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Abstract

How does the input segmentation of pretrained
language models (PLMs) affect their interpre-
tations of complex words? We present the first
study investigating this question, taking BERT
as the example PLM and focusing on its se-
mantic representations of English derivatives.
We show that PLMs can be interpreted as se-
rial dual-route models, i.e., the meanings of
complex words are either stored or else need
to be computed from the subwords, which im-
plies that maximally meaningful input tokens
should allow for the best generalization on new
words. This hypothesis is confirmed by a se-
ries of semantic probing tasks on which Del-
BERT (Derivation leveraging BERT), a model
with derivational input segmentation, substan-
tially outperforms BERT with WordPiece seg-
mentation. Our results suggest that the gen-
eralization capabilities of PLMs could be fur-
ther improved if a morphologically-informed
vocabulary of input tokens were used.

1 Introduction

Pretrained language models (PLMs) such as BERT
(Devlin et al., 2019), GPT-2 (Radford et al., 2019),
XLNet (Yang et al., 2019), ELECTRA (Clark et al.,
2020), and T5 (Raffel et al., 2020) have yielded
substantial improvements on a range of NLP tasks.
What linguistic properties do they have? Various
studies have tried to illuminate this question, with a
focus on syntax (Hewitt and Manning, 2019; Jawa-
har et al., 2019) and semantics (Ethayarajh, 2019;
Ettinger, 2020; Vulić et al., 2020).

One common characteristic of PLMs is their in-
put segmentation: PLMs are based on fixed-size
vocabularies of words and subwords that are gen-
erated by compression algorithms such as byte-
pair encoding (Gage, 1994; Sennrich et al., 2016)
and WordPiece (Schuster and Nakajima, 2012; Wu
et al., 2016). The segmentations produced by these
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Figure 1: Basic experimental setup. BERT with
WordPiece segmentation (sw) mixes part of the stem
bizarre with the prefix super, creating an associa-
tion with superb (left panel). DelBERT with deriva-
tional segmentation (sd), on the other hand, separates
prefix and stem by a hyphen (right panel). The two
likelihoods are averaged across 20 models trained with
different random seeds. The average likelihood of the
true class is considerably higher with DelBERT than
with BERT. While superbizarre has negative sen-
timent, applausive is an example of a complex
word with positive sentiment.

algorithms are linguistically questionable at times
(Church, 2020), which has been shown to worsen
performance on certain downstream tasks (Bostrom
and Durrett, 2020; Hofmann et al., 2020a). How-
ever, the wider implications of these findings, par-
ticularly with regard to the generalization capabili-
ties of PLMs, are still poorly understood.

Here, we address a central aspect of this issue,
namely how the input segmentation affects the se-
mantic representations of PLMs, taking BERT as
the example PLM. We focus on derivationally com-
plex words such as superbizarre since they
exhibit systematic patterns on the lexical level, pro-
viding an ideal testbed for linguistic generaliza-
tion. At the same time, the fact that low-frequency
and out-of-vocabulary words are often derivation-
ally complex (Baayen and Lieber, 1991) makes our
work relevant in practical settings, especially when
many one-word expressions are involved, e.g., in
query processing (Kacprzak et al., 2017).
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The topic of this paper is related to the more
fundamental question of how PLMs represent the
meaning of complex words in the first place. So
far, most studies have focused on methods of repre-
sentation extraction, using ad-hoc heuristics such
as averaging the subword embeddings (Pinter et al.,
2020; Sia et al., 2020; Vulić et al., 2020) or taking
the first subword embedding (Devlin et al., 2019;
Heinzerling and Strube, 2019; Martin et al., 2020).
While not resolving the issue, we lay the theoretical
groundwork for more systematic analyses by show-
ing that PLMs can be regarded as serial dual-route
models (Caramazza et al., 1988), i.e., the meanings
of complex words are either stored or else need to
be computed from the subwords.

Contributions. We present the first study ex-
amining how the input segmentation of PLMs,
specifically BERT, affects their interpretations
of derivationally complex English words. We
show that PLMs can be interpreted as serial dual-
route models, which implies that maximally mean-
ingful input tokens should allow for the best
generalization on new words. This hypothesis
is confirmed by a series of semantic probing
tasks on which derivational segmentation substan-
tially outperforms BERT’s WordPiece segmenta-
tion. This suggests that the generalization ca-
pabilities of PLMs could be further improved if
a morphologically-informed vocabulary of input
tokens were used. We also publish three large
datasets of derivationally complex words with cor-
responding semantic properties.1

2 How Are Complex Words Processed?

2.1 Complex Words in Psycholinguistics

The question of how complex words are processed
has been at the center of psycholinguistic research
over the last decades (see Leminen et al. (2019)
for a recent review). Two basic processing mech-
anisms have been proposed: storage, where the
meaning of complex words is listed in the mental
lexicon (Manelis and Tharp, 1977; Butterworth,
1983; Feldman and Fowler, 1987; Bybee, 1988;
Stemberger, 1994; Bybee, 1995; Bertram et al.,
2000a), and computation, where the meaning of
complex words is inferred based on the meaning
of stem and affixes (Taft and Forster, 1975; Taft,
1979, 1981, 1988, 1991, 1994; Rastle et al., 2004;
Taft, 2004; Rastle and Davis, 2008).

1We make our code and data available at https://
github.com/valentinhofmann/superbizarre.

In contrasting with single-route frameworks,
dual-route models allow for a combination of stor-
age and computation. Dual-route models are fur-
ther classified by whether they regard the processes
of retrieving meaning from the mental lexicon and
computing meaning based on stem and affixes as
parallel, i.e., both mechanisms are always activated
(Frauenfelder and Schreuder, 1992; Schreuder and
Baayen, 1995; Baayen et al., 1997, 2000; Bertram
et al., 2000b; New et al., 2004; Kuperman et al.,
2008, 2009), or serial, i.e., the computation-based
mechanism is only activated when the storage-
based one fails (Laudanna and Burani, 1985; Bu-
rani and Caramazza, 1987; Caramazza et al., 1988;
Burani and Laudanna, 1992; Laudanna and Burani,
1995; Alegre and Gordon, 1999).

Outside the taxonomy presented so far are recent
models that assume multiple levels of representa-
tion as well as various forms of interaction between
them (Rácz et al., 2015; Needle and Pierrehumbert,
2018). In these models, sufficiently frequent com-
plex words are stored together with representations
that include their internal structure. Complex-word
processing is driven by analogical processes over
the mental lexicon (Rácz et al., 2020).

2.2 Complex Words in NLP and PLMs

Most models of word meaning proposed in NLP
can be roughly assigned to either the single-route
or dual-route approach. Word embeddings that
represent complex words as whole-word vectors
(Deerwester et al., 1990; Mikolov et al., 2013a,b;
Pennington et al., 2014) can be seen as single-route
storage models. Word embeddings that represent
complex words as a function of subword or mor-
pheme vectors (Schütze, 1992; Luong et al., 2013)
can be seen as single-route computation models.
Finally, word embeddings that represent complex
words as a function of subword or morpheme vec-
tors as well as whole-word vectors (Botha and Blun-
som, 2014; Qiu et al., 2014; Bhatia et al., 2016;
Bojanowski et al., 2017; Athiwaratkun et al., 2018;
Salle and Villavicencio, 2018) are most closely re-
lated to parallel dual-route approaches.

Where are PLMs to be located in this taxonomy?
PLMs represent many complex words as whole-
word vectors (which are fully stored). Similarly to
how character-based models represent word mean-
ing (Kim et al., 2016; Adel et al., 2017), they can
also store the meaning of frequent complex words
that are segmented into subwords, i.e., frequent sub-

https://github.com/valentinhofmann/superbizarre
https://github.com/valentinhofmann/superbizarre
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word collocations, in their model weights. When
the complex-word meaning is neither stored as a
whole-word vector nor in the model weights, PLMs
compute the meaning as a compositional function
of the subwords. Conceptually, PLMs can thus be
interpreted as serial dual-route models. While the
parallelism has not been observed before, it follows
logically from the structure of PLMs. The key goal
of this paper is to show that the implications of this
observation are borne out empirically.

As a concrete example, consider the com-
plex words stabilize, realize, finalize,
mobilize, tribalize, and templatize,
which are all formed by adding the verbal suf-
fix ize to a nominal or adjectival stem. Tak-
ing BERT, specifically BERTBASE (uncased) (De-
vlin et al., 2019), as the example PLM, the words
stabilize and realize have individual to-
kens in the input vocabulary and are hence as-
sociated with whole-word vectors storing their
meanings, including highly lexicalized meanings
as in the case of realize. By contrast, the
words finalize and mobilize are segmented
into final, ##ize and mob, ##ili, ##ze,
which entails that their meanings are not stored
as whole-word vectors. However, both words
have relatively high absolute frequencies of 2,540
(finalize) and 6,904 (mobilize) in the En-
glish Wikipedia, the main dataset used to pre-
train BERT (Devlin et al., 2019), which means
that BERT can store their meanings in its model
weights during pretraining.2 Notice this is even pos-
sible in the case of highly lexicalized meanings as
for mobilize. Finally, the words tribalize
and templatize are segmented into tribal,
##ize and te, ##mp, ##lat, ##ize, but as op-
posed to finalize and mobilize they do not
occur in the English Wikipedia. As a result, BERT
cannot store their meanings in its model weights
during pretraining and needs to compute them from
the meanings of the subwords.

Seeing PLMs as serial dual-route models allows
for a more nuanced view on the central research
question of this paper: in order to investigate se-
mantic generalization we need to investigate the
representations of those complex words that acti-
vate the computation-based route. The words that
do so are the ones whose meaning is neither stored
as a whole-word vector nor in the model weights

2Previous research suggests that such lexical knowledge is
stored in the lower layers of BERT (Vulić et al., 2020).

and hence needs to be computed compositionally
as a function of the subwords (tribalize and
templatize in the discussed examples). We hy-
pothesize that the morphological validity of the
segmentation affects the representational quality
in these cases, and that the best generalization is
achieved by maximally meaningful tokens. It is
crucial to note this does not imply that the tokens
have to be morphemes, but the segmentation bound-
aries need to coincide with morphological bound-
aries, i.e., groups of morphemes (e.g., tribal
in the segmentation of tribalize) are also
possible.3 For tribalize and templatize,
we therefore expect the segmentation tribal,
##ize (morphologically valid since all segmenta-
tion boundaries are morpheme boundaries) to result
in a representation of higher quality than the seg-
mentation te, ##mp, ##lat, ##ize (morpho-
logically invalid since the boundaries between te,
##mp, and ##lat are not morpheme boundaries).
On the other hand, complex words whose mean-
ings are stored in the model weights (finalize
and mobilize in the discussed examples) are
expected to be affected by the segmentation to a
much lesser extent: if the meaning of a complex
word is stored in the model weights, it should mat-
ter less whether the specific segmentation activat-
ing that meaning is morphologically valid (final,
##ize) or not (mob, ##ili, ##ze).4

3 Experiments

3.1 Setup

Analyzing the impact of different segmentations on
BERT’s semantic generalization capabilities is not
straightforward since it is not clear a priori how to
measure the quality of representations. Here, we
devise a novel lexical-semantic probing task: we
use BERT’s representations for complex words to
predict semantic dimensions, specifically sentiment
and topicality (see Figure 1). For sentiment, given
the example complex word superbizarre, the
task is to predict that its sentiment is negative.
For topicality, given the example complex word
isotopize, the task is to predict that it is used
in physics. We confine ourselves to binary predic-

3This is in line with substantial evidence from linguistics
showing that frequent groups of morphemes can be treated as
semantic wholes (Stump, 2017, 2019).

4We expect the distinction between storage and computa-
tion of complex-word meaning for PLMs to be a continuum.
While the findings presented here are consistent with this view,
we defer a more in-depth analysis to future work.
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Class 1 Class 2

Dataset Dimension |D| Class Examples Class Example

Amazon Sentiment 239,727 neg overpriced, crappy pos megafavorite, applausive
ArXiv Topicality 97,410 phys semithermal, ozoneless cs autoencoded, rankable
Reddit Topicality 85,362 ent supervampires, spoilerful dis antirussian, immigrationism

Table 1: Dataset characteristics. The table provides information about the datasets such as the relevant semantic
dimensions with their classes and example complex words. |D|: number of complex words; neg: negative; pos:
positive; phys: physics; cs: computer science; ent: entertainment; dis: discussion.

tion, i.e., the probed semantic dimensions always
consist of two classes (e.g., positive and negative).
The extent to which a segmentation supports a so-
lution of this task is taken as an indicator of its
representational quality.

More formally, let D be a dataset consisting of
complex words x and corresponding classes y that
instantiate a certain semantic dimension (e.g., sen-
timent). We denote with s(x) = (t1, . . . , tk) the
segmentation of x into a sequence of k subwords.
We ask how s impacts the capability of BERT to
predict y, i.e., how p(y|(s(x)), the likelihood of the
true semantic class y given a certain segmentation
of x, depends on different choices for s. The two
segmentation methods we compare in this study are
BERT’s standard WordPiece segmentation (Schus-
ter and Nakajima, 2012; Wu et al., 2016), sw, and
a derivational segmentation that segments complex
words into stems and affixes, sd.

3.2 Data

Since existing datasets do not allow us to conduct
experiments following the described setup, we cre-
ate new datasets in a weakly-supervised fashion
that is conceptually similar to the method proposed
by Mintz et al. (2009): we employ large datasets
annotated for sentiment or topicality, extract deriva-
tionally complex words, and use the dataset labels
to establish their semantic classes.

For determining and segmenting derivationally
complex words, we use the algorithm introduced by
Hofmann et al. (2020b), which takes as input a set
of prefixes, suffixes, and stems and checks for each
word in the data whether it can be derived from a
stem using a combination of prefixes and suffixes.5

The algorithm is sensitive to morpho-orthographic
rules of English (Plag, 2003), e.g., when the suf-

5The distinction between inflectionally and derivationally
complex words is notoriously fuzzy (Haspelmath and Sims,
2010; ten Hacken, 2014). We try to exclude inflection as far as
possible (e.g., by removing problematic affixes such as ing)
but are aware that a clear separation does not exist.

fix ize is removed from isotopize, the result
is isotope, not isotop. We follow Hofmann
et al. (2020a) in using the prefixes, suffixes, and
stems in BERT’s WordPiece vocabulary as input to
the algorithm. This means that all tokens used by
the derivational segmentation are in principle also
available to the WordPiece segmentation, i.e., the
difference between sw and sd does not lie in the
vocabulary per se but rather in the way the vocab-
ulary is used. See Appendix A.1 for details about
the derivational segmentation.

To get the semantic classes, we compute for each
complex word which fraction of texts containing
the word belongs to one of two predefined sets
of dataset labels (e.g., reviews with four and five
stars for positive sentiment) and rank all words
accordingly. We then take the first and third tertiles
of complex words as representing the two classes.
We randomly split the words into 60% training,
20% development, and 20% test.

In the following, we describe the characteristics
of the three datasets in greater depth. Table 1 pro-
vides summary statistics. See Appendix A.2 for
details about data preprocessing.

Amazon. Amazon is an online e-commerce plat-
form. A large dataset of Amazon reviews has been
made publicly available (Ni et al., 2019).6 We ex-
tract derivationally complex words from reviews
with one or two (neg) as well as four or five stars
(pos), discarding three-star reviews for a clearer
separation (Yang and Eisenstein, 2017).

ArXiv. ArXiv is an open-access distribution ser-
vice for scientific articles. Recently, a dataset of all
papers published on ArXiv with associated meta-
data has been released.7 For this study, we extract
all articles from physics (phys) and computer sci-
ence (cs), which we identify using ArXiv’s subject
classification. We choose physics and computer

6https://nijianmo.github.io/amazon/
index.html

7https://www.kaggle.com/
Cornell-University/arxiv

https://nijianmo.github.io/amazon/index.html
https://nijianmo.github.io/amazon/index.html
https://www.kaggle.com/Cornell-University/arxiv
https://www.kaggle.com/Cornell-University/arxiv
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Amazon ArXiv Reddit

Model Dev Test Dev Test Dev Test

DelBERT .635 ± .001 .639 ± .002 .731 ± .001 .723 ± .001 .696 ± .001 .701 ± .001
BERT .619 ± .001 .624 ± .001 .704 ± .001 .700 ± .002 .664 ± .001 .664 ± .003

Stem .572 ± .003 .573 ± .003 .705 ± .001 .697 ± .001 .679 ± .001 .684 ± .002
Affixes .536 ± .008 .539 ± .008 .605 ± .001 .603 ± .002 .596 ± .001 .596 ± .001

Table 2: Results. The table shows the average performance as well as standard deviation (F1) of 20 models trained
with different random seeds. Best result per column highlighted in gray, second-best in light gray.

Figure 2: Convergence analysis. The upper panels show the distributions of the number of epochs after which
the models reach their maximum validation performance. The lower panels show the trajectories of the average
validation performance (F1) across epochs. The plots are based on 20 models trained with different random seeds.
The convergence statistics for DelBERT and BERT are directly comparable because the optimal learning rate is
the same (see Appendix A.3). DelBERT models reach their performance peak faster than BERT models.

science since we expect large topical distances
for these classes (compared to alternatives such
as mathematics and computer science).

Reddit. Reddit is a social media platform host-
ing discussions about various topics. It is divided
into smaller communities, so-called subreddits,
which have been shown to be a rich source of
derivationally complex words (Hofmann et al.,
2020c). Hofmann et al. (2020a) have published a
dataset of derivatives found on Reddit annotated
with the subreddits in which they occur.8 Inspired
by a content-based subreddit categorization
scheme,9 we define two groups of subreddits,
an entertainment set (ent) consisting of the
subreddits anime, DestinyTheGame, funny,
Games, gaming, leagueoflegends,
movies, Music, pics, and videos, as well as
a discussion set (dis) consisting of the subred-

8https://github.com/valentinhofmann/
dagobert

9https://www.reddit.com/r/
TheoryOfReddit/comments/1f7hqc/the_200_
most_active_subreddits_categorized_by

dits askscience, atheism, conspiracy,
news, Libertarian, politics, science,
technology, TwoXChromosomes, and
worldnews, and extract all derivationally
complex words occurring in them. We again
expect large topical distances for these classes.

Given that the automatic creation of the datasets
necessarily introduces noise, we measure human
performance on 100 randomly sampled words per
dataset, which ranges between 71% (Amazon) and
78% (ArXiv). These values can thus be seen as an
upper bound on performance.

3.3 Models

We train two main models on each binary classi-
fication task: BERT with the standard WordPiece
segmentation (sw) and BERT using the derivational
segmentation (sd), a model that we refer to as Del-
BERT (Derivation leveraging BERT). BERT and
DelBERT are identical except for the way in which
they use the vocabulary of input tokens (but the
vocabulary itself is also identical for both models).

https://github.com/valentinhofmann/dagobert
https://github.com/valentinhofmann/dagobert
https://www.reddit.com/r/TheoryOfReddit/comments/1f7hqc/the_200_most_active_subreddits_categorized_by
https://www.reddit.com/r/TheoryOfReddit/comments/1f7hqc/the_200_most_active_subreddits_categorized_by
https://www.reddit.com/r/TheoryOfReddit/comments/1f7hqc/the_200_most_active_subreddits_categorized_by
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Figure 3: Frequency analysis. The plots show the average performance (accuracy) of 20 BERT and DelBERT
models trained with different random seeds for complex words of low (f ≤ 5), mid (5 < f ≤ 500), and high
(f > 500) frequency. On all three datasets, BERT performs similarly or better than DelBERT for complex words
of high frequency but worse for complex words of low and mid frequency.

The specific BERT variant we use is BERTBASE
(uncased) (Devlin et al., 2019). For the derivational
segmentation, we follow previous work by Hof-
mann et al. (2020a) in separating stem and prefixes
by a hyphen. We further follow Casanueva et al.
(2020) and Vulić et al. (2020) in mean-pooling the
output representations for all subwords, excluding
BERT’s special tokens. The mean-pooled repre-
sentation is then fed into a two-layer feed-forward
network for classification. To examine the rela-
tive importance of different types of morphological
units, we train two additional models in which we
ablate information about stems and affixes, i.e., we
represent stems and affixes by the same randomly
chosen input embedding.10

We finetune BERT, DelBERT, and the two ab-
lated models on the three datasets using 20 differ-
ent random seeds. We choose F1 as the evaluation
measure. See Appendix A.3 for details about im-
plementation and hyperparameters.

3.4 Results

DelBERT (sd) outperforms BERT (sw) by a large
margin on all three datasets (Table 2). It is inter-
esting to notice that the performance difference is
larger for ArXiv and Reddit than for Amazon, indi-
cating that the gains in representational quality are
particularly large for topicality.

What is it that leads to DelBERT’s increased per-
formance? The ablation study shows that models
using only stem information already achieve rel-
atively high performance and are on par or even
better than the BERT models on ArXiv and Red-
dit. However, the DelBERT models still perform
substantially better than the stem models on all
three datasets. The gap is particularly pronounced

10For affix ablation, we use two different input embeddings
for prefixes and suffixes.

for Amazon, which indicates that the interaction
between the meaning of stem and affixes is more
complex for sentiment than for topicality. This
makes sense from a linguistic point of view: while
stems tend to be good cues for the topical associa-
tions of a complex word, sentiment often depends
on semantic interactions between stems and affixes.
For example, while the prefix un turns the senti-
ment of amusing negative, it turns the sentiment
of biased positive. Such effects involving nega-
tion and antonymy are known to be challenging for
PLMs (Ettinger, 2020; Kassner and Schütze, 2020)
and might be one of the reasons for the generally
lower performance on Amazon.11 The performance
of models using only affixes is much lower.

3.5 Quantitative Analysis

To further examine how BERT (sw) and DelBERT
(sd) differ in the way they infer the meaning of
complex words, we perform a convergence analy-
sis. We find that the DelBERT models reach their
peak in performance faster than the BERT models
(Figure 2). This is in line with our interpretation of
PLMs as serial dual-route models (see Section 2.2):
while DelBERT operates on morphological units
and can combine the subword meanings to infer the
meanings of complex words, BERT’s subwords do
not necessarily carry lexical meanings, and hence
the derivational patterns need to be stored by adapt-
ing the model weights. This is an additional burden,
leading to longer convergence times and substan-
tially worse overall performance.

Our hypothesis that PLMs can use two routes

11Another reason for the lower performance on sentiment is
that the datasets were created automatically (see Section 3.2),
and hence many complex words do not directly carry infor-
mation about sentiment or topicality. The density of such
words is higher for sentiment than topicality since the topic of
discussion affects the likelihoods of most content words.
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(a) Topicality prediction

(b) Sentiment prediction

Figure 4: Accuracy increase of DelBERT compared to BERT for prefixes. The plots show the accuracy increase
as a function of the proportion of morphologically incorrect WordPiece segmentations (topicality prediction) and
as ordered boxplot pairs centered on the median accuracy of BERT (sentiment prediction). Negative values mean
that the DelBERT models have a lower accuracy than the BERT models for a certain prefix.

to process complex words (storage in weights and
compositional computation based on input embed-
dings), and that the second route is blocked when
the input segmentation is not morphological, sug-
gests the existence of frequency effects: BERT
might have seen frequent complex words multiple
times during pretraining and stored their meaning
in the model weights. This is less likely for in-
frequent complex words, making the capability to
compositionally infer the meaning (i.e., the compu-
tation route) more important. We therefore expect
the difference in performance between DelBERT
(which should have an advantage on the computa-
tion route) and BERT to be larger for infrequent
words. To test this hypothesis, we split the complex
words of each dataset into three bins of low (f ≤ 5),
mid (5 < f ≤ 500), and high (f > 500) absolute
frequencies, and analyze how the performance of
BERT and DelBERT differs on the three bins. For
this and all subsequent analyses, we merge devel-
opment and test sets and use accuracy instead of
F1 since it makes comparisons across small sets
of data points more interpretable. The results are
in line with our hypothesis (Figure 3): BERT per-
forms worse than DelBERT on complex words of
low and mid frequencies but achieves very similar
(ArXiv, Reddit) or even better (Amazon) accuracies

on high-frequency complex words. These results
strongly suggest that two different mechanisms are
involved, and that BERT has a disadvantage for
complex words that do not have a high frequency.
At the same time, the slight advantage of BERT on
high-frequency complex words indicates that it has
high-quality representations of these words in its
weights, which DelBERT cannot exploit since it
uses a different segmentation.

We are further interested to see whether the af-
fix type has an impact on the relative performance
of BERT and DelBERT. To examine this question,
we measure the accuracy increase of DelBERT as
compared to BERT for individual affixes, averaged
across datasets and random seeds. We find that
the increase is almost twice as large for prefixes
(µ = .023, σ = .017) than for suffixes (µ = .013,
σ = .016), a difference that is shown to be sig-
nificant by a two-tailed Welch’s t-test (d = .642,
t(82.97) = 2.94, p < .01).12 Why is having access
to the correct morphological segmentation more
advantageous for prefixed than suffixed complex
words? We argue that there are two key factors at
play. First, the WordPiece tokenization sometimes
generates the morphologically correct segmenta-

12We use a Welch’s instead of Student’s t-test since it does
not assume that the distributions have equal variance.



3601

Dataset x y sd(x) µp sw(x) µp

Amazon
applausive pos applause, ##ive .847 app, ##laus, ##ive .029
superannoying neg super, -, annoying .967 super, ##ann, ##oy, ##ing .278
overseasoned neg over, -, seasoned .956 overseas, ##oned .219

ArXiv
isotopize phy isotope, ##ize .985 iso, ##top, ##ize .039
antimicrosoft cs anti, -, microsoft .936 anti, ##mic, ##ros, ##oft .013
inkinetic phy in, -, kinetic .983 ink, ##ine, ##tic .035

Reddit
prematuration dis premature, ##ation .848 prem, ##at, ##uration .089
nonmultiplayer ent non, -, multiplayer .950 non, ##mu, ##lt, ##ip, ##layer .216
promosque dis pro, -, mosque .961 promo, ##sque .066

Table 3: Error analysis. The table gives example complex words that are consistently classified correctly by
DelBERT and incorrectly by BERT. x: complex word; y: semantic class; sd(x): derivational segmentation; µp:
average likelihood of true semantic class across 20 models trained with different random seeds; sw(x): WordPiece
segmentation. For the complex words shown, µp is considerably higher with DelBERT than with BERT.

tion, but it does so with different frequencies for
prefixes and suffixes. To detect morphologically in-
correct segmentations, we check whether the Word-
Piece segmentation keeps the stem intact, which is
in line with our definition of morphological validity
(Section 2.2) and provides a conservative estimate
of the error rate. For prefixes, the WordPiece to-
kenization is seldom correct (average error rate:
µ = .903, σ = .042), whereas for suffixes it is
correct about half the time (µ = .503, σ = .213).
Hence, DelBERT gains a greater advantage for pre-
fixed words. Second, prefixes and suffixes have
different linguistic properties that affect the predic-
tion task in unequal ways. Specifically, whereas
suffixes have both syntactic and semantic functions,
prefixes have an exclusively semantic function and
always add lexical-semantic meaning to the stem
(Giraudo and Grainger, 2003; Beyersmann et al.,
2015). As a result, cases such as unamusing
where the affix boundary is a decisive factor for the
prediction task are more likely to occur with pre-
fixes than suffixes, thus increasing the importance
of a morphologically correct segmentation.13

Given the differences between sentiment and
topicality prediction, we expect variations in the
relative importance of the two identified factors:
(i) in the case of sentiment the advantage of sd
should be maximal for affixes directly affecting
sentiment; (ii) in the case of topicality its advan-
tage should be the larger the higher the proportion
of incorrect segmentations for a particular affix,
and hence the more frequent the cases where Del-
BERT has access to the stem while BERT does
not. To test this hypothesis, we focus on pre-

13Notice that there are suffixes with similar semantic effects
(e.g., less), but they are less numerous.

dictions for prefixed complex words. For each
dataset, we measure for individual prefixes the ac-
curacy increase of the DelBERT models as com-
pared to the BERT models, averaged across random
seeds, as well as the proportion of morphologi-
cally incorrect segmentations produced by Word-
Piece. We then calculate linear regressions to pre-
dict the accuracy increases based on the propor-
tions of incorrect segmentations. This analysis
shows a significant positive correlation for ArXiv
(R2 = .304, F (1, 41) = 17.92, p < 0.001) and
Reddit (R2 = .270, F (1, 40) = 14.80, p < 0.001)
but not for Amazon (R2 = .019, F (1, 41) = .80,
p = .375), which is in line with our expectations
(Figure 4a). Furthermore, ranking the prefixes by
accuracy increase for Amazon confirms that the
most pronounced differences are found for prefixes
that can change the sentiment such as non, anti,
mal, and pseudo (Figure 4b).

3.6 Qualitative Analysis
Besides quantitative factors, we are interested in
identifying qualitative contexts in which DelBERT
has a particular advantage compared to BERT. To
do so, we filter the datasets for complex words that
are consistently classified correctly by DelBERT
and incorrectly by BERT. Specifically, we compute
for each word the average likelihood of the true
semantic class across DelBERT and BERT mod-
els, respectively, and rank words according to the
likelihood difference between both model types.
Examining the words with the most extreme differ-
ences, we observe three classes (Table 3).

First, the addition of a suffix is often con-
nected with morpho-orthographic changes (e.g.,
the deletion of a stem-final e), which leads to a
segmentation of the stem into several subwords
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since the truncated stem is not in the Word-
Piece vocabulary (applausive, isotopize,
prematuration). The model does not seem
to be able to recover the meaning of the stem
from the subwords. Second, the addition of a
prefix has the effect that the word-internal (as op-
posed to word-initial) form of the stem would have
to be available for proper segmentation. Since
this form rarely exists in the WordPiece vocab-
ulary, the stem is segmented into several sub-
words (superannoying, antimicrosoft,
nonmultiplayer). Again, it does not seem
to be possible for the model to recover the mean-
ing of the stem. Third, the segmentation of pre-
fixed complex words often fuses the prefix with
the first characters of the stem (overseasoned,
inkinetic, promosque). This case is particu-
larly detrimental since it not only makes it difficult
to recover the meaning of the stem but also cre-
ates associations with unrelated meanings, some-
times even opposite meanings as in the case of
superbizarre. The three classes thus under-
score the difficulty of inferring the meaning of
complex words from the subwords when the whole-
word meaning is not stored in the model weights
and the subwords are not morphological.

4 Related Work

Several recent studies have examined how the per-
formance of PLMs is affected by their input seg-
mentation. Tan et al. (2020) show that tokenizing
inflected words into stems and inflection symbols
allows BERT to generalize better on non-standard
inflections. Bostrom and Durrett (2020) pretrain
RoBERTa with different tokenization methods and
find tokenizations that align more closely with mor-
phology to perform better on a number of tasks.
Ma et al. (2020) show that providing BERT with
character-level information also leads to enhanced
performance. Relatedly, studies from automatic
speech recognition have demonstrated that mor-
phological decomposition improves the perplexity
of language models (Fang et al., 2015; Jain et al.,
2020). Whereas these studies change the vocabu-
lary of input tokens (e.g., by adding special tokens),
we show that even when keeping the pretrained vo-
cabulary fixed, employing it in a morphologically
correct way leads to better performance.14

14There are also studies that analyze morphological aspects
of PLMs without a focus on questions surrounding segmenta-
tion (Edmiston, 2020; Klemen et al., 2020).

Most NLP studies on derivational morphology
have been devoted to the question of how semantic
representations of derivationally complex words
can be enhanced by including morphological in-
formation (Luong et al., 2013; Botha and Blun-
som, 2014; Qiu et al., 2014; Bhatia et al., 2016;
Cotterell and Schütze, 2018), and how affix em-
beddings can be computed (Lazaridou et al., 2013;
Kisselew et al., 2015; Padó et al., 2016). Cotterell
et al. (2017), Vylomova et al. (2017), and Deutsch
et al. (2018) propose sequence-to-sequence models
for the generation of derivationally complex words.
Hofmann et al. (2020a) address the same task us-
ing BERT. In contrast, we analyze how different
input segmentations affect the semantic representa-
tions of derivationally complex words in PLMs, a
question that has not been addressed before.

5 Conclusion

We have examined how the input segmentation of
PLMs, specifically BERT, affects their interpreta-
tions of derivationally complex words. Drawing
upon insights from psycholinguistics, we have de-
duced a conceptual interpretation of PLMs as serial
dual-route models, which implies that maximally
meaningful input tokens should allow for the best
generalization on new words. This hypothesis was
confirmed by a series of semantic probing tasks on
which DelBERT, a model using derivational seg-
mentation, consistently outperformed BERT using
WordPiece segmentation. Quantitative and qualita-
tive analyses further showed that BERT’s inferior
performance was caused by its inability to infer the
complex-word meaning as a function of the sub-
words when the complex-word meaning was not
stored in the weights. Overall, our findings suggest
that the generalization capabilities of PLMs could
be further improved if a morphologically-informed
vocabulary of input tokens were used.
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A Appendices

A.1 Derivational Segmentation

Let A be a set of derivational affixes and S a set of
stems. To determine the derivational segmentation
of a word w, we employ an iterative algorithm. De-
fine the set BA

1 of w as the words that remain when
one derivational affix from A is removed from w.
For example, unlockable can be segmented
into un, lockable and unlock, able so
BA

1 (unlockable) = {lockable,unlock}
(we assume that un and able are inA). We then it-
eratively create BA

i+1(w) =
⋃

b∈BA
i (w)B

A
1 (b), i.e.,

we iteratively remove affixes from w. We stop as
soon as BA

i+1(w) ∩ S 6= ∅. The element in this
intersection, together with the used affixes from
A, forms the derivational segmentation of w.15 If
there is no i such thatBA

i+1(w)∩S 6= ∅, w does not
have a derivational segmentation. The algorithm
is sensitive to most morpho-orthographic rules of
English (Plag, 2003), e.g., when the suffix ize is
removed from isotopize, the resulting word is
isotope, not isotop.

In this paper, we follow Hofmann et al. (2020a)
in using BERT’s prefixes, suffixes, and stems as
input to the algorithm. Specifically, we assign 46
productive prefixes and 44 productive suffixes in
BERT’s vocabulary to A and all fully alphabetic
words with more than 3 characters in BERT’s vo-
cabulary (excluding stopwords and affixes) to S,
resulting in a total of 20,259 stems. This means
that we only consider derivational segmentations
that are possible given BERT’s vocabulary.

15If |BA
i+1(w) ∩ S| > 1 (rarely the case in practice), the

element with the lowest number of suffixes is chosen.

A.2 Data Preprocessing
We exclude texts written in a language other than
English and remove strings containing numbers as
well as hyperlinks. We follow Han and Baldwin
(2011) in reducing repetitions of more than three
letters (niiiiice) to three letters.

A.3 Hyperparameters
The feed-forward network has a ReLU activation
after the first layer and a sigmoid activation after
the second layer. The first layer has 100 dimen-
sions. We apply dropout of 0.2 after the first layer.
All other hyperparameters are as for BERTBASE
(uncased) (Devlin et al., 2019). The number of
trainable parameters is 109,559,241.

We use a batch size of 64 and perform
grid search for the number of epochs
n ∈ {1, . . . , 20} and the learning rate
l ∈ {1× 10−6, 3× 10−6, 1× 10−5, 3× 10−5}
(selection criterion: F1 score). We tune l on
Reddit (80 hyperparameter search trials per model
type) and use the best configuration (which is
identical for all model types) for 20 training runs
with different random seeds on all three datasets
(20 hyperparameter search trials per model type,
dataset, and random seed). Models are trained
with binary cross-entropy as the loss function and
Adam (Kingma and Ba, 2015) as the optimizer.
Experiments are performed on a GeForce GTX
1080 Ti GPU (11GB).

Table 4 lists statistics of the validation perfor-
mance over hyperparameter search trials and pro-
vides information about best hyperparameter con-
figurations as well as runtimes.16 See also Section
3.5 and particularly Figure 2 in the main text, where
we present a detailed analysis of the convergence
behavior of the two main model types examined in
this study (DelBERT and BERT).

16Since expected validation performance (Dodge et al.,
2019) may not be correct for grid search, we report mean
and standard deviation of the performance instead.
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Model µ σ n l τ µ σ n l τ µ σ n l τ

DelBERT .627 .007 6.75 3e-06 67.73 .725 .006 11.45 3e-06 28.69 .687 .006 5.45 3e-06 25.56
BERT .612 .006 7.30 3e-06 66.18 .693 .015 17.05 3e-06 28.04 .657 .007 9.25 3e-06 25.06

Stem .556 .016 9.85 3e-06 67.43 .699 .005 8.15 3e-06 28.56 .670 .006 6.00 3e-06 25.39
Affixes .519 .008 5.55 3e-06 67.70 .599 .004 7.50 3e-06 28.43 .593 .003 9.35 3e-06 25.49

Table 4: Validation performance statistics and hyperparameter search details. The table shows the mean (µ) and
standard deviation (σ) of the validation performance (F1) on all hyperparameter search trials, the number of epochs
(n) and learning rate (l) with the best validation performance, and the runtime (τ ) in minutes for one full hyperpa-
rameter search (20 trials). The numbers are averaged across 20 training runs with different random seeds.


