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Abstract

Out-of-distribution (OOD) intent detection is
of practical importance in task-oriented dia-
logue systems. Since the distribution of out-
lier utterances is arbitrary and unknown in
the training stage, existing methods commonly
rely on strong assumptions on data distribu-
tion such as mixture of Gaussians to make in-
ference, resulting in either complex multi-step
training procedures or hand-crafted rules such
as confidence threshold selection for outlier de-
tection. In this paper, we propose a simple yet
effective method to train an OOD intent clas-
sifier in a fully end-to-end manner by simu-
lating the test scenario in training, which re-
quires no assumption on data distribution and
no additional post-processing or threshold set-
ting. Specifically, we construct a set of pseudo
outliers in the training stage, by generating
synthetic outliers using inliner features via
self-supervision and sampling OOD sentences
from easily available open-domain datasets.
The pseudo outliers are used to train a discrim-
inative classifier that can be directly applied to
and generalize well on the test task. We evalu-
ate our method extensively on four benchmark
dialogue datasets and observe significant im-
provements over state-of-the-art approaches.
The source code has been released at https:
//github.com/1iam0949/DCLOOS.

1 Introduction

Conversational system is becoming an indispens-
able component in a variety of Al applications and
acts as an interactive interface provided to users to
improve user experience. Language understanding
is essential for conversational systems to provide
appropriate responses to users, and intent detection
is usually the first step of language understanding.
The primary goal is to identify diverse intentions
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Figure 1: t-SNE visualization of the learned embed-
dings of the test samples of CLINC150. Top: Previous
K -way training; Bottom: Our proposed (K + 1)-way
training. Better view in color and enlarged.

behind user utterances, which is often formalized
as a classification task. However, intent classes
defined during training are inevitably inadequate to
cover all possible user intents at the test stage due
to the diversity and randomness of user utterances.
Hence, out-of-distribution (OOD) intent detection
is essential, which aims to develop a model that can
accurately identify known (seen in training) intent
classes while detecting the OOD classes that are
not encountered during training.

Due to the practical importance of OOD intent
detection, recent efforts have attempted to solve
this problem by developing effective intent classifi-
cation models. In general, previous works approach
this problem by learning decision boundaries for
known intents and then using some confidence mea-
sure to distinguish known and unknown intents.
For examples, LMCL (Lin and Xu, 2019) learns
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the decision boundaries with a margin-based op-
timization objective, and SEG (Yan et al., 2020b)
assumes the known intent classes follow the dis-
tribution of mixture of Gaussians. After learning
the decision boundaries, an off-the-shell outlier
detection algorithm such as LOF (Breunig et al.,
2000) is commonly employed to derive confidence
scores (Yan et al., 2020b; Shu et al., 2017; Lin and
Xu, 2019; Hendrycks and Gimpel, 2017). If the
confidence score of a test sample is lower than a
predefined threshold, it is identified as an outlier.

However, it may be problematic to learn decision
boundaries solely based on the training examples
of known intent classes. First, if there are sufficient
training examples, the learned decision boundaries
can be expected to generalize well on known intent
classes, but not on the unknown. Therefore, extra
steps are required in previous methods, such as
using an additional outlier detection algorithm at
the test stage or adjusting the confidence threshold
by cross-validation. On the other hand, if there
are not sufficient training examples, the learned
boundaries may not generalize well on both known
and unknown intents. As a result, these methods
often underperform when not enough training data
is given. Hence, it is important to provide learning
signals of unknown intents at the training stage to
overcome these limitations.

In contrast to previous works, we adopt a differ-
ent approach by explicitly modeling the distribution
of unknown intents. Particularly, we construct a set
of pseudo OOD examples to aid the training pro-
cess. We hypothesize that in the semantic feature
space, real-world outliers can be well represented
in two types: “hard” outliers that are geometrically
close to the inliers and “easy” outliers that are dis-
tant from the inliners. For the “hard” ones, we con-
struct them in a self-supervised manner by forming
convex combination of the features of inliers from
different classes. For the “easy” ones, the assump-
tion is that they are very unrelated to the known
intent classes, so they can be used to simulate the
randomness and diversity of user utterances. They
can be easily constructed using public datasets. For
example, in our experiments, we randomly collect
sentences from datasets of other NLP tasks such
as question answering and sentiment analysis as
open-domain outliers.

In effect, by constructing pseudo outliers for the
unknown class during training, we form a consis-
tent (K + 1) classification task (X known classes

+ 1 unknown class) for both training and test. Our
model can be trained with a cross-entropy loss and
directly applied to test data for intent classifica-
tion and outlier detection without requiring any
further steps. As shown in Figure 1 (better view
in color and enlarged), our method can learn better
utterance representations, which make each known
intent class more compact and push the outliers
away from the inliers. Our main contributions are
summarized as follows.

* We propose a novel OOD intent detection ap-
proach by matching training and test tasks to
bridge the gap between fitting to training data
and generalizing to test data.

* We propose to efficiently construct two types
of pseudo outliers by using a simple self-
supervised method and leveraging publicly
available auxiliary datasets.

* We conduct extensive experiments on four
real-world dialogue datasets to demonstrate
the effectiveness of our method and perform a
detailed ablation study.

2 Related Work
2.1 OOD Detection

Early studies on outlier detection often adopt unsu-
pervised clustering methods to detect malformed
data (Hodge and Austin, 2004; Chandola et al.,
2009; Zimek et al., 2012). In recent years, a sub-
stantial body of work has been directed towards
improving the generalization capacity of machine
learning models on OOD data (Ruff et al., 2021;
Hendrycks et al., 2020a). Hendrycks and Gimpel
(2017) find that simple statistics derived from the
outputting softmax probabilities of deep neural net-
works can be helpful for detecting OOD samples.
Following this work, Liang et al. (2018) propose to
use temperature scaling and add small perturbation
to input images to enlarge the gap between in-scope
and OOD samples. Lee et al. (2017) propose to
add a Kullback-Leibler divergence term in the loss
function to encourage assigning lower maximum
scores to OOD data.

Recently, there is a line of work that employs
synthetic or real-world auxiliary datasets to provide
learning signals for improving model robustness
under various forms of distribution shift (Goodfel-
low et al., 2015; Orhan, 2019; Hendrycks et al.,
2019; Lee et al., 2017). Particularly, Hendrycks



et al. (2018) propose to leverage large-scale public
datasets to represent outliers during training time
and form a regularization term based on that. This
idea is similar to our proposal of constructing open-
domain outliers, but we use a simpler, end-to-end,
(K +1)-way discriminative training procedure with-
out any regularization term or threshold parameter.

2.2 OOD Intent Detection

While Hendrycks et al. (2020b) find that pretrained
transformer-based models like BERT are intrinsi-
cally more robust to OOD data, they suggest that
there are still margins for improvement. Therefore,
we build our model on top of BERT to improve
intent detection under significant distribution shift.
Previous methods for OOD intent detection are
commonly threshold-based, where models output a
decision score and then compare it with a threshold
that is predefined or selected by cross-validation.

There are mainly three branches of related work.
The first group uses a confidence score which de-
termines the likelihood of an utterance being OOD.
For example, Shu et al. (2017) build m binary Sig-
moid classifiers for m known classes respectively
and select a threshold to reject OOD inputs that
may have lower probabilities than the threshold
across all m classifiers. Similar to the OOD data
generation method used in Lee et al. (2017), Ryu
etal. (2018) employ GAN (Goodfellow et al., 2014)
to generate simulated OOD examples with the gen-
erator and learn to reject simulated OOD examples
with the discriminator.

The second group identifies OOD sentences
through reconstruction loss. For example, Ryu
et al. (2017) build an autoencoder to encode and de-
code in-scope utterances and obtain reconstruction
loss by comparing input embeddings with decoded
ones. OOD utterances result in higher reconstruc-
tion loss.

The third group leverages off-the-shell out-
lier detection algorithms such as local outlier
factor (LOF) (Breunig et al., 2000), one-class
SVM (Scholkopf et al., 2001), robust covariance
estimators (Rousseeuw and Driessen, 1999), and
isolation forest (Liu et al., 2008) to detect OOD
examples. Utterance embeddings belonging to a
specific class will be mapped to the corresponding
cluster (usually modeled by a Gaussian distribu-
tion) while OOD samples will be pushed away
from all in-scope clusters. Examples of this kind
include SEG (Yan et al., 2020a) and LMCL (Lin

and Xu, 2019). Very recently, Zhang et al. (2021)
propose to learn adaptive decision boundaries after
pre-training instead of using off-the-shell outlier
detection algorithms.

In addition, some other work focuses on OOD
detection in few-shot scenarios. Tan et al. (2019)
leverage independent source datasets as simulated
OOD examples to form a hinge loss term. Zhang
et al. (2020) propose to pretrain BERT by a natual
language understanding task with large-scale train-
ing data to transfer useful information for few-shot
intent detection.

Finally, for our proposal of constructing syn-
thetic outliers, the most similar method is Mixup
proposed by Zhang et al. (2018). However, their
method is designed for data augmentation to en-
hance in-distribution performance and requires cor-
responding combinations in the label space (Thu-
lasidasan et al., 2019).

3 Methodology

Problem Statement In a dialogue system, given
K predefined intent classes Sknown = {Ci }5X;, an
unknown intent detection model aims at predicting
the category of an utterance u, which may be one
of the known intents or an out-of-distribution in-
tent Cooq. Essentially, it is a K + 1 classification
problem at the test stage. At the training stage,
a set of IV labeled utterances D; = {(x;,¢;) |
¢ € Sknown)}f\il is provided for training. Previous
methods typically train a K-way classifier for the
known intents.

Overview of Our Approach The mismatch be-
tween the training and test tasks, i.e., K -way clas-
sification vs. (K + 1)-way classification, leads to
the use of strong assumptions and additional com-
plexity in previous methods. Inspired by recent
practice in meta learning to simulate test condi-
tions in training (Vinyals et al., 2016), we propose
to match the training and test settings. In essence,
as shown in Figure 2, we formalize a (K + 1)-way
classification task in the training stage by construct-
ing out-of-distribution samples via self-supervision
and from open-domain data. Our method simply
trains a (K + 1)-way classifier without making any
assumption on the data distribution. After training,
the classifier can be readily applied to the test task
without any adaptation or post-processing. In the
following, we elaborate on the details of our pro-
posed method, including representation learning,
construction of pseudo outliers, and discriminative



- e e e e e e e e e e e o

Training Stage

K+1 Classes

K-Class

s Inliers

Inliers

A 4

O ntent
Tntent 1 QC\ f)p“ t2

Convex Combination 1

Synthetic
Outliers

Open-Domain
Outliers

BERT

Outliers

Open-Domain

'

° ® (K+1)-Way

Classifier

Construction of Outliers

/ I I
Y

K-Class Inliers
with Real Outliers

’

| Test Stage
|

|

|

|

Y
=
T
L
o)
2
&
o 3

@)
OO

g

i

A4

\

Figure 2: An illustration of our proposed method. We use BERT as the utterance encoder. At training stage, we
train a (K+1)-way classifier by constructing two types of pseudo outliers. The open-domain outliers are collected
from an auxiliary dataset disjoint from both the training and test data. The synthetic self-supervised outliers are
generated during training by random convex combinations of features of inliers from different known classes.

training.

3.1 Representation Learning

We employ BERT (Devlin et al., 2019) — a deep
Transformer network as text encoder. Specifically,
we take the d-dimensional output vector of the spe-
cial classification token [CLS] as the representation
of an utterance u, i.e.,

h = BERT(u) € RY,

where d = 768 by default. The training set
D, is then mapped to DI" = {(h;,¢;) | hi =
BERT (u;), (ui, ¢;) € Dy}, in the feature space.

3.2 Construction of Outliers

We construct two different types of pseudo outliers
to be used in the training stage: synthetic outliers
that are generated by self-supervision, and open-
domain outliers that can be easily acquired.

Synthetic Outliers by Self-Supervision To im-
prove the generalization ability of the unknown in-
tent detection model, we propose to generate “hard”
outliers in the feature space, which may have sim-
ilar representations to the inliers of known intent
classes. We hypothesize that those outliers may
be geometrically close to the inliers in the feature
space. Based on this assumption, we propose a self-
supervised method to generate the “hard” outliers
using the training set D}".

Specifically, in the feature space, we generate
synthetic outliers by using convex combinations of

the features of inliers from different intent classes:
hoot = 0 x hg + (1 — 0) * hq, (1)

where hg and h, are the representations of two
utterances which are randomly sampled from dif-
ferent intent classes in Dl”, i.e., cg # cq, and pood
is the synthetic outlier. For example, 6 can be
sampled from a uniform distribution U(0,1). In
this case, when 6 is close to 0 or 1, it will gen-
erate “harder” outliers that only contain a small
proportion of mix-up from different classes. In
essence, “hard” outliers act like support vectors
in SVM (Cortes and Vapnik, 1995), and “harder”
outliers could help to train a more discriminative
classifier.

The generated outliers h°°? are assigned to the
class of C,yg, the (K + 1)-th class in the feature
space, forming a training set

Dy = {(h?, ¢i = Cooa) Hils. @)

Notice that since the outliers are generated in the
feature space, it is very efficient to construct a large
outlier set DI’

Open-Domain OQutliers In practical dialogue
systems, user input can be arbitrary free-form sen-
tences. To simulate real-world outliers and provide
learning signals representing them in training, we
propose to construct a set of open-domain outliers,
which can be easily obtained. Specifically, the set
of free-form outliers D, can be constructed by col-
lecting sentences from various public datasets that



are disjoint from the training and test tasks. There
are many datasets available, including the ques-
tion answering dataset SQuaD 2.0 (Rajpurkar et al.,
2018), the sentiment analysis datasets Yelp (Meng
et al., 2018) and IMDB (Maas et al., 2011), and
dialogue datasets from different domains.

In the feature space, Dy, is mapped to ch’”o =
{(he°% c; = Cooq) | h°? = BERT(u;),u; €
Dfo} fil .

Both synthetic outliers and open-domain outliers
are easy to construct. As will be demonstrated in
Section 4, both of them are useful, but synthetic
outliers are much more effective than open-domain
outliers in improving the generalization ability of
the trained (K + 1)-way intent classifier.

3.3 Discriminative Training

After constructing the pseudo outliers, in the fea-
ture space, our training set D" now consists of a
set of inliers D" and two sets of outliers D and
D;’;, ie, D" = DI" UDI U D}’"o and |D'| =
N + M + H. Therefore, in the training stage, we
can train a (K + 1)-way classifier with the intent
label set S' = Sknown U {Cooa}» Which can be di-
rectly applied in the test stage to identify unknown
intent and classify known ones. In particular, we
use a multilayer perceptron network, ®(-), as the
classifier in the feature space. The selection of the
classifier is flexible, and the only requirement is
that it is differentiable. Then, we train our model
using a cross-entropy loss:
exp(®(hi)*/7)

N mZ zjesexm (hi)iJ7)’

where ®(h;)% refers to the output logit of ®(-)
for the ground-truth class ¢;, and 7 € R is an
adjustable scalar temperature parameter.

4 Experiments

In this section, we present the experimental results
of our proposed method on the targeted task of
OOD intent detection. Given a test set comprised of
known and OOD intent classes, the primary goal of
an OOD intent detection model is to assign correct
intent labels to utterances in the test set. Notice
that the unknown intent label C,,,4 is also included
as a special class for prediction.

4.1 Datasets and Baselines

We evaluate our proposed method on four bench-
mark datasets as follows, three of which are newly

released dialogue datasets designed for intent detec-
tion. The statistics of the datasets are summarized
in Table 2.

CLINC150 (Larson et al., 2019) is a dataset
specially designed for out-of-distribution intent de-
tection, which consists of 150 known intent classes
from 10 domains. The dataset includes 22, 500 in-
scope queries and 1, 200 out-of-distribution queries.
For the in-scope ones, we follow the original split-
ting, i.e., 15,000, 3,000 and 4, 500 for training,
validation, and testing respectively. For the out-of-
distribution ones, we group all of the 1, 200 queries
into the test set.

StackOverflow (Xu et al., 2015) consists of 20
classes with 1, 000 examples in each class. We fol-
low the original splitting, i.e., 12, 000 for training,
2,000 for validation, and 6, 000 for test.

Banking (Casanueva et al., 2020) is a fine-
grained intent detection dataset in the banking do-
main. It consists of 9, 003, 1, 000, and 3, 080 user
queries in the training, validation, and test sets re-
spectively.

M-CID (Arora et al., 2020) is a recently released
dataset related to Covid-19. We use the English
subset of this dataset referred to as M-CID-EN in
our experiments, which covers 16 intent classes.
The splitting of M-CID-EN is 1, 258 for training,
148 for validation, and 339 for test.

We extensively compare our method with the
following unknown intent detection methods.

* Maximum Softmax Probability
(MSP) (Hendrycks and Gimpel, 2017)
employs the confidence score derived from
the maximum softmax probability to predict
the class of a sample. The idea under the
hood is that the lower the confidence score is,
the more likely the sample is of an unknown
intent class.

¢ DOC (Shu et al., 2017) considers to construct
m 1-vs-rest sigmoid classifiers for m seen
classes respectively. It uses the maximum
probability from these classifiers as the confi-
dence score to conduct classification.

¢ SEG (Yan et al., 2020a) models the intent
distribution as a margin-constrained Gaus-
sian mixture distribution and uses an addi-
tional outlier detector — local outlier factor
(LOF) (Breunig et al., 2000) to achieve un-
known intent detection.



CLINC150

StackOverflow

Banking

M-CID-EN

Methods | Accuracy Macro-F1 | Accuracy Macro-F1 | Accuracy Macro-F1 | Accuracy Macro-F1
MSP 66.60 51.20 33.94 45.68 48.15 48.47 52.05 43.14
DOC 64.43 44.60 60.68 60.51 37.78 46.35 49.32 46.59
5% SEG 72.86 65.44 47.00 52.83 51.11 55.68 4451 50.14
LMCL 68.57 62.42 41.60 48.21 52.77 56.73 41.44 46.99
Softmax 76.50 67.74 46.17 50.78 57.88 58.32 41.95 45.46
Ours 88.44 80.73 68.74 65.64 74.11 69.93 87.08 79.67
MSP 68.61 51.20 56.33 62.92 53.83 65.33 61.21 54.33
DOC 62.46 70.01 61.62 68.97 58.29 57.30 59.97 62.28
50% SEG 77.05 79.42 68.50 74.18 68.44 76.48 67.91 72.37
LMCL 78.63 80.42 64.34 71.80 63.59 73.99 63.42 69.04
Softmax 82.47 82.86 65.96 71.94 67.44 74.19 64.72 69.35
Ours 88.33 86.67 75.08 78.55 72.69 79.21 81.05 79.73
MSP 73.41 81.81 76.73 77.63 71.92 80.77 72.89 77.34
DOC 74.63 78.63 63.98 62.07 72.02 78.04 69.79 71.18
75% SEG 81.92 86.57 80.83 84.78 78.87 85.66 75.73 79.97
LMCL 84.59 88.21 80.02 84.47 78.66 85.33 77.11 80.96
Softmax 86.26 89.01 77.41 82.28 78.20 84.31 76.99 80.82
Ours 88.08 89.43 81.71 85.85 81.07 86.98 80.24 82.75

Table 1: Overall accuracy and macro fl-score for unknown intent detection with different proportion of seen

classes. For each setting, the best result is marked in bold.

Dataset ‘ Vocab ‘ Avg. Length ‘ Samples ‘ Classes
CLINC150 8,376 8.31 23,700 150
StackOverflow | 17,182 9.18 20,000 20
Banking 5028 11.9 13,083 77
M-CID-EN 1,254 6.74 1,745 16

Table 2: Dataset statistics.

¢« LMCL (Lin and Xu, 2019) considers to learn
discriminative embeddings with a large mar-
gin cosine loss. It also uses LOF as the outlier
detection algorithm.

¢ Softmax (Yan et al., 2020a) uses a softmax
loss to learn discriminative features based on
the training dataset, which also requires an
additional outlier detector such as LOF for
detecting the unknown intents.

4.2 Experimental Setup

To compare with existing methods, we follow the
setting in LMCL (Lin and Xu, 2019). Specifically,
for each dataset, we randomly sample 75%, 50%,
and 25% of the intent classes from the training set
as the known classes to conduct training, and we
set aside the rest as the unknown classes for test.
Notice that for training and validation, we only
use data within the chosen known classes and do
not expose our model to any of test-time outliers.
Unless otherwise specified, in each training batch,

we keep the ratio of inliers, open-domain outliers
and self-supervised outliers roughly as 1 : 1 : 4.
This setting is empirically chosen and affected by
the memory limit of NVIDIA 2080TI GPU, which
we use for conducting the experiments. The num-
ber of pseudo outliers can be adjusted according
to different environments, and a larger number of
self-supervised outliers typically takes more time
to converge.

We use Pytorch (Paszke et al., 2019) as the back-
end to conduct the experiments. We use the pre-
trained BERT mdoel (bert-base-uncased) provided
by Wolf et al. (2019) as the encoder for utterances.
We use the output vector of the special classifica-
tion token [CLS] as the utterance embedding and
fix its dimension as 768 by default throughout all
of our experiments. To ensure a fair comparison,
all baselines and our model use the same encoder.

For model optimization, we use AdamW pro-
vided by Wolf et al. (2019) to fine-tune BERT and
Adam proposed by Kingma and Ba (2015) to train
the MLP clasisfier ®(-). We set the learning rate
for BERT as le™® as suggested by Devlin et al.
(2019). For the MLP clasisfier, the learning rate is
fixed as 1e . Notice that the fine-tuning of BERT
is conducted simultaneously with the training of
the classifier ®(-) with the same cross-entropy loss.
The MLP classifier ®(-) has a two-layer architec-
ture with [1024, 1024] as hidden units. The tem-



CLINC150 StackOverflow Banking M-CID-EN

Methods | Unknown Known | Unknown Known | Unknown Known | Unknown Known

MSP 73.20 50.62 22.59 50.30 49.98 48.39 56.27 37.86

DOC 71.08 4391 66.11 59.39 31.41 47.14 53.08 44.92

5% SEG 79.90 65.06 46.17 54.16 53.22 55.81 42.73 51.99
LMCL 75.61 62.01 38.85 50.15 55.29 56.81 36.99 49.50
Softmax 83.04 67.34 45.52 51.83 62.52 58.10 35.39 46.22

Ours 92.35 80.43 74.86 63.80 80.12 69.39 91.15 76.80

MSP 57.78 68.03 35.18 70.09 29.31 66.28 58.55 53.80

DOC 57.62 70.17 47.96 71.07 49.88 57.50 47.22 64.16

50% SEG 78.02 79.43 60.89 75.51 60.42 76.90 61.04 73.80
LMCL 79.89 80.42 53.12 71.80 50.30 74.62 51.11 71.29
Softmax 84.19 82.84 56.80 73.45 60.28 74.56 56.30 70.98

Ours 90.30 86.54 71.88 79.22 67.26 79.52 82.44 79.39

MSP 57.83 82.02 41.73 80.03 23.86 81.75 39.56 80.50

DOC 64.62 78.76 49.50 62.91 39.47 78.72 4941 72.99

75% SEG 76.12 86.67 62.30 86.28 54.43 86.20 51.51 82.34
LMCL 80.42 88.28 61.40 84.47 53.26 85.89 54.61 83.16
Softmax 83.12 89.61 54.07 84.11 56.90 84.78 58.73 82.66

Ours 86.28 89.46 65.44 87.22 60.71 87.47 69.00 83.89

Table 3: Macro fl-score of the known classes and f1-score of the unknown class with different proportion of seen
classes. For each setting, the best result is marked in bold.

perature parameter 7 is selected by cross-validation
and set as 0.1 in all experiments.

Following LMCL (Lin and Xu, 2019), we use
overall accuracy and macro f1-score as evaluation
metrics. All results reported in this section are the
average of 10 runs with different random seeds,
and each run is stopped until reaching a plateau on
the validation set. For baselines, we follow their
original training settings except using the afore-
mentioned BERT as text encoder.

4.3 Result Analysis

We present our main results in Table 1 and Table 3.
Specifically, Table 1 gives results in overall accu-
racy and macro f1-score for all classes including
the outlier class, while Table 3 shows results in
macro f1-score for the known classes and f1-score
for the outlier class respectively. It can be seen that,
on all benchmarks and in almost every setting, our
model significantly outperforms the baselines. As
shown in Table 3, our method achieves favorable
performance on both unknown and known intent
classes simultaneously.

It is worth mentioning that the large improve-
ments of our method in scenarios with small la-
beled training sets (25% and 50% settings) indicate
its great potential in real-life applications, since a
practical dialogue system often needs to deal with a

larger proportion of outliers than inliers due to dif-
ferent user demographic, ignorance/unfamiliarity
of/with the platform, and limited intent classes rec-
ognized by the system (especially at the early de-
velopment stage).

More importantly, referring to Table 3, as the pro-
portion of known intents increases, it can be seen
that the performance gains of the baselines mainly
lie in the known classes. In contrast, our method
can strike a better balance between the known and
unknown classes without relying on additional out-
lier detector, margin tuning, and threshold selection,
demonstrating its high effectiveness and generality.
Take the Softmax baseline for example, in the 75%
case of CLINCI150, it achieves a slightly higher
result than our model on the known classes but a
substantially lower result on the unknown ones.

4.4 Effect of Pseudo Outliers

We conduct an ablation study on the effectiveness
of the two kinds of pseudo outliers and summarize
the results in Table 4. The first row of the three
settings (25%, 50%, and 75%) stands for training
solely with the labeled examples of CLINC150
without using any pseudo outliers. In general, self-
supervised synthetic outliers and open-domain out-
liers both lead to positive effects on classification
performance. For each setting, comparing the sec-
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Figure 3: Effect of the number of pseudo outliers on CLINC150. (a), (b), and (c) display overall accuracy, f1-score
on the unknown class and overall macro f1-score with varying number of self-supervised outliers respectively. (d),
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Figure 4: Effect of the number of self-supervised out-
liers on overall intent detection accuracy under the 75%
setting of Banking.

ond row with the third, we can observe that the syn-
thetic outliers produced by convex combinations
lead to a much larger performance gain than that of
pre-collected open-domain outliers. Finally, com-
bining them for training leads to the best results, as
shown in the fourth row of each setting.

Next, we conduct experiments to study the im-
pact of varying the number of the two kinds of
pseudo outliers separately, as shown in Figure 3.
We first fix the number of open-domain outliers
as zero and then increase the number of self-
supervised outliers. The results are displayed in

Figure 3 (a), (b) and (c). In particular, as the
number of self-supervised outliers grows, the per-
formance first increases quickly and then grows
slowly. On the other hand, we fix the number of
self-supervised outliers as zero and then increases
the number of open-domain outliers. The results
are shown in Figure 3 (d), (e) and (f), where it
can be seen that dozens of open-domain outliers
already can bring significant improvements, though
the gain is much smaller compared to that of the
self-supervised outliers.

Finally, we investigate the impact of the number
of self-supervised outliers on overall intent detec-
tion accuracy with both the number of inliers and
the number of open-domain outliers fixed as 100
per training batch. As shown in Figure 4, we in-
crease the number of self-supervised outliers from
0 to 5000. Note that 400 is the default setting used
in Table 1 and Table 3. We can see that compa-
rable results can be obtained for a wide range of
numbers. However, when the number grows to
5000, the performance exhibits a significant drop.
We hypothesize that as the number increases, the
generated synthetic outliers may be less accurate,
because some convex combinations may fall within
the scope of known classes.

To summarize, self-supervised outliers play



Dl D;’O Acc  Macro-F1 F1 Unknown
19.79 41.05 -
v 81.96 71.15 87.8
25% v 3755 45.14 36.91
v v 88.44 80.73 92.35
38.78 60.35 -
50% v 83.12 82.62 85.03
’ v 4862  63.19 28.82
v v 8833 86.67 90.30
57.43 73.6 -
v 84.16 86.9 80.36
5% v 69.61 79.42 48.29
v v 88.08 89.43 86.28
Table 4: An ablation study on the effectiveness of

pseudo outliers.

D% Acc  Macro-F1
Open-bank 89.36 81.22
25% Open-stack 88.38 80.42
Open-big  88.44 80.73
Open-bank 87.35 86.41
50% Open-stack 88.23 86.37
Open-big  88.33 86.67
Open-bank 87.19 89.33
75% Open-stack 87.52 89.17
Open-big  88.08 89.43

Table 5: Results on CLINC150 with different sets of
open-domain outliers.

a much more important role than open-domain
outliers for unknown intent classification. Self-
supervised outliers not only provide better learning
signals for the unknown intents, but also impose
an important positive effect on the known ones.
For the open-domain outliers, if used alone, they
can only provide limited benefit. But in combina-
tion with the self-supervised ones, they can further
enhance the performance.

4.5 Selection of Open-Domain Outliers

To demonstrate the flexibility of our method in
selecting open-domain outliers as described in Sec-
tion 3.2, we train our model on CLINC150 us-
ing open-domain outliers from different sources.
The results are summarized in Table 5. Specifi-
cally, Open-bank and Open-stack stand for using
the training set of Banking and StackOverflow as
the source of open-domain outliers respectively.
Open-big stands for the source of open-domain out-
liers used in other experiments, which consists of

Test 70 Training

SRR WA GOSN
8

SEG  LMCL Softmax Ours SEG  LMCL Softmax Ours

Figure 5: Comparison of training time (per epoch) and
test time with baselines.

~ 0.5 million sentences randomly selected from
SQuabD 2.0 (Rajpurkar et al., 2018), Yelp (Meng
et al., 2018), and IMDB (Maas et al., 2011). It
can be seen that the performance of our model is
insensitive to the selection of open-domain outliers.

4.6 Efficiency

We provide a quantitative comparison on the train-
ing and test efficiency for our method and the base-
lines, by calculating the average time (in seconds)
for training per epoch and the total time for test-
ing under the 75% setting. Here, we only compare
with the strongest baselines. As shown in Figure 5,
even with the pseudo outliers, the training time of
our method is comparable to that of the baselines.
Importantly, in the test stage, our method demon-
strates significant advantages in efficiency, which
needs much less time to predict intent classes for
all samples in the test set.

5 Conclusion

We have proposed a simple, effective, and efficient
approach for out-of-distribution intent detection by
overcoming the limitation of previous methods via
matching train-test conditions. Particularly, at the
training stage, we construct self-supervised and
open-domain outliers to improve model general-
ization and simulate real outliers in the test stage.
Extensive experiments on four dialogue datasets
show that our approach significantly outperforms
state-of-the-art methods. In the future, we plan
to investigate the theoretical underpinnings of our
approach and apply it to more applications.
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