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Abstract

Distantly supervision automatically generates
plenty of training samples for relation extrac-
tion. However, it also incurs two major prob-
lems: noisy labels and imbalanced training
data. Previous works focus more on reduc-
ing wrongly labeled relations (false positives)
while few explore the missing relations that are
caused by incompleteness of knowledge base
(false negatives). Furthermore, the quantity
of negative labels overwhelmingly surpasses
the positive ones in previous problem formula-
tions. In this paper, we first provide a thorough
analysis of the above challenges caused by neg-
ative data. Next, we formulate the problem
of relation extraction into as a positive unla-
beled learning task to alleviate false negative
problem. Thirdly, we propose a pipeline ap-
proach, dubbed RERE, that first performs sen-
tence classification with relational labels and
then extracts the subjects/objects. Experimen-
tal results show that the proposed method con-
sistently outperforms existing approaches and
remains excellent performance even learned
with a large quantity of false positive samples.
Source code is available online1.

1 Introduction

Relational extraction is a crucial step towards
knowledge graph construction. It aims at identify-
ing relational triples from a given sentence in the
form of 〈subject, relation, object〉, in short, 〈s, r, o〉.
For example, given S1 in Figure 1, we hope to ex-
tract 〈WILLIAM SHAKESPEARE, BIRTHPLACE,
STRATFORD-UPON-AVON〉.

This task is usually modeled as a supervised
learning problem and distant supervision (Mintz
et al., 2009) is utilized to acquire large-scale train-
ing data. The core idea is to obtain training data

∗Corresponding author
1https://github.com/redreamality/

RERE-relation-extraction

Figure 1: Illustration of distant supervision process. S2-
S5 are examples for four kinds of label noise. TP, FP, FN
and PL mean true positive, false positive, false negative
and partially labeled, respectively. “R-” or “E-” indi-
cates whether the error occurs at relation-level or entity-
level. Bold tokens are ground-truth subjects/objects.
Underlined tokens together with the relation in the third
column are labeled by distant supervision. “NA” means
no relation.

is through automatically labeling a sentence with
existing relational triples from a knowledge base
(KB). For example, given a triple 〈s, r, o〉 and a
sentence, if the sentence contains both s and o, dis-
tant supervision methods regard 〈s, r, o〉 as a valid
sample for the sentence. If no relational triples are
applicable, the sentence is labeled as “NA”.

Despite the abundant training data obtained with
distant supervision, nonnegligible errors also occur
in the labels. There are two types of errors. In
the first type, the labeled relation does not conform
with the original meaning of sentence, and this type
of error is referred to as false positive (FP). For ex-
ample, in S2, the sentence “Shakespeare spent the
last few years of his life in Stratford-upon-Avon.”
does not express the relation BIRTHPLACE, thus
being a FP. In the second type, large amounts of

https://github.com/redreamality/RERE-relation-extraction
https://github.com/redreamality/RERE-relation-extraction
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relations in sentences are missing due to the incom-
pleteness of KB, which is referred to as false nega-
tive (FN). For instance, in S3, “Buffett was born in
1930 in Omaha, Nebraska.” is wrongly labeled as
NA since there is no relation (e.g., BIRTHPLACE)
between BUFFETT and OMAHA, NEBRASKA in the
KB. Many efforts have been devoted to solving the
FP problem, including pattern-based methods (Jia
et al., 2019), multi-instance learning methods (Lin
et al., 2016; Zeng et al., 2018a) and reinforcement
learning methods (Feng et al., 2018). Significant
improvements have been made.

However, FN problem receives much less atten-
tion (Min et al., 2013; Xu et al., 2013; Roller et al.,
2015). To the best of our knowledge, none existing
work with deep neural networks to solve this prob-
lem. We argue that this problem is fatal in practice
since there are massive FN cases in datasets. For
example, there exist at least 33% and 35% FNs
in NYT and SKE datasets, respectively. We will
deeply analyze the problem in Section 2.1

Another huge problem in relation extraction is
the overwhelming negative labels. As is widely
acknowledged, information extraction tasks are
highly imbalanced in class labels (Chowdhury and
Lavelli, 2012; Lin et al., 2018; Li et al., 2020).
In particular, the negative labels account for most
of the labels in relation extraction under almost
any problem formulation, which makes relation
extraction a hard machine learning problem. We
systematically analyze this in Section 2.2.

In this paper, we address these challenges caused
by negative data. Our main contribution can be
summarized as follows.

• We systematically compare the class distri-
butions of different problem modeling and
explain why first extract relation then entities,
i.e., the third paradigm (P3) in Section 2.2, is
superior to the others.

• Based on the first point, we adopt P3 and
propose a novel two-staged pipeline model
dubbed RERE. It first detects relation at sen-
tence level and then extracts entities for a spe-
cific relation. We model the false negatives
in relation extraction as “unlabeled positives”
and propose a multi-label collective loss func-
tion.

• Our empirical evaluations show that the pro-
posed method consistently outperforms exist-
ing approaches, and achieves excellent perfor-

mance even learned with a large quantity of
false positive samples. We also provide two
carefully annotated test sets aiming at reduc-
ing the false negatives of previous annotation,
namely, NYT21 and SKE21, with 370 and
1150 samples, respectively.

2 Problem Analysis and Pilot
Experiments

We use (ci, Ti) to denote a training instance,
where ci is a sentence consisting of N tokens
ci = [ci1, ..., ciN ] labeled by a set of triples Ti =
{〈s, r, o〉} from the training setD. For rigorous def-
inition, [ci1, ..., ciN ] can be viewed as an ordered
set {(ci1, 1), ..., (ciN , N)} so that set operations
can be applied. We assume r ∈ R, where R is a
finite set of all relations in D. Other model/task-
specific notations are defined after each problem
formulation.

We now clarify some terms used in the introduc-
tion and title without formal definition. A negative
sample refers to a triple t /∈ Ti. Negative label
refers to the negative class label (e.g., usually “0”
for binary classification), used for supervision with
respect to task-specific models. Under different
task formulation, the negative labels can be differ-
ent. Negative data is a general term that includes
both negative labels and negative samples. There
are two kinds of false negatives. Relation-level
false negative (S3 in Figure 1) refers to the situa-
tion where there exists t′ = 〈s′, r′, o′〉 /∈ Ti, but r′

is actually expressed by ci, and does not appear in
other t ∈ Ti. Similarly, Entity-level false negative
(S4 and S5 in Figure 1) means r′ appears in other
t ∈ Ti. Imbalanced class distribution means that
the quantity of negative labels is much larger than
that of positive ones.

2.1 Addressing the False Negatives
As shown in Table 1, the triples in NYT (SKE)
datasets2 labeled by Freebase3 (BaiduBaike4) is
88,253 (409,767), while the ones labeled by Wiki-
data5 (CN-DBPedia6) are 58,135 (342,931). In
other words, there exists massive FN matches if
only labeled by one KB due to the incomplete-
ness of KBs. Notably, we find that the FN rate
is underestimated by previous researches (Min

2Detailed description of datasets is in Sec. 5.1
3(Bollacker et al., 2008)
4https://baike.baidu.com/
5(Vrandecic and Krötzsch, 2014)
6 (Xu et al., 2017)

https://baike.baidu.com/
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et al., 2013; Xu et al., 2013), based on the man-
ual evaluation of which there are 15%-35% FN
matches. This discrepancy may be caused by hu-
man error. In specific, a volunteer may accidentally
miss some triples. For example, as pointed out
by Wei et al. (2020, in Appendix C), the test set
of NYT11 (Hoffmann et al., 2011) missed lots of
triples, especially when multiple relations occur in
a same sentence, though labeled by human. That
also provides an evidence that FN’s are harder to
discover than FP’s.

NYT (English) SKE (Chinese)

# Sentence 56,196 194,747

# Triples # Rels # Triples # Rels

Original 88,253 23 409,767 49
Re-labeled 58,135 57 342,931 378
Intersection 13,848 18 121,326 46
Union 132,540 62 631,372 381

Original FNR ≥ 0.33 ≥ 0.35
Relabel FNR ≥ 0.56 ≥ 0.46

Table 1: Statistics of the quantity of distantly labeled
relational triples by using different KB’s. The “original”
refers to freebase for NYT and BaiduBaike for SKE.
The “relabeled” means aligning using Wikidata and CN-
DBpedia to re-label NYT and SKE datasets. In specific,
we consider triples with the same subject and object to
be candidate triples and use a relation mapping table
to determine whether the triples match. The intersec-
tion of SKE dataset has two values because the original
relation has a one-to-many mapping with relations in
CN-DBpedia. FNR stands for false negative rates, cal-
culated by using the # Triples in Original (Re-labeled)
divided by the union.

2.2 Addressing the Overwhelming Negative
Labels

We point out that some of the previous paradigms
designed for relation extraction aggravate the im-
balance and lead to inefficient supervision. The
mainstream approaches for relation extraction
mainly fall into three paradigms depending on what
to extract first.

P1 The first paradigm is a pipeline that begins
with named entity recognition (NER) and then
classifies each entity pair into different rela-
tions, i.e., [s, o then r]. It is adopted by many
traditional approaches (Mintz et al., 2009;
Chan and Roth, 2011; Zeng et al., 2014, 2015;
Gormley et al., 2015; dos Santos et al., 2015;
Lin et al., 2016).

P2 The second paradigm first detects all possible
subjects in a sentence then identifies objects
with respect to each relation, i.e., [s then r, o].
Specific implementation includes modeling
relation extraction as multi-turn question an-
swering (Li et al., 2019), span tagging (Yu
et al., 2020) and cascaded binary tagging (Wei
et al., 2020).

P3 The third paradigm first perform sentence-
level relation detection (cf. P1, which is at
entity pair level.) then extract subjects and
entities, i.e., [r then s, o]. This paradigm is
largely unexplored. HRL (Takanobu et al.,
2019) is hitherto the only work to apply this
paradigm based on our literature review.

We provide theoretical analysis of the output space
and class prior with statistical support from three
datasets (see Section 5.1 for description) of the
three paradigms in Table 2. The second step of P1
can be compared with the first step of P3. Both of
them find relation from a sentence (P1 with target
entity pair given). Suppose a sentence contains
m entities7, the classifier has to decide relation
from O(m2) entity pairs, while in reality, relations
are often sparse, i.e., O(m). In other words, most
entity pairs in P1 do not form valid relation, thus
resulting in a low class prior. The situation is even
worse when the sentence contains more entities,
such as in NYT11-HRL. For P2, we demonstrate
with the problem formulation of CASREL (Wei
et al., 2020). The difference of the first-step class
prior between P2 and P3 depends on the result
of comparison between # relations and average
sentence length (i.e., |R| and N̄ ), which varies in
different scenarios/domains. However, π2 of P2
is extremely low, where a classifier has to decide
from a space of |R| ∗ N̄ . In contrast, P3 only need
to decide from 4 ∗ N̄ based on our task formulation
(Section 3.1)

Other task formulations include jointly extract-
ing the relation and entities (Yu and Lam, 2010; Li
and Ji, 2014; Miwa and Sasaki, 2014; Gupta et al.,
2016; Katiyar and Cardie, 2017; Ren et al., 2017)
and recently in the manner of sequence tagging
(Zheng et al., 2017), sequence-to-sequence learn-
ing (Zeng et al., 2018b). In contrast to the afore-
mentioned three paradigms, most of these methods
actually provide an incomplete decision space that
cannot handle all the situation of relation extrac-

7Below the same.



3575

Paradigm
Theoretical

NYT10-HRL NYT11-HRL SKE

|R|=31,N̄= 39.08 |R|=11, N̄=39.46 |R|=51,N̄= 54.67

π1 π2 π1 π2 π1 π2 π1 π2

s, o then r – E[
∑

y
|R| ] – 0.01421 – 0.00280 – 0.00494

s then r, o E[
∑

y

N̄
] E[

∑
y

N̄∗|R| ] 0.0585 0.00093 0.0574 0.00257 0.0405 0.00067

r then s, o E[
∑

y
|R| ] E[

∑
y

4∗N̄ ] 0.0390 0.00842 0.0826 0.00835 0.0344 0.00927

Table 2: Comparison of class prior under different relation extraction paradigms. |R| means the total number of
relations and N̄ is the average sentence length. π1 (π2) refers to the class prior for the first (second) task in the
pipeline. π1 for the first paradigm is omitted because it is often considered a preceding step.

∑
y is the summation

of 1’s in labels, of using which our intention is to represent the information a positive sample conveys.

tion, for example, the overlapping one (Wei et al.,
2020).

3 Solution Framework

3.1 Framework of RERE

Given an instance (ci, Ti) fromD, the goal of train-
ing is to maximize the likelihood defined in Eq. (1).
It is decomposed into two components by applying
the definition of conditional probability, formulated
in Eq. (2).

|D|∏
i=1

Pr(Ti|ci; θ) (1)

=

|D|∏
i=1

∏
r∈Ti

Pr(r|ci; θ)
∏

〈s,o〉∈Ti|r

Pr(s, o|r, ci; θ),

(2)

where we use r ∈ Ti as a shorthand for r ∈ {r |
〈s, r, o〉 ∈ Ti}, which means that r occurs in the
triple set w.r.t. ci; Similarly, s ∈ Ti, 〈s, o〉 ∈ Ti|r
stands for s ∈ {s | 〈s, r, o〉 ∈ Ti|r} and 〈s, o〉 ∈
{〈s, o〉 | 〈s, r, o〉 ∈ Ti|r}, respectively. Ti|r repre-
sents a subset of Ti with a common relation r. 1[·]
is an indicator function; 1[condition] = 1 when
the condition happens. We denote by θ the model
parameters. Under this decomposition, relational
triple extraction task is formulated into two sub-
tasks: relation classification and entity extraction.

Relation Classification. As is discussed, build-
ing relation classifier at entity-pair level will in-
troduce excessive negative samples and form a
hard learning problem. Therefore, we alternatively
model the relation classification at sentence level.
Intuitively speaking, we hope that the model could
capture what relation a sentence is expressing. We

formalize it as a multi-label classification task.

Pr(r|ci; θ) =

|R|∏
j=1

(ŷjrc)
1[yjrc=1](1− ŷjrc)1[y

j
rc=0],

(3)
where ŷjrc is the probability that c is expressing rj ,
the j-th relation8. yjrc is the ground truth from the
labeled data; yjrc = 1 is equivalent to rj ∈ Ti while
yjrc = 0 means the opposite.

Entity Extraction. We then model entity ex-
traction task. We observe that given the relation
r and context ci, it naturally forms a machine
reading comprehension (MRC) task (Chen, 2018),
where (r, ci, s/o) naturally fits into the paradigm
of (QUERY, CONTEXT, ANSWER). Particularly, the
subjects and objects are continuous spans from ci,
which falls into the category of span extraction. We
adopt the boundary detection model with answer
pointer (Wang and Jiang, 2017) as the output layer,
which is widely used in MRC tasks. Formally, for
a sentence of N tokens,

Pr(s, o|r, ci; θ)

=
∏
k∈K

N∏
n=1

(ŷn,kee )1[y
n,k
ee =1](1− ŷn,kee )1[y

n,k
ee =0],

(4)

where K = {sstart, send, ostart, oend} represents
the identifier of each pointer; ŷn,kee refers to the
probability of n-th token being the start/end of the
subject/object. yn,kee is the ground truth from the
training data; if ∃s ∈ Ti|r occurs in ci at position
from n to n+ l, then yn,sstartee = 1 and yn+l,send

ee =
1, otherwise 0; the same applies for the objects.

8ŷjrc is parameterized by θ, omitted in the equation for
clarity, below the same.
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3.2 Advantages

Our task formulation shows several advantages.
By adopting P3 as paradigm, the first and fore-
most advantage of our solution is that it suffers
less from the imbalanced classes (Section 2.2).
Secondly, relation-level false negative is easy to
recover. When modeled as a standard classifica-
tion problem, many off-the-shelf methods on posi-
tive unlabeled learning can be leveraged. Thirdly,
entity-level false negatives do not affect relation
classification. Taking S5 in Figure 1 as an exam-
ple, even though the BIRTHPLACE relation between
WILLIAM SWARTZ and SCRANTON is missing, the
relation classifier can still capture the signal from
the other sample with a same relation, i.e., 〈 JOE

BIDEN, BIRTHPLACE, SCRANTON 〉. Fourthly,
this kind of modeling is easy to update with new
relations without the need of retraining a model
from bottom up. Only relation classifier needs to
be redesigned, while entity extractor can be up-
dated in an online manner without modifying the
model structure. Last but not the least, relation
classifier can be regarded as a pruning step when
applied to practical tasks. Many existing methods
treat relation extraction as question answering (Li
et al., 2019; Zhao et al., 2020). However, without
first identifying the relation, they all need to iter-
ate over all the possible relations and ask diverse
questions. This results in extremely low efficiency
where time consumed for predicting one sample
may take up to |R| times larger than our method.

4 Our Model

The relational triple extraction task decomposed in
Eq. (2) inspires us to design a two-staged pipeline,
in which we first detect relation at sentence level
and then extract subjects/objects for each relation.
The overall architecture of RERE is shown in Fig-
ure 2.

4.1 Sentence Classifier with Relational Label

We first detect relation at sentence level. The
input is a sequence of tokens c and we denote
by ŷrc = [ŷ1rc, ŷ

2
rc, ..., ŷ

|R|
rc ] the output vector of

the model, which aims to estimate ŷirc in Eq. (3).
We use BERT (Devlin et al., 2019) for English
and RoBERTa (Liu et al., 2019) for Chinese, pre-
trained language models with multi-layer bidirec-
tional Transformer structure (Vaswani et al., 2017),

to encode the inputs9. Specifically, the input se-
quence xrc = [[CLS], ci,[SEP]], which is fed
into BERT for generating a token representation
matrix Hrc ∈ RN×d, where d is the hidden dimen-
sion defined by pre-trained Transformers. We take
h0
rc, which is the encoded vector of the first token

[CLS], as the representation of the sentence. The
final output of relation classification module ŷrc is
defined in Eq. (5).

ŷrc = σ(Wrch
0
rc + brc), (5)

where Wrc and brc are trainable model parame-
ters, representing weights and bias, respectively; σ
denotes the sigmoid activation function.

4.2 Relation-specific Entity Extractor

After the relation detected at sentence-level, we
extract subjects and objects for each candidate rela-
tion. We aim to estimate ŷee = [0, 1]N×4, of which
each element corresponds to ŷn,kee in Eq. (4), using
a deep neural model. We take ŷrc, the one-hot out-
put vector of relation classifier, and generate query
tokens q using each of the detected relations (i.e.,
the “1”s in ŷrc). We are aware that many recent
works (Li et al., 2019; Zhao et al., 2020) have stud-
ied how to generate diverse queries for the given
relation, which have the potential of achieving bet-
ter performance. Nevertheless, that is beyond the
scope of this paper. To keep things simple, we use
the surface text of a relation as the query.

Next, the input sequence is constructed as
xee = [[CLS],qi,[SEP], ci,[SEP]]. Like Sec-
tion 4.1, we get the token representation matrix
Hee ∈ RN×d from BERT. The k-th output pointer
of entity extractor is defined by

ŷk
ee = σ(Wk

eeHee + bk
ee), (6)

where k ∈ {sstart, send, ostart, oend} is in accor-
dance to Eq. (4); Wk

ee and bk
ee are the correspond-

ing parameters.
The final subject/object spans are generated

by pairing the nearest sstart/ostart with send/oend.
Next, all subjects are paired to the nearest object.
If multiple objects occur before the next subject
appears, all subsequent objects will be paired with
it until next subject occurs.

9For convenience, we refer to the pre-trained Transformer
as BERT hereinafter.
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[SEP]
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Figure 2: The overall architecture of RERE. In this example, there are two relations, NATIONALITYand CREATOR,
can be found in the Relation Classifier, which will be sent to the Entity Extractor one by one along with the sentence.
When The relation NATIONALITY is extracted, the Entity Extractor will find the position of the subject and object
of Nationality. The word AMERICAN and DICK DILLIN will be found. The relation CREATOR will then be handled
similarly. The values of grey blocks in ŷee are zero.

4.3 Multi-label Collective Loss function
In normal cases, the log-likelihood is taken as the
learning objective. However, as is emphasized,
there exist many false negative samples in the train-
ing data. Intuitively speaking, the negative labels
cannot be simply considered as negative. Instead, a
small portion of the negative labels should be con-
sidered as unlabeled positives and their influence
towards the penalty should be eradicated. There-
fore, we adopt cPU (Xie et al., 2020), a collective
loss function that is designed for positive unlabeled
learning (PU learning). To briefly review, cPU con-
siders the learning objective to be the correctness
under a surrogate function,

`(ŷ, y) = ln(c(ŷ, y)), (7)

where they redefine the correctness function for
PU learning as

c(ŷ, y) =

{
E[ŷ] if y = 1,

1− |E[ŷ]− µ| otherwise,
(8)

where µ is the ratio of false negative data (i.e., the
unlabeled positive in the original paper).

We extend it to multi-label situation by embody-
ing the original expectation at sample level. Due to
the fact that class labels are highly imbalanced for
our tasks, we introduce a class weight γ ∈ (0, 1)
to downweight the positive penalty. For relation
classifier,

`rc(ŷ,y) =


−γrc ln(

1

|R|

|R|∑
i=1

ŷirc]) if yirc = 1

− ln(1− | 1

|R|

|R|∑
i=1

ŷirc − µrc|) otherwise.

(9)

For entity extractor,

`ee(ŷk,yk) =


−γee ln(

N∑
n=1

ŷn,k
ee ]) if yn,k

ee = 1

− ln(1− |
N∑

n=1

ŷn,k
ee − µee|) otherwise.

(10)

In practice, we set µ = π(τ + 1), where τ ≈
1− # labeled positive

# all positive is the ratio of false negative and
π is the class prior. Note that µ is not difficult
to estimate for both relation classification and en-
tity extraction task in practice. Besides various
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of methods in the PU learning (du Plessis et al.,
2015; Bekker and Davis, 2018) for estimating it, an
easy approximation is µ ≈ π when π � τ , which
happens to be the case for our tasks.

5 Experiments

5.1 Datasets
Our experiments are conducted on these four
datasets10. Some statistics of the datasets are pro-
vided in Table 1 and Table 2. In relation extraction,
some datasets with the same names involve differ-
ent preprocessing, which leads to unfair compari-
son. We briefly review all the datasets below and
specify the operations to perform before applying
each dataset.

• NYT (Riedel et al., 2010). NYT is the
very first version among all the NYT-related
datasets. It is based on the articles in New
York Times12. We use the sentences from it to
conduct the pilot experiment in Table 1. How-
ever, 1) it contains duplicate samples, e.g.,
1504 in the training set; 2) It only labels the
last word of an entity, which will mislead the
evaluation results.

• NYT10-HRL. & NYT11-HRL. These two
datasets are based on NYT. The difference is
that they both contain complete entity men-
tions. NYT10 (Riedel et al., 2010) is the orig-
inal one. and NYT11 (Hoffmann et al., 2011)
is a small version of NYT10 with 53,395 train-
ing samples and a manually labeled test set
of 368 samples. We refer to them as NYT10-
HRL and NYT11-HRL after preprocessed by
HRL (Takanobu et al., 2019) where they re-
moved 1) training relation not appearing in
the testing and 2) “NA” sentences. These two
steps are almost adopted by all the compared
methods. To compare fairly, we use this ver-
sion in evaluations.

• NYT21. We provide relabel version of the test
set of NYT11-HRL. The test set of NYT11-
HRL still have false negative problem. Most
of the samples in the NYT11-HRL has only
one relation. We manually added back the
missing triples to the test set.

10We do not use WebNLG (Gardent et al., 2017) and
ACE0411 because these datasets are not automatically labeled
by distant supervision. WebNLG is constructed by natural
language generation with triples. ACE04 is manually labeled.

12https://www.nytimes.com/

• SKE2019/SKE2113. SKE2019 is a dataset in
Chinese published by Baidu. The reason we
also adopt this dataset is that it is currently
the largest dataset available for relation ex-
traction. There are 194,747 sentences in the
training set and 21,639 in the validation set.
We manually labeled 1,150 sentences from the
test set with 2,765 annotated triples, which we
refer to as SKE21. No preprocessing for this
dataset is needed. We provide this data for
future research14.

5.2 Compared Methods and Metrics

We evaluate our model by comparing with sev-
eral models on the same datasets, which are
SOTA graphical model MultiR (Hoffmann et al.,
2011), joint models SPTree (Miwa and Bansal,
2016) and NovelTagging (Zheng et al., 2017), re-
cent strong SOTA models CopyR (Zeng et al.,
2018b), HRL (Takanobu et al., 2019), CasRel (Wei
et al., 2020), TPLinker (Wang et al., 2020). We
also provide the result of automatically aligning
Wikidata/CN-KBpedia with the corpus, namely
Match, as a baseline. To note, we only keep the
intersected relations, otherwise it will result in low
precision due to the false negative in the original
dataset. We report standard micro Precision (Prec.),
Recall (Rec.) and F1 score for all the experiments.
Following the previous works (Takanobu et al.,
2019; Wei et al., 2020), we adopt partial match
on these data sets for fair comparison. We also
provide the results of exact match results of the
methods we implemented, and only exact match on
SKE2019.

5.3 Overall Comparison

We show the overall comparison result in Table 3.
First, we observe that RERE consistently outper-
forms all the compared models. We find an inter-
esting result that by purely aligning the database
with the corpus, it already achieves surprisingly
good overall result (surpassing MultiR) and rel-
atively high precision (comparable to CoType in
NYT11-HRL). However, the recall is quite low,
which is consistent with our discussion in Sec-
tion 2.1 that distant supervision leads to many
false negatives. We also provide an ablation re-
sult where BERT is replaced with a bidirectional

13http://ai.baidu.com/broad/download?
dataset=sked

14download url.

https://www.nytimes.com/
http://ai.baidu.com/broad/download?dataset=sked
http://ai.baidu.com/broad/download?dataset=sked
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NYT10-HRL NYT11-HRL NYT21 SKE21

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

KB Match 38.10 32.38 34.97 47.92 31.08 37.7 47.92 29.56 36.57 69.12 28.1 39.96
MultiR (Hoffmann et al., 2011) - - - 32.8 30.6 31.7 - - - - - -
SPTree (Miwa and Bansal, 2016) 49.2 55.7 52.2 52.2 54.1 53.1 - - - - - -
NovelTagging (Zheng et al.,
2017)

59.3 38.1 46.4 46.9 48.9 47.9 - - - - - -

CoType (Ren et al., 2017) - - - 48.6 38.6 43.0 - - - - - -
CopyR (Zeng et al., 2018b) 56.9 45.2 50.4 34.7 53.4 42.1 - - - - - -
HRL (Takanobu et al., 2019) 71.4 58.6 64.4 53.8 53.8 53.8 - - - - - -
TPLinker (Wang et al., 2020)* 81.19 65.41 72.45 56.2 55.14 55.67 59.78 55.78 57.71 - - -
CasRel (Wei et al., 2020)* 77.7 68.8 73.0 50.1 58.4 53.9 58.64 56.62 57.61 - - -

RERE - LSTM 56.71 42.00 48.26 56.46 35.4 43.52 62.06 37.01 46.37 - - -
RERE 75.45 72.50 73.95 53.12 59.59 56.23 57.69 61.69 59.62 - - -

TPLinker (Wang et al., 2020)*(ex-
act)

80.34 65.11 71.93 55.43 55.12 55.28 58.96 55.78 57.33 83.86 84.77 84.32

CasRel (Wei et al., 2020)*(exact) 75.12 65.72 70.11 47.88 55.13 51.25 55.06 54.49 54.78 86.94 85.96 86.45
RERE (exact) 74.90 71.97 73.4 52.40 58.91 55.47 56.97 60.93 58.88 90.44 84.20 87.21

Table 3: The main evaluation results of different models on NYT10-HRL, NYT11-HRL, and two hand labeled test
sets NYT21 and SKE21 on by the compared method on the datasets. The results with only one decimal are quoted
from (Wei et al., 2020). The methods with * are based on our re-implementation. Best partial (exact) match results
are marked bold (underlined).
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Figure 3: Precision-Recall Curve of RERE and CASREL under different false negative rates. Lines are better in the
upper-right corner than the opposite. Note that the coordinates do not start from 0.

LSTM encoder (Graves et al., 2013) with randomly
initialized weights. From the results we discover
that even without BERT, our framework achieves
competitive results against the previous approaches
such as CoType and CopyR. This further prove the
effectiveness of our RERE framework.

5.4 How Robust is RERE against False
Negatives?

To further study how our model behaves when train-
ing data includes different quantity of false nega-
tives, we conduct experiments on synthetic datasets.
We construct five new training data by randomly
removing triples with probability of 0.1, 0.3 and
0.5, simulating the situation of different FN rates.
We show the precision-recall curves of our method
in comparison with CASREL (Wei et al., 2020),

the best performing competitor, in Figure 3. 1)
The overall performance of RERE is superior to
competitor models even when trained on a dataset
with a 0.5 FN rate. 2) We show that the intervals
of RERE between lines are smaller than CASREL,
indicating that the performance decline under dif-
ferent FN rates of RERE is smaller. 3) The straight
line before curves of our model means that there is
no data point at the places where recall is very low.
This means that our model is insensitive with the
decision boundary and thus more robust.

6 Conclusion

In this paper, we revisit the negative data in rela-
tion extraction task. We first show that the false
negative rate is largely underestimated by previous
researches. We then systematically compare three
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commonly adopted paradigms and prove that our
paradigm suffers less from the overwhelming neg-
ative labels. Based on this advantage, we propose
RERE, a pipelined framework that first detect rela-
tions at sentence level and then extract entities for
each specific relation and provide a multi-label PU
learning loss to recover false negatives. Empirical
results show that RERE consistently outperforms
the existing state-of-the-arts by a considerable gap,
even when learned with large false negative rates.
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