer candi-
date with the highest cosine similarity to the query
in terms of this vector difference. To put the results
into context, we also include two simple statisti-
cal baselines. First, we report the expected ran-
dom performance. Second, we use a method based
on each word pair’s PMI in a given corpus. We
then select the answer candidate with the highest

4Vector differences have been found to be the most robust
encoding method in the context of word analogies (Hakami
and Bollegala, 2017).

PMI as the prediction. Note that the query word
pair is completely ignored in this case. This PMI
score is the well-known word-pair association met-
ric introduced by Church and Hanks (1990) for
lexicographic purposes (specifically, collocation
extraction), which compares the probability of ob-
serving two words together with the probabilities of
observing them independently (chance). The PMI
scores in our experiments were computed using the
English Wikipedia with a fixed window size 10.

5.2 Results

Table 3 shows our main results. As far as the com-
parison among LMs is concerned, RoBERTa and
GPT-2 consistently outperform BERT. Among the
AP variants, smPPL achieves substantially better re-
sults than sPMI or sPPL in most cases. We also
observe that word embeddings perform surpris-
ingly well, with FastText and GloVe outperform-
ing BERT on most datasets, as well as GPT-2 and
RoBERTa with default hyperparameters. FastText
achieves the best overall accuracy on the Google
dataset, confirming that this dataset is particularly
well-suited to word embeddings (see Section 2.2).
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Model Score Tuned Accuracy

LM

BERT

sPPL
32.6

X 40.4*

sPMI
26.8

X 41.2*
smPPL X 42.8*

GPT-2

sPPL
41.4

X 56.2*

sPMI
34.7

X 56.8*
sPPL X 57.8*

RoBERTa

sPPL
49.6

X 55.8*

sPMI
42.5

X 54.0*
smPPL X 55.8*

GPT-3
Zero-shot 53.7
Few-shot X 65.2*

- LRA - 56.4

WE
FastText - 49.7
GloVe - 48.9

Word2vec - 42.8

Base
PMI - 23.3

Random - 20.0

Table 4: Accuracy results for the full SAT dataset. Re-
sults marked with * are not directly comparable as they
were tuned on full data (for our models) or use training
data (for GPT-3 few-shot). These results are included
to provide an upper bound only. Results in italics were
taken from the original papers.

In order to compare with published results from
prior work, we carried out an additional experiment
on the full SAT dataset (i.e., without splitting it into
validation and test). Table 4 shows the results. GPT-
3 (Brown et al., 2020) and LRA (Turney, 2005) are
added for comparison. Given the variability of the
results depending on the tuning procedure, we have
also reported results of configurations that were
tuned on the entire set, to provide an upper bound
on what is possible within the proposed unsuper-
vised setting. This result shows that even with
optimal hyperparameter values, LMs barely outper-
form the performance of the simpler LRA model.
GPT-3 similarly fails to outperform LRA in the
zero-shot setting.

6 Analysis

We now take a closer look into our results to investi-
gate parameter sensitivity, the correlation between
model performance and human difficulty levels,
and possible dataset artifacts. The following analy-
sis focuses on smPPL as it achieved the best results
among the LM based scoring functions.

Figure 3: Box plot of the relative improvement on
test accuracy in each dataset over all configurations of
smPPL grouped by gpos. Here valk corresponds to kth
positive permutation shown in Figure 2.

Parameter Sensitivity We found that optimal
values of the parameters α and β are highly depen-
dent on the dataset, while other parameters such
as the template type t vary across LMs. On the
other hand, as shown in Figure 3, the optimal per-
mutations of the templates are relatively consistent,
with the original ordering a : b :: c : d typically
achieving the best results. The results degrade most
for permutations that mix the two word pairs (e.g.
a : c :: b : d). In the appendix we include an abla-
tion study for the sensitivity and relevance of other
parameters and design choices.

Difficulty Levels To increase our understanding
of what makes an analogy problem difficult for
LMs, we compare the results for each difficulty
level.5 Recall from Section 3.2 that the U2 and
U4 datasets come from educational resources and
are split by difficulty level. Figure 4 shows the
results of all LMs (tuned setting), FastText and
the PMI baseline according to these difficulty lev-
els. Broadly speaking, we can see that instances
that are harder for humans are also harder for the
considered models. The analogies in the most
difficult levels are generally more abstract (e.g.
witness : testimony :: generator : electricity), or
contain obscure or infrequent words (e.g. grouch :
cantakerous :: palace : ornate).6

5For SAT, Google and BATS, there are no difficulty levels
available, but we show the results split by high-level categories
in the appendix. We also note that the number of candidates
in U2 and U4 vary from three to five, so results per difficulty
level are not fully comparable. However, they do reflect the
actual difficulty of the educational tests.

6In the appendix we include more examples with errors
made by RoBERTa in easy instances.
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Figure 4: Test accuracy in U2 and U4 per difficulty
level. LMs use smPPL with the best configuration tuned
in the corresponding validation sets.

Hypothesis Only Recently, several researchers
have found that standard NLP benchmarks, such
as SNLI (Bowman et al., 2015) for language in-
ference, contain several annotation artifacts that
makes the task simpler for automatic models (Po-
liak et al., 2018; Gururangan et al., 2018). One of
their most relevant findings is that models which do
not even consider the premise can reach high accu-
racy. More generally, these issues have been found
to be problematic in NLP models (Linzen, 2020)
and neural networks more generally (Geirhos et al.,
2020). According to the results shown in Table 3,
we already found that the PMI baseline achieved a
non-trivial performance, even outperforming BERT
in a few settings and datasets. This suggests that
several implausible negative examples are included
in the analogy datasets. As a further exploration of
such artifacts, here we analyse the analogue of a
hypothesis-only baseline. In particular, for this anal-
ysis, we masked the head or tail of the candidate
answer in all evaluation instances. Then, we test
the masked language models with the same AP con-

Mask SAT U2 U4 Google BATS

B
E

R
T full 41.8 44.7 41.2 88.8 67.9

head 31.8 28.1 34.3 72.0 62.4
tail 33.5 31.6 38.2 64.2 63.1

R
oB

E
R

Ta full 53.4 58.3 57.4 93.6 78.4
head 38.6 37.7 41.0 60.6 54.5
tail 35.6 37.3 40.5 55.8 64.2

Table 5: Accuracy results by masking head or tail of the
candidate answers. Results in the top row correspond
to the full model without masking.

figuration and tuning on these artificially-modified
datasets.As can be seen in Table 5, a non-trivial
performance is achieved for all datasets, which sug-
gests that the words from the answer pair tend to
be more similar to the words from the query than
the words from negative examples.

7 Conclusion

In this paper, we have presented an extensive anal-
ysis of the ability of language models to identify
analogies. To this end, we first compiled datasets
with psychometric analogy problems from educa-
tional resources, covering a wide range of diffi-
culty levels and topics. We also recast two stan-
dard benchmarks, the Google and BATS analogy
datasets, into the same style of problems. Then, we
proposed standard techniques to apply language
models to the unsupervised task of solving these
analogy problems. Our empirical results shed light
on the strengths and limitations of various models.
To directly answer the question posed in the title,
our conclusion is that language models can identify
analogies to a certain extent, but not all language
models are able to achieve a meaningful improve-
ment over word embeddings (whose limitations in
analogy tasks are well documented). On the other
hand, when carefully tuned, some language mod-
els are able to achieve state-of-the-art results. We
emphasize that results are highly sensitive to the
chosen hyperparameters (which define the scoring
function and the prompt among others). Further
research could focus on the selection of these opti-
mal hyperparameters, including automatizing the
search or generation of prompts, along the lines
of Bouraoui et al. (2020) and Shin et al. (2020),
respectively. Finally, clearly LMs might still be
able to learn to solve analogy tasks when given
appropriate training data, which is an aspect that
we leave for future work.
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A Experimental Details

In our grid search to find the optimal configura-
tion for each dataset and language model, each
parameter was selected within the values shown in
Table 6. As the coefficient of marginal likelihood
α, αh, αt, we considered negative values as well as
we hypothesized that the marginal likelihood could
be beneficial for LMs as a way to leverage lexical
knowledge of the head and tail words.

Additionally, Table 7 shows the set of custom
templates (or prompts) used in our experiments. Fi-
nally, Tables 8, 9, and 10 include the best configura-
tion based on each validation set in for sPMI, smPPL

and the hypothesis-only baseline, respectively.

Parameter Value

α -0.4, -0.2, 0, 0.2, 0.4
αh -0.4, -0.2, 0, 0.2, 0.4
αt -0.4, -0.2, 0, 0.2, 0.4
β 0, 0.2, 0.4, 0.6, 0.8, 1.0
g max,mean,min,val1,val2
gpos max,mean,min,val1,...,val8
gneg max,mean,min,val1,...,val16

Table 6: Hyperparameters with each search space.

Type Template

to-as [w1] is to [w2] as [w3] is to [w4]
to-what [w1] is to [w2] What [w3] is to [w4]

rel-same
The relation between [w1] and [w2]
is the same as the relation between
[w3] and [w4].

what-to what [w1] is to [w2], [w3] is to [w4]

she-as
She explained to him that [w1] is
to [w2] as [w3] is to [w4]

as-what
As I explained earlier, what [w1] is
to [w2] is essentially the same as
what [w3] is to [w4].

Table 7: Custom templates used in our experiments.
Each has four placeholders [w1, ..., w4] and they are ful-
filled by words from a relation pair.

https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/P19-1452
https://doi.org/10.18653/v1/W19-2304
https://doi.org/10.18653/v1/W19-2304
https://doi.org/10.18653/v1/W19-2304
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Data g α gpos gneg β t

B
E

R
T

SAT val2 -0.4 val5 val12 0.4 what-to
U2 val2 -0.4 mean mean 0.6 what-to
U4 val1 0.4 max val7 1.0 rel-same
Google val1 -0.4 val1 val11 0.4 she-as
BATS val1 -0.4 val11 val1 0.4 she-as

G
PT

-2

SAT val2 -0.4 val3 val1 0.6 rel-same
U2 val2 0.0 val4 val4 0.6 rel-same
U4 val2 -0.4 mean mean 0.6 rel-same
Google val1 0.0 mean val11 0.4 as-what
BATS val1 -0.4 val1 val6 0.4 rel-same

R
oB

E
R

Ta

SAT min -0.4 min val7 0.2 as-what
U2 min 0.4 mean val4 0.6 what-to
U4 val2 0.0 mean val4 0.8 to-as
Google val1 -0.4 val1 val6 0.4 what-to
BATS max -0.4 mean val11 0.6 what-to

Table 8: The best configuration of sPMI score.

Data αh αt gpos gneg β t

B
E

R
T

SAT -0.2 -0.4 val5 val5 0.2 what-to
U2 0.0 -0.2 mean mean 0.8 she-as
U4 -0.2 0.4 val7 min 0.4 to-as
Google 0.4 -0.2 val5 val12 0.6 she-as
BATS 0.0 0.0 val8 min 0.4 what-to

G
PT

-2

SAT -0.4 0.2 val3 val1 0.8 rel-same
U2 -0.2 0.2 mean mean 0.8 as-what
U4 -0.2 0.2 mean mean 0.8 rel-same
Google -0.2 -0.4 mean mean 0.8 rel-same
BATS 0.4 -0.4 val1 val5 0.8 rel-same

R
oB

E
R

Ta

SAT 0.2 0.2 val5 val11 0.2 as-what
U2 0.4 0.4 val1 val4 0.4 what-to
U4 0.2 0.2 val1 val1 0.4 as-what
Google 0.2 0.2 val1 val6 0.2 what-to
BATS 0.2 -0.2 val5 val11 0.4 what-to

Table 9: The best configuration of smPPL score.

B Additional Ablation Results

We show a few more complementary results to our
main experiments.

B.1 Alternative Scoring Functions

As alternative scoring functions for LM, we have
tried two other scores: PMI score based on masked
token prediction (Davison et al., 2019) (Mask PMI)
and cosine similarity between the embedding dif-
ference of a relation pair similar to what used in
word-embedding models. For embedding method,
we give a prompted sentence to LM to get the last
layer’s hidden state for each word in the given pair
and we take the difference between them, which we
regard as the embedding vector for the pair. Finally
we pick up the most similar candidate in terms of
the cosine similarity with the query embedding. Ta-

Mask Data gpos t

B
E

R
T

head

SAT val5 to-what
U2 val5 to-as
U4 mean to-as
Google val5 she-as
BATS val5 to-as

tail

SAT val3 what-to
U2 val7 to-what
U4 val4 rel-same
Google val7 as-what
BATS val7 to-as

R
oB

E
R

Ta

head

SAT val5 as-what
U2 val5 rel-same
U4 val7 she-as
Google val5 what-to
BATS val5 she-as

tail

SAT mean what-to
U2 val7 rel-same
U4 mean what-to
Google val7 as-what
BATS val7 what-to

Table 10: The best configurations for hypothesis-only
scores.

ble 11 shows the test accuracy on each dataset. As
one can see, AP scores outperform other methods
with a great margin.

Score SAT U2 U4 Google BATS

B
E

R
T

embedding 24.0 22.4 26.6 28.2 28.3
Mask PMI 25.2 23.3 31.5 61.2 46.2
sPMI 40.4 42.5 27.8 87.0 68.1
smPPL 41.8 44.7 41.2 88.8 67.9

R
oB

E
R

Ta

embedding 40.4 42.5 27.8 87.0 68.1
Mask PMI 43.0 36.8 39.4 69.2 58.3
sPMI 51.3 49.1 38.7 92.4 77.2
smPPL 53.4 58.3 57.4 93.6 78.4

Table 11: Test accuracy tuned on each validation set.

B.2 Parameter Sensitivity: template type t
Figure 5 shows the box plot of relative improve-
ment across all datasets grouped by t and the re-
sults indicate that there is a mild trend that certain
templates tend to perform well, but not significant
universal selectivity can be found across datasets.

B.3 Parameter Sensitivity: aggregation
method gneg

Figure 6 shows the box plot of relative improve-
ment across all datasets grouped by gneg. Unlike
gpos we show in Figure 3, they do not give a strong
signals over datasets.
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Figure 5: Box plot of the relative improvement on
test accuracy in each dataset over all configurations of
smPPL grouped by template type.

Figure 6: Box plot of the relative improvement on
test accuracy in each dataset over all configurations of
smPPL grouped by gneg. Here valk corresponds to kth
positive permutation shown in Figure 2.

B.4 Relation Types in BATS/Google
Figure 7 shows the results of different language
models with the smPPL scoring function on the dif-
ferent categories of the BATS and Google datasets.

C Error Analysis

Table 12 shows all examples from the U2 dataset
of the easiest difficuly (i.e. grade 4), which were
misclassified by RoBERTa, with smPPL tuned on
the validation set. We can see a few typical issues
with word embeddings and language models. For
instance, in the first example, the model confuses
the antonym pair right:wrong with synonymy. In
the second example, we have that someone who is
poor lacks money, while someone who is hungry
lacks food. However, the selected candidate pair
is hungy:water rather than hungry:food, which is

Figure 7: BATS (top) and Google (bottom) results split
by high-level categories.

presumably chosen because water is assumed to
be a near-synonym of food. In the third example
(wrench:tool), the hypnernymy relation is confused
with a meronymy relation in the selected candidate
tree:forest. In the last three examples, the model
has selected answers which seem reasonable. In the
fourth example, beautiful:pretty, terrible:bad and
brave:valiant can all be considered to be synonym
pairs. In the fifth example, vehicle:transport is
clearly the correct answer, but the pair song:sing
is nonetheless relationally similar to shield:protect.
In the last example, we can think of being sad as
an emotional state, like being sick is a health state,
which provides some justification for the predicted
answer. On the other hand, the gold answer is based
on the argument that someone who is sick lacks
health like someone who is scared lacks courage.
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Query Candidates

hilarious:funny right:wrong, hard:boring, nice:crazy,
great:good

poor:money tired:energy, angry:emotion, hot:ice,
hungry:water

wrench:tool cow:milk, radio:sound, tree:forest,
carrot:vegetable

beautiful:pretty terrible:bad, brave:valiant, new:old,
tall:skinny

shield:protect computer:talk, vehicle:transport,
pencil:make, song:sing

sick:health sad:emotion, tall:intelligence,
scared:courage, smart:energy

Table 12: Model prediction examples from RoBERTa
with smPPL tuned on the validation set. Gold answers
are shown in bold, while the model predictions are un-
derlined.


