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Abstract

This paper studies a new problem setting of

entity alignment for knowledge graphs (KGs).

Since KGs possess different sets of entities,

there could be entities that cannot find align-

ment across them, leading to the problem of

dangling entities. As the first attempt to this

problem, we construct a new dataset and de-

sign a multi-task learning framework for both

entity alignment and dangling entity detection.

The framework can opt to abstain from pre-

dicting alignment for the detected dangling en-

tities. We propose three techniques for dan-

gling entity detection that are based on the

distribution of nearest-neighbor distances, i.e.,

nearest neighbor classification, marginal rank-

ing and background ranking. After detecting

and removing dangling entities, an incorpo-

rated entity alignment model in our framework

can provide more robust alignment for remain-

ing entities. Comprehensive experiments and

analyses demonstrate the effectiveness of our

framework. We further discover that the dan-

gling entity detection module can, in turn, im-

prove alignment learning and the final perfor-

mance. The contributed resource is publicly

available to foster further research.

1 Introduction

Knowledge graphs (KGs) have evolved to be the

building blocks of many intelligent systems (Ji

et al., 2020). Despite the importance, KGs are

usually costly to construct (Paulheim, 2018) and

naturally suffer from incompleteness (Galárraga

et al., 2017). Hence, merging multiple KGs through

entity alignment can lead to mutual enrichment of

their knowledge (Chen et al., 2020), and provide

downstream applications with more comprehensive

knowledge representations (Trivedi et al., 2018;

Chen et al., 2020). Entity alignment seeks to dis-

cover identical entities in different KGs, such as En-

glish entity Thailand and its French counterpart

source KG entities

target KG entities

dangling entities
in the target KG 

dangling entities
in the source KG 

Figure 1: Illustration of entity alignment between two

KGs with dangling cases. Paired red and black squares

in the overlap region denote entity alignment while oth-

ers are dangling entities without counterparts.

Thaı̈lande. To tackle this important problem,

literature has attempted with the embedding-based

entity alignment methods (Chen et al., 2017; Wang

et al., 2018; Cao et al., 2019; Fey et al., 2020; Wu

et al., 2020a; Liu et al., 2020; Sun et al., 2020a).

These methods jointly embed different KGs and

put similar entities at close positions in a vector

space, where the nearest neighbor search can re-

trieve entity alignment. Due to its effectiveness,

embedding-based entity alignment has drawn ex-

tensive attention in recent years (Sun et al., 2020c).

Nonetheless, to practically support the alignment

of KGs as a real-world task, existing studies suffer

one common problem of identifying entities with-

out alignment across KGs (called dangling entities).

Specifically, current methods are all built upon the

assumption that any source entity has a counterpart

in the target KG (Sun et al., 2020c), and are ac-

cordingly developed with learning resources that

enforce the same assumption. Hence, given every

entity in a source KG, a model always tends to pre-

dict a counterpart via the nearest neighbor search

in the embedding space. However, since each KG

may be independently created based on separate

corpora (Lehmann et al., 2015) or contributed by

different crowds (Speer et al., 2017; Carlson et al.,

2010), it is natural for KGs to possess different sets
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of entities (Collarana et al., 2017), as illustrated

in Fig. 1. Essentially, this problem overlooked in

prior studies causes existing methods to fall short

of distinguishing between matchable and dangling

entities, hence hinders any of such methods to align

KGs in a real-world scenario.

Towards more practical solutions of entity align-

ment for KGs, we provide a redefinition of the task

with the incorporation of dangling cases (§2.1), as

the first contribution of this work. Given a source

entity, our setting does not assume that it must have

a counterpart in the target KG as what previous

studies do. Instead, conducting entity alignment

also involves identifying whether the counterpart

of an entity actually exists in another KG. Hence,

a system to tackle this realistic problem setting of

entity alignment is also challenged by the require-

ment for justifying the validity of its prediction.

To facilitate the research towards the new prob-

lem, the second contribution of this work is to con-

struct a new dataset DBP2.0 for entity alignment

with dangling cases (§2.2). As being discussed, ex-

isting benchmarks for entity alignment, including

DBP15K (Sun et al., 2017), WK3L (Chen et al.,

2017) and the more recent OpenEA (Sun et al.,

2020c), are set with the constraint that any entity

to be aligned should have a valid counterpart. We

use the full DBpedia (Lehmann et al., 2015) to

build a new dataset and the key challenge lies in

that we need to guarantee the selected dangling

entities actually do not have counterparts. We first

extract two subgraphs with one-to-one entity align-

ment (i.e., all entities have counterparts). Then, we

randomly remove some entities to make their left

counterparts in the peer KG dangling.

Although embedding-based entity alignment has

been investigated for several years, handling with

dangling entities has not been studied yet. As the

third contribution, we present a multi-task learning

framework for the proposed task (§3). It consists

of two jointly optimized modules for entity align-
ment and dangling entity detection, respectively.

While the entity alignment module can basically

incorporate any existing techniques from prior stud-

ies (Sun et al., 2020c), in this paper, we experiment

with two representative techniques, i.e., relational

embedding based (Chen et al., 2017) and neighbor-

hood aggregation based (Sun et al., 2020b) meth-

ods. For dangling entity detection, our framework

incorporates an auxiliary learning objective, which

seeks to learn a confidence metric for the inferred

entity alignment. The principle to realize such

metric learning is that the embeddings of dangling

entities should be isolated and are distant from oth-

ers. According to this principle, we exploit several

techniques to distinguish between matchable and

dangling entities based on their distance distribu-

tion with their neighbors (§3), including nearest

neighbor classification, marginal ranking and back-

ground ranking (Dhamija et al., 2018).

We conduct comprehensive experiments on the

new DBP2.0 dataset, which demonstrate the pro-

posed techniques to solve the dangling entity de-

tection problem to different extents. Moreover, we

observe that training the dangling detection model

(marginal ranking) provides an effective indirect su-

pervision that improves the detection of alignment

for matchable entities. We hope our task, dataset

and framework can foster further investigation of

entity alignment techniques in the suggested real

scenario, leading to more effective and practical so-

lutions to this challenging but important problem.

2 Task and Dataset

We hereby describe the problem setting of our task

and introduce the new dataset.

2.1 Task Definition

A KG is a set of relational triples T ⊆ E ×R× E ,

where E and R denote vocabularies of entities and

relations, respectively. Without loss of generality,

we consider entity alignment between two KGs,

i.e., a source KG K1=(T1, E1,R1) and a target KG

K2=(T2, E2,R2). Given a small set of seed entity

alignment A12 = {(e1, e2) ∈ E1 × E2‖e1 ≡ e2}
along with a small set of source entities D ⊂ E1
known to have no counterparts as training data, the

task seeks to find the remaining entity alignment.

Different from the conventional entity alignment

setting (Sun et al., 2017), a portion (with an antic-

ipated quantity) of entities in E1 and E2 may have

no counterparts. Our training and inference stages

take such dangling entities into consideration.

2.2 Dataset Construction

As discussed, previous testbeds for entity align-

ment do not contain dangling entities (Sun et al.,

2017; Chen et al., 2018; Sun et al., 2020c). There-

fore, we first create a new dataset to support the

study of the proposed problem setting. Same as

the widely used existing benchmark DBP15K (Sun
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Datasets # Entities # Rel. # Triples # Align.

ZH-EN
ZH 84,996 3,706 286,067

33,183
EN 118,996 3,402 586,868

JA-EN
JA 100,860 3,243 347,204

39,770
EN 139,304 3,396 668,341

FR-EN
FR 221,327 2,841 802,678

123,952
EN 278,411 4,598 1,287,231

Table 1: Statistics of the DBP2.0 dataset.

et al., 2017), we choose DBpedia 2016-101 as the

raw data source. Following DBP15K, we also use

English (EN), French (FR), Japanese (JA) and Chi-

nese (ZH) versions of DBpedia to build three entity

alignment settings of ZH-EN, JA-EN and FR-EN.

For each monolingual KG, the triples are extracted

from the Infobox Data of DBpedia, where relations

are not mapped to a unified ontology. The reference

entity alignment data is from the inter-language

links (ILLs) of DBpedia across these three bridges

of languages. Such reference data is later used as

alignment labels for training and testing, and also

serves as references to recognize dangling entities.

Construction. The key challenge of building our

dataset lies in that we need to ensure the selected

dangling entities are indeed without counterparts.

Specifcally, we cannot simply regard entities with-

out ILLs as dangling ones, since the ILLs are also

incomplete (Chen et al., 2017). Under this circum-

stance, we use a two-step dataset extraction process,

which first samples two subgraphs whose entities

all have counterparts based on ILLs, and randomly

removes a disjoint set of entities in the source and

target graphs to make their counterparts dangling.

For the first step, we iteratively delete unlinked enti-

ties and their triples from the source and target KGs

until the left two subgraphs are one-to-one aligned.

In the second step for entity removal, while the

removed entities are disjoint in two KGs, the pro-

portion of the removed entities also complies with

the proportion of unaligned entities in each KG.

Statistics and evaluation. Tab. 1 lists the statis-

tics our dataset. The three entity alignment settings

have different data scales and each is much larger

than the same setting in DBP15K, thus can benefit

better scalability analysis of models. For dangling

entity detection, we split 30% of dangling entities

for training, 20% for validation and others for test-

1Downloaded from https://wiki.dbpedia.org/
downloads-2016-10. The latest 2020 version has not
provided updated data for some languages other than English
when this study is conducted.

ing. The splits of reference alignment follow the

same partition ratio, which is also consistent with

that of DBP15K to simulate the weak alignment

nature of KGs (Chen et al., 2017; Sun et al., 2017).

We also compare the degree distribution of match-

able and dangling entities in our dataset against

DBP15K in Fig. 7 of Appx. §A. We find the match-

able and unlabeled entities in DBP15K have biased

degree distribution, which has an adverse effect

on dangling entity detection and leads to unreal

evaluation. By contrast, in DBP2.0, matchable and

dangling entities have similar degree distribution.

3 Entity Alignment with Dangling Cases

We propose a multi-task learning framework for

entity alignment with dangling cases, as illustrated

in Fig. 2. It has two jointly optimized modules,

i.e., entity alignment and dangling entity detection.

The entity alignment module takes as input rela-

tional triples of two KGs (for KG embedding) and

seed entity alignment (for alignment learning). As

for the detection of dangling entities, the module

uses a small number of labeled dangling entities

to jump-start the learning of a confidence metric

for distinguishing between matchable and dangling

entities. In the inference stage for entity alignment,

our framework is able to first identify and remove

dangling entities, then predict alignment for those

that are decided to be matchable.

3.1 Entity Alignment

Our framework can incorporate any entity align-

ment technique. For the sake of generality, we con-

sider two representative techniques in our frame-

work. One technique is based on MTransE (Chen

et al., 2017), which is among the earliest studies for

embedding-based entity alignment. It employs the

translational model TransE (Bordes et al., 2013) to

embed KGs in separate spaces, meanwhile jointly

learns a linear transformation between the embed-

ding spaces to match entity counterparts. Specif-

ically, given an entity pair (x1, x2) ∈ A12, let x1

and x2 be their embeddings learned by the trans-

lational model. MTransE learns the linear trans-

formation induced by a matrix M by minimizing

‖Mx1−x2‖, where ‖·‖ denotes the L1 or L2 norm.

The other technique is from AliNet (Sun et al.,

2020b), which is one of the SOTA methods based

on graph neural networks. AliNet encodes entities

by performing a multi-hop neighborhood aggre-

gation, seeking to cope with heteromorphism of
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Figure 2: Framework of entity alignment w/ abstention.

their neighborhood structures. For alignment learn-

ing, different from MTransE that only minimizes

the transformed embedding distance, AliNet addi-

tionally optimizes a margin-based ranking loss for

entity counterparts with negative samples. Specifi-

cally, let x be a matchable source entity in the seed

entity alignment, and x′ is a randomly-sampled

entity in the target KG, AliNet attempts to ensure

‖x−x′‖ > λ1 > 0, where λ1 is a distance margin.

3.2 Dangling Entity Detection

We propose three techniques to implement the dan-

gling detection module based on the distribution of

the nearest neighbor distance in embedding space.

3.2.1 NN Classification
This technique is to train a binary classifier to dis-

tinguish between dangling entities (labeled 1, i.e.,

y = 1) and matchable ones (y = 0). Specifically,

we experiment with a feed-forward network (FFN)

classifier. Given a source entity x, its input feature

representation is the difference vector between its

embedding x and its transformed NN embedding

xnn in the target KG embedding space2. The con-

fidence of x being a dangling entity is given by

p(y = 1|x) = sigmoid(FFN(Mx − xnn)). Let D
be the training set of dangling source entities and A
denotes the set of matchable entities in the training

alignment data. For every x ∈ D∪A, we minimize

the cross-entropy loss:

Lx = −
(
yx log(p(y = 1|x))
+ (1− yx) log(1− p(y = 1|x))

)
,

(1)

where yx denotes the truth label for entity x. In a

real-world entity alignment scenario, the dangling

entities and matchable ones usually differ greatly in

quantity, leading to unbalanced label distribution.

In that case, we apply label weights (Huang et al.,

2016) to balance between the losses for both labels.

2We use transformed nearest neighbor (NN) to denote the
the NN of a source KG entity after it is transformed to the
target embedding space.

3.2.2 Marginal Ranking
Considering that dangling entities are the noises for

finding entity alignment based on embedding dis-

tance, we are motivated to let dangling entities have

solitary representations in the embedding space,

i.e., they should keep a distance away from their

surrounding embeddings. Hence, we seek to put

a distance margin between dangling entities and

their sampled NNs. For every input dangling entity

x ∈ D, we minimize the following loss:

Lx = max(0, λ− ‖Mx− xnn‖), (2)

where λ is a distance margin. This loss and the en-

tity alignment loss (e.g., that of MTransE) conduct

joint learning-to-rank, i.e., the distance between un-

aligned entities should be larger than that of aligned

entities while dangling entities should have a lower

ranking in the candidate list of any source entity.

3.2.3 Background Ranking
In the two aforementioned techniques, searching

for the NN of an entity is time-consuming. Fur-

thermore, selecting an appropriate value for the dis-

tance margin of the second technique is not trivial.

Based on empirical studies, we find that the margin

has a significant influence on the final performance.

Hence, we would like to find a more efficient and

self-driven technique. Inspired by the open-set clas-

sification approach (Dhamija et al., 2018) that lets

a classifier equally penalize the output logits for

samples of classes that are unknown to training (i.e.

background classes), we follow a similar principle

and let the model equally enlarge the distance of

a dangling entity from any sampled target-space

entities. This method is to treat all dangling entities

as the “background” of the embedding space, since

they should be distant from matchable ones. We

also decrease the scale of the dangling entity em-

beddings to further provide a separation between

the embeddings of matchable and dangling entities.

For the dangling entity x ∈ D, let Xv
x be the set

of randomly-sampled target entities with size of v.

The loss is defined as

Lx =
∑

x′∈Xv
x

∣∣λx − ‖Mx− x′‖
∣∣+ α‖x‖, (3)

where | · | denotes the absolute value and α is a

weight hyper-parameter for balance. λx is the av-

erage distance, i.e., λx = 1
v

∑
x′∈Xv

x
‖Mx − x′‖.

This objective can push the relatively close entities

away from the source entity without requiring a

pre-defined distance margin.



3586

3.3 Learning and Inference

The overall learning objective of the proposed

framework is a combination of the entity align-

ment loss (e.g., MTransE’s loss) and one of the

dangling entity detection loss as mentioned above.

The two losses are optimized in alternate batches.

More training details are presented in §4.1.

Like the training phase, the inference phase is

also separated into dangling entity detection and

entity alignment. The way of inference for dan-

gling entities differs with the employed technique.

The NN classification uses the jointly trained FFN

classifier to estimate whether the input entity is a

dangling one. The marginal ranking takes the pre-

set margin value in training as a confidence thresh-

old, and decides whether an entity is a dangling one

based on if its transformed NN distance is higher

than the threshold. The inference of background

ranking is similar to that of marginal ranking, with

only the difference, by its design, to be that the con-

fidence threshold is set as the average NN distance

of entities in the target embedding space. After

detecting dangling entities, the framework finds

alignment in the remaining entities based on the

transformed NN search among the matchable enti-

ties in the embedding space of the target KG.

Accelerated NN search. The first and second tech-

niques need to search NNs. We can use an efficient

similarity search library Faiss (Johnson et al., 2017)

for fast NN retrieval in large embedding space. We

also maintain a cache to store the NNs of entities

backstage and update it every ten training epochs.

4 Experiments

In this section, we report our experimental results.

We start with describing the experimental setups

(§4.1). Next, we separately present the experimen-

tation under two different evaluation settings (§4.2-

§4.3), followed by an analysis on the similarity

score distribution of the obtained representations

for matchable and dangling entities (§4.4). To facil-

iate the use of the contributed dataset and software,

we have incorporated these resources into the Ope-

nEA benchmark3 (Sun et al., 2020c).

4.1 Experimental Settings

We consider two evaluation settings. One setting

is for the proposed problem setting with dangling

entities, for which we refer as the consolidated

3https://github.com/nju-websoft/OpenEA

41.8% 41.9% 41.3%
31.4% 31.6% 28.0%

20%

40%

60%

ZH-EN JA-EN FR-EN

DBP15K DBP2.0

Figure 3: Average neighbor overlap ratio of aligned en-

tities in DBP15K and our DBP2.0.

evaluation setting. We first detect and remove the

dangling source entities and then search alignment

for the left entities. For this evaluation setting,

we also separately assess the performance of the

dangling detection module. The other simplified

setting follows that in previous studies (Sun et al.,

2017, 2020c) where the source entities in test set

all have counterparts in the target KG, so no dan-

gling source entities are considered. In this relaxed
evaluation setting, we seek to evaluate the effect of

dangling entity detection on entity alignment and

make our results comparable to previous work.

Evaluation Protocol. For the relaxed evaluation
setting, given each source entity, the candidate

counterpart list is selected via NN search in the

embedding space. The widely-used metrics on the

ranking lists are Hits@k (k = 1, 10, H@k for

short) and mean reciprocal rank (MRR). Higher

H@k and MRR indicate better performance.

For the consolidated setting, we report preci-

sion, recall and F1 for dangling entity detection.

As for assessing the eventual performance of re-

alistic entity alignment, since the dangling entity

detection may not be perfect. it is inevitable for

some dangling entities to be incorrectly sent to the

entity alignment module for aligning, while some

matchable ones may be wrongly excluded. In this

case, H@k and MRR are not applicable for the con-

solidated entity alignment evaluation. Following

a relevant evaluation setting for entity resolution

in database (Mudgal et al., 2018; Ebraheem et al.,

2018), we also use precision, recall and F1 as met-

rics. More specifically, if a source entity is dangling

and is not identified by the detection module, the

prediction is always regarded as incorrect. Simi-

larly, if a matchable entity is falsely excluded by

the dangling detection module, this test case is also

regarded as incorrect since the alignment model has

no chance to search for alignment. Otherwise, the

alignment module searches for the NN of a source

entity in the target embedding space and assesses

if the predicated counterpart is correct.

Model Configuration. As described in §3.2, our

dangling detection module has three variants, i.e.,
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Methods
ZH-EN EN-ZH JA-EN EN-JA FR-EN EN-FR

H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

MTransE .358 .675 .463 .353 .670 .461 .348 .661 .453 .342 .670 .452 .245 .524 .338 .247 .531 .342
w/ NNC .350 .668 .457 .356 .664 .460 .340 .657 .441 .336 .630 .445 .253 .539 .343 .251 .536 .343
w/ MR .378 .693 .487 .383 .699 .491 .373 .686 .476 .374 .707 .485 .259 .541 .348 .265 .553 .360
w/ BR .360 .678 .468 .357 .675 .465 .344 .660 .451 .346 .675 .456 .251 .525 .342 .249 .531 .343

AliNet .332 .594 .421 .359 .629 .451 .338 .596 .429 .363 .630 .455 .223 .473 .306 .246 .495 .329
w/ NNC .321 .598 .415 .335 .608 .428 .330 .602 .422 .344 .627 .439 .212 .467 .294 .230 .476 .312
w/ MR .343 .606 .433 .364 .637 .459 .349 .608 .438 .377 .646 .469 .230 .477 .312 .252 .502 .335
w/ BR .333 .599 .426 .357 .632 .451 .341 .608 .431 .369 .636 .461 .214 .468 .298 .238 .487 .321

Table 2: Entity alignment results (relaxed setting) of MTransE and AliNet on DBP2.0.

Methods
ZH-EN EN-ZH JA-EN EN-JA FR-EN EN-FR

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

M
T

ra
n

sE NNC .604 .485 .538 .719 .511 .598 .622 .491 .549 .686 .506 .583 .459 .447 .453 .557 .543 .550
MR .781 .702 .740 .866 .675 .759 .799 .708 .751 .864 .653 .744 .482 .575 .524 .639 .613 .625
BR .811 .728 .767 .892 .700 .785 .816 .733 .772 .888 .731 .801 .539 .686 .604 .692 .735 .713

A
li

N
et NNC .676 .419 .517 .738 .558 .634 .597 .482 .534 .761 .120 .207 .466 .365 .409 .545 .162 .250

MR .752 .538 .627 .828 .505 .627 .779 .580 .665 .854 .543 .664 .552 .570 .561 .686 .549 .609
BR .762 .556 .643 .829 .515 .635 .783 .591 .673 .846 .546 .663 .547 .556 .552 .674 .556 .609

Table 3: Dangling entity detection results on DBP2.0.

NN classification (NNC), marginal ranking (MR),

and background ranking (BR). We report the imple-

mentation details of the entity alignment module

(w/ MTransE or AliNet) in Appendices B and C.

We initialize KG embeddings and model parame-

ters using the Xavier initializer (Glorot and Bengio,

2010), and use Adam (Kingma and Ba, 2015) to op-

timize the learning objectives with the learning rate

0.001 for MTransE and 0.0005 for AliNet. Note

that we do not follow some methods to initialize

with machine translated entity name embeddings

(Wu et al., 2020a). As being pointed out by recent

studies (Chen et al., 2021; Liu et al., 2021, 2020),

this is necessary to prevent test data leakage. Entity

similarity is measured by cross-domain similarity

local scaling (Lample et al., 2018) for reduced hub-

ness effects, as being consistent to recent studies

(Sun et al., 2020b; Chen et al., 2021). We use a two-

layer FFN in NNC. For MR, the margin is set as

λ = 0.9 for MTransE and 0.2 for AliNet. BR ran-

domly samples 20 target entities for each entity per

epoch and α = 0.01. Training is terminated based

on F1 results of entity alignment on validation data.

4.2 Relaxed Evaluation

We first present the evaluation under the relaxed en-

tity alignment setting based on Tab. 2. This setting

only involves matchable source entities to test en-

tity alignment, which is an ideal (but less realistic)

scenario similar to prior studies (Sun et al., 2020c).

We also examine if jointly learning to detect dan-

gling entities can indirectly improve alignment.

As observed, MTransE, even without dangling

detection, can achieve promising performance on

DBP2.0. The results are even better than those on

DBP15K as reported by Sun et al. (2017). We at-

tribute this phenomenon to the robustness of this

simple embedding method and our improved imple-

mentation (e.g., more effective negative sampling).

By contrast, although we have tried our best in

tuning, the latest GNN-based AliNet falls behind

MTransE. Unlike MTransE that learns entity em-

beddings from a first-order perspective (i.e., based

on triple plausibility scores), AliNet represents an

entity from a high-order perspective by aggregat-

ing its neighbor embeddings, and entities with sim-

ilar neighborhood structures would have similar

representations. However, the dangling entities in

DBP2.0 inevitably become spread noises in entity

neighborhoods. To further probe into this issue, we

count the average neighbor overlap ratio of aligned

entities in DBP15K and our DBP2.0. Given an en-

tity alignment pair (x1, x2), let π(x1) and π(x2) be

the sets of their neighboring entities respectively,

where we also merge their aligned neighbors as

one identity based on reference entity alignment.

Then the neighbor overlap ratio of x1 and x2 is

calculated as |π(x1)∩π(x2)|/|π(x1)∪π(x2)|. We

average such a ratio for both DBP15K and DBP2.0

as given in Fig. 3. We can see that the three settings’
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Methods
ZH-EN EN-ZH JA-EN EN-JA FR-EN EN-FR

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1
M

T
ra

n
sE NNC .164 .215 .186 .118 .207 .150 .180 .238 .205 .101 .167 .125 .185 .189 .187 .135 .140 .138

MR .302 .349 .324 .231 .362 .282 .313 .367 .338 .227 .366 .280 .260 .220 .238 .213 .224 .218
BR .312 .362 .335 .241 .376 .294 .314 .363 .336 .251 .358 .295 .265 .208 .233 .231 .213 .222

A
li

N
et NNC .121 .193 .149 .085 .138 .105 .113 .146 .127 .067 .208 .101 .126 .148 .136 .086 .161 .112

MR .207 .299 .245 .159 .320 .213 .231 .321 .269 .178 .340 .234 .195 .190 .193 .160 .200 .178
BR .203 .286 .238 .155 .308 .207 .223 .306 .258 .170 .321 .222 .183 .181 .182 .164 .200 .180

Table 4: Entity alignment results on DBP2.0.
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Figure 4: Accuracy of dangling entity detection.

overlap ratios in DBP2.0 are all much lower than

those in DBP15K. Thus, DBP2.0 poses additional

challenges, as compared to DBP15K, specifically

for those methods relying on neighborhood aggre-

gation. Based on results and analysis, we argue that

methods performing well on the previous synthetic

entity alignment dataset may not robustly general-

ize to the more realistic dataset with dangling cases.

The performance of both MTransE and AliNet is

relatively worse on FR-EN, which has more entities

(i.e., larger candidate search space) and a low neigh-

borhood overlap ratio (therefore, more difficult to

match entities based on neighborhood similarity).

Meanwhile, we find that the dangling detection

module can affect the performance of entity align-

ment. In details, MR consistently leads to improve-

ment to both MTransE and AliNet. BR can also

noticeably boost entity alignment on most settings.

This shows that learning to isolate dangling entities

from matchable ones naturally provides indirect

help to discriminate the counterpart of a matchable

entity from irrelevant ones. On the other hand, such

indirect supervision signals may be consumed by

the additional trainable parameters in NNC, caus-

ing its effect on entity alignment to be negligible.

Overall, the observation here calls for more robust

entity alignment methods and dangling detection

techniques, and lead to further analysis (§4.3).

4.3 Consolidated Evaluation

We now report the experiment on the more realistic

consolidated evaluation setting. Tab. 3 gives the

precision, recall and F1 results of dangling entity

detection, and the final entity alignment perfor-

mance is presented in Tab. 4. In addition, Fig. 4
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Figure 5: Average training time (seconds) of one epoch

for dangling entity detection (MTransE variants).

shows the accuracy of dangling entity detection.

We analyze the results from the following aspects.

Dangling entity detection. Regardless of which

alignment module is incorporated, NNC performs

the worst (e.g., the low recall and accuracy around

0.5) among the dangling detection techniques,

whereas BR generally performs the best. NNC

determines whether an entity is dangling based on

the difference vector of the entity embedding and

its NN, instead of directly capturing the embedding

distance which is observed to be more important

based on the results by the other two techniques.

By directly pushing dangling entities away from

their NNs in the embedding space, both MR and

BR offer much better performance. Besides, BR

outperforms MR in most cases. By carefully check-

ing their prediction results and the actual distance

of NNs, we find that the induced distance margin

in BR better discriminates dangling entities from

matchable ones than the pre-defined margin.

Efficiency. We compare the average epoch time

of training the three dangling detection modules

for MTransE in Fig. 5. We conduct the experi-

ment using a workstation with an Intel Xeon E5-

1620 3.50GHz CPU and a NVIDIA GeForce RTX

2080 Ti GPU. Since NNC and MR need to search

for NNs of source entities, both techniques spend

much more training time that is saved by random

sampling in BR. Overall, BR is an effective and

efficient technique for dangling entity detection.

Entity alignment. Generally, for both MTransE

and AliNet variants, MR and BR lead to better

entity alignment results than NNC. MR and BR
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Figure 6: Kernel density estimate plot of the test match-

able and dangling entities’ similarity distribution with

their nearest target neighbors in ZH-EN.

obtain higher precision and recall performance on

detecting dangling entities as listed in Tab. 3, re-

sulting in less noise that enters the entity alignment

stage. By contrast, NNC has a low accuracy and

thus introduces many noises. As BR outperforms

MR in dangling detection, it also achieves higher

entity alignment results than MR on most settings.

We also notice that MR in a few settings, MR offer

comparible or slightly better performance than BR.

This is because MR can enhance the learning of

alignment modules (see §4.2 for detailed analysis),

thus delivering improvement to the final perfor-

mance. MTransE variants generally excels AliNet

variants in both entity alignment (see Tab. 2) and

dangling entity detection (see Tab. 3) than AliNet,

similar to the observation in §4.2.

Alignment direction. We find that the alignment

direction makes a difference in both dangling entity

detection and entity alignment. Using EN KG as

the source is coupled with easier dangling detection

than in other languages, as the most populated EN

KG contributes more dangling entities and triples

to training than other KGs. As for entity alignment,

we find the observation to be quite the opposite,

as using the EN KG as a source leads to notice-

able drops in results. For example, the precision of

MTransE-BR is 0.312 on ZH-EN, but only 0.241
on EN-ZH. This is because the EN KG has a larger

portion of dangling entities. Although the dan-

gling detection module performs well on the EN

KG than on others, there are still much more dan-

gling entities entering the alignment search stage,

thus reducing the entity alignment precision. This

observation suggests that choosing the alignment

direction from a less populated KG to the more

populated EN KG can be a more effective solution.

4.4 Similarity Score Distribution
To illustrate how well the BR technique distin-

guishes between matchable and dangling entities,

we plot in Fig. 6 the distribution of similarity scores

of each test entity and its NN. The plot illustrates

BR has the expected effect to isolate dangling en-

tities from their NNs, whereas matchable entities

are generally placed closer to their NNs. Yet, we

can still see a modest overlap between the two NN

similarity distributions of dangling and matchable

entities, and a number of dangling entities still have

a quite large NN similarity. This also reveals the

fact that the proposed problem setting of entity

alignment with dangling cases has many remaining

challenges that await further investigation.

5 Related Work

We discuss two topics of relevant work.

5.1 Entity Alignment

Embedding-based entity alignment is first at-

tempted in MTransE (Chen et al., 2017), which

jointly learns a translational embedding model and

a transform-based alignment model for two KGs.

Later studies generally follow three lines of im-

provement. (i) The first line improves the embed-

ding technique to better suit the alignment task,

including contextual translation techniques (Sun

et al., 2019), long-term dependency techniques

(Guo et al., 2019) and neighborhood aggregation

(or GNN-based) ones (Wang et al., 2018; Cao et al.,

2019; Li et al., 2019; Sun et al., 2020b,a; Fey et al.,

2020). (ii) The second line focuses on effective

alignment learning with limited supervision. Some

leverage semi-supervised learning techniques to

resolve the training data insufficiency issue, includ-

ing self-learning (Sun et al., 2018; Mao et al., 2020)

and co-training (Chen et al., 2018). (iii) Another

line of research seeks to retrieve auxiliary or indi-

rect supervision signals from profile information

or side features of entities, such as entity attributes

(Sun et al., 2017; Trisedya et al., 2019; Zhang et al.,

2019; Pei et al., 2019), literals (Wu et al., 2019,

2020b; Liu et al., 2020), free text (Chen et al.,

2021), pre-trained language models (Yang et al.,

2019; Tang et al., 2020) or visual modalities (Liu

et al., 2021). Due to the large body of recent ad-

vances, we refer readers to a more comprehensive

summarization in the survey (Sun et al., 2020c).

5.2 Learning with Abstention

Learning with abstention is a fundamental machine

learning, where the learner can opt to abstain from

making a prediction if without enough decisive
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confidence (Cortes et al., 2016, 2018). Related

techniques include thresholding softmax (Stefano

et al., 2000), selective classification (Geifman and

El-Yaniv, 2017), open-set classification with back-

ground classes (Dhamija et al., 2018) and out-of-

distribution detection (Liang et al., 2018; Vyas

et al., 2018). The idea of learning with abstention

also has applications in NLP, such as unanswerable

QA, where correct answers of some questions are

not stated in the given reference text (Rajpurkar

et al., 2018; Zhu et al., 2019; Hu et al., 2019).

To the best of our knowledge, our task, dataset,

and the proposed dangling detection techniques

are the first contribution to support learning with

abstention for entity alignment and structured rep-

resentation learning.

6 Conclusion and Future Work

In this paper, we propose and study a new entity

alignment task with dangling cases. We construct

a dataset to support the study of the proposed prob-

lem setting, and design a multi-learning framework

for both entity alignment and dangling entity detec-

tion. Three types of dangling detection techniques

are studied, which are based on nearest neighbor

classification, marginal ranking, and background

ranking. Comprehensive experiments demonstrate

the effectiveness of the method, and provide in-

sights to foster further investigation on this new

problem. We further find that dangling entity de-

tection can, in turn, effectively provide auxiliary

supervision signals to improve the performance of

entity alignment.

For future work, we plan to extend the bench-

marking on DBP2.0 with results from more base

models of entity alignment as well as more absten-

tion inference techniques. Extending our frame-

work to support more prediction tasks with absten-

tion, such as entity type inference (Hao et al., 2019)

and relation extraction (Alt et al., 2020), is another

direction with potentially broad impact.
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Appendices

A Degree Distribution

Fig. 7 shows the degree distribution of the match-

able and dangling entities in our dataset against

DBP15K. Although DBP15K contains some enti-

ties that are not labeled to have counterparts, by

checking the ILLs in the recent update of DBpedia,

we find many of these entities to have counterparts

in the target KG. Hence, these entities in DBP15k

cannot act as dangling entities that are key to the

more realistic evaluation protocol being proposed

in this work. From the comparison, we can see that

these unlabeled entities in DBP15K have much

fewer triples than matchable entities. This biased

degree distribution will have an adverse effect on

dangling entity detection and lead to unreal evalu-

ation. By contrast, in our dataset, matchable and

dangling entities have similar degree distribution.

Figure 7: Degree distribution of matchable and dan-

gling entities in DBP15K FR-EN and our FR-EN.

B Configuration of MTransE and AliNet

For entity alignment, we experiment with MTransE

(Chen et al., 2017) and the SOTA method AliNet

(Sun et al., 2020b). The implementation of our
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Figure 8: Recall@10 results of entity alignment.

framework is extended based on OpenEA (Sun

et al., 2020c). We adopt the truncated negative

sampling method by BootEA (Sun et al., 2018)

to generate negative triples for MTransE and neg-

ative alignment links for AliNet, which leads to

improved performance. The embedding size is 128
for MTransE and 256 for AliNet. The batch size

of MTransE is 20, 480 on ZH-EN and JA-EN, and

102, 400 on FR-EN. The batch size of AliNet is

8, 192 on ZH-EN and JA-EN, and 20, 480 on FR-

EN. λ1 = 1.4 in AliNet.

C Hyper-parameter Settings

We select each hyper-parameter setting within a

wide range of values as follows:

• Learning rate: {0.0001, 0.0002, 0.0005, 0.001}
• Embedding dimension: {64, 128, 256, 512}
• Batch size: {4096, 8192, 10240, 20480, 102400}
• # FNN layers: {1, 2, 3, 4}
• # Random targets: {1, 10, 20, 30, 40, 50}
• λ: {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}

D Recall@10 of Entity Alignment

Fig. 8 gives the recall@10 results of the MTransE

variants with dangling entity detection in the con-

solidated evaluation setting. We can see that the

recall@10 results on FR-EN are lower than that on

ZH-EN and JA-EN, which is similar to the observa-

tion in entity alignment §4.3. From the results, we

think existing embedding-based entity alignment

methods are still far from being usable in practice.


