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Abstract
Existing slot filling models can only recognize
pre-defined in-domain slot types from a lim-
ited slot set. In the practical application, a
reliable dialogue system should know what it
does not know. In this paper, we introduce a
new task, Novel Slot Detection (NSD), in the
task-oriented dialogue system. NSD aims to
discover unknown or out-of-domain slot types
to strengthen the capability of a dialogue sys-
tem based on in-domain training data. Be-
sides, we construct two public NSD datasets,
propose several strong NSD baselines, and es-
tablish a benchmark for future work. Finally,
we conduct exhaustive experiments and quali-
tative analysis to comprehend key challenges
and provide new guidance for future direc-
tions1.

1 Introduction

Slot filling plays a vital role to understand user
queries in personal assistants such as Amazon
Alexa, Apple Siri, Google Assistant, etc. It aims
at identifying a sequence of tokens and extracting
semantic constituents from the user queries. Given
a large scale pre-collected training corpus, existing
neural-based models (Mesnil et al., 2015; Liu and
Lane, 2015, 2016; Goo et al., 2018; Haihong et al.,
2019; Chen et al., 2019; He et al., 2020b,d; Yan
et al., 2020; Louvan and Magnini, 2020; He et al.,
2020a) have been actively applied to slot filling and
achieved promising results.

Existing slot filling models can only recognize
pre-defined entity types from a limited slot set,
which is insufficient in the practical application
scenario. A reliable slot filling model should not
only predict the pre-defined slots but also detect po-
tential unknown slot types to know what it doesn’t

∗The first three authors contribute equally. Weiran Xu is
the corresponding author.

1https://github.com/ChestnutWYN/ACL20
21-Novel-Slot-Detection
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Figure 1: An example of Novel Slot Detection in the
task-oriented dialogue system. Without NSD, the dia-
logue system gives the wrong response since it misun-
derstands the unknown slot “is this my world” as the in-
domain playlist type. In contrast, NSD recognizes “is
this my world” as NS and the system gives a fallback
response. Meanwhile, with human-in-the-loop annota-
tion, the system can increase its functions or skills.

know, which we call Novel Slot Detection (NSD) in
this paper. NSD is particularly crucial in deployed
systems—both to avoid performing the wrong ac-
tion and to discover potential new entity types for
future development and improvement. We display
an example as Fig 1 shows.

In this paper, we define Novel Slot (NS) as new
slot types that are not included in the pre-defined
slot set. NSD aims to discover potential new or
out-of-domain entity types to strengthen the capa-
bility of a dialogue system based on in-domain pre-
collected training data. There are two aspects in the
previous work related to NSD, out-of-vocabulary
(OOV) recognition (Liang et al., 2017a; Zhao and
Feng, 2018; Hu et al., 2019; He et al., 2020c,d; Yan
et al., 2020; He et al., 2020e) and out-of-domain
(OOD) intent detection (Lin and Xu, 2019; Lar-
son et al., 2019; Xu et al., 2020a; Zeng et al.,
2021b,a). OOV means many slot types can have a
large number of new slot values while the training
set only obtains a tiny part of slot values. OOV
aims to recognize unseen slot values in training set

https://github.com/ChestnutWYN/ACL2021-Novel-Slot-Detection
https://github.com/ChestnutWYN/ACL2021-Novel-Slot-Detection
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Utterance play is this my world by leo arnaud
Slot Filling Labels O B-album I-album I-album I-album O B-artist I-artist

Novel Slot Detection Labels O NS NS NS NS O B-artist I-artist

Table 1: Comparison between slot filling and novel slot detection. In the novel slot detection labels, we consider
“album” as an unknown slot type that is out of the scope of the pre-defined slot set. Meanwhile, “artist” belonging
to in-domain slot types still needs to be recognized as the original slot filling task.

for pre-defined slot types, using character embed-
ding (Liang et al., 2017a), copy mechanism (Zhao
and Feng, 2018), few/zero-shot learning (Hu et al.,
2019; He et al., 2020e; Shah et al., 2019), trans-
fer learning (Chen and Moschitti, 2019; He et al.,
2020c,b) and background knowledge (Yang and
Mitchell, 2017; He et al., 2020d), etc. Compared
to OOV recognition, our proposed novel slot detec-
tion task focuses on detecting unknown slot types,
not just unseen values. NSD faces the challenges of
both OOV and no sufficient context semantics (see
analysis in Section 6.2), greatly increasing the com-
plexity of the task. Another line of related work
is OOD intent detection (Hendrycks and Gimpel,
2017; Lee et al., 2018; Lin and Xu, 2019; Ren et al.,
2019; Zheng et al., 2020; Xu et al., 2020a) which
aims to know when a query falls outside the range
of predefined supported intents. The main differ-
ence is that NSD detects unknown slot types in the
token level while OOD intent detection identifies
out-of-domain intent queries. NSD requires a deep
understanding of the query context and is prone to
label bias of O (see analysis in Section 5.3.1), mak-
ing it challenging to identify unknown slot types in
the task-oriented dialog system.

In this paper, we first introduce a new and im-
portant task, Novel Slot Detection (NSD), in the
task-oriented dialogue system (Section 2.2). NSD
plays a vital role in avoiding performing the wrong
action and discovering potential new entity types
for the future development of dialogue systems.
Then, we construct two public NSD datasets, Snips-
NSD and ATIS-NSD, based on the original slot
filling datasets, Snips (Coucke et al., 2018) and
ATIS (Hemphill et al., 1990) (Section 2.2). From
the perspective of practical application, we con-
sider three kinds of dataset construction strategies,
Replace, Mask and Remove. Replace denotes we
label the novel slot values with all O in the train-
ing set. Mask is to label with all O and mask the
novel slot values. Remove is the most strict strat-
egy where all the queries containing novel slots
are removed. We dive into the details of the three
different construction strategies in Section 3.2 and
perform a qualitative analysis in Section 5.3.1. Be-

sides, we propose two kinds of evaluation metrics,
span-level F1 and token-level F1 in Section 3.4,
following the slot filling task. Span F1 consid-
ers the exact matching of a novel slot span while
Token F1 focuses on prediction accuracy on each
word of a novel slot span. We discuss performance
comparison between the two metrics and propose
a new metric, restriction-oriented span evaluation
(ROSE), to combine the advantages of both in Sec-
tion 5.3.3. Then, we establish a fair benchmark
and propose extensive strong baselines for NSD in
Section 4. Finally, we perform exhaustive experi-
ments and qualitative analysis to shed light on the
challenges that current approaches faced with NSD
in Section 5.3 and 6.

Our contributions are three-fold: (1) We intro-
duce a Novel Slot Detection (NSD) task in the
task-oriented dialogue system. NSD helps avoid
performing the wrong action and discovering po-
tential new entity types for increasing functions
of dialogue systems. (2) We construct two public
NSD datasets and establish a benchmark for future
work. (3) We conduct exhaustive experiments and
qualitative analysis to comprehend key challenges
and provide new guidance for future NSD work.

2 Problem Formulation

2.1 Slot Filling

Given a sentence X = {x1, ..., xn} with n tokens,
the slot filling task is to predict a corresponding tag
sequence Y = {y1, ..., yn} in BIO format, where
each yi can take three types of values: B-slot type,
I-slot type and O, where “B” and “I” stand for the
beginning and intermediate word of a slot and “O”
means the word does not belong to any slot. Here,
slot filling assumes yi ∈ y, where y denotes a
pre-defined slot set of size M. Current approaches
typically model slot filling as a sequence labeling
problem using RNN (Liu and Lane, 2015, 2016;
Goo et al., 2018) or pre-trained language models
(Chen et al., 2019).

2.2 Novel Slot Detection

We refer to the above training data D as in-domain
(IND) data. Novel slot detection aims to identify
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Original Utterance play is this my world by leo arnaud
Original Slot Filling Labels O B-album I-album I-album I-album O B-artist I-artist

Strategy

Replace play is this my world by leo arnaud
O O O O O O B-artist I-artist

Mask play MASK MASK MASK MASK by leo arnaud
O O O O O O B-artist I-artist

Remove - - - - - - - -
- - - - - - - -

Table 2: Comparison between three processing strategies in the training set. We consider “album” as an unknown
slot type and “-” denotes the sentence is removed from the training data.

unknown or out-of-domain (OOD) slot types via
IND data while correctly labeling in-domain data.
We denote unknown slot type as NS and in-domain
slot types as IND in the following sections. Note
that we don’t distinguish between B-NS and I-NS
and unify them as NS because we empirically find
existing models hardly discriminate B and I for an
unknown slot type. We provide a detailed analysis
in Section 5.3.3. We show an example of NSD in
Table 1. The challenges of recognizing NSD come
from two aspects, O tags and in-domain slots. On
the one hand, models need to learn entity infor-
mation for distinguishing NS from O tags. On the
other hand, they require discriminating NS from
other slot types in the pre-defined slot set. We
provide a detailed error analysis in Section 6.1.

3 Dataset
Since there are not existing NSD datasets, we con-
struct two new datasets based on the two widely
used slot filling datasets, Snips (Coucke et al.,
2018) and ATIS (Hemphill et al., 1990). We first
briefly introduce Snips and ATIS, then elaborate on
data construction and processing in detail, and dis-
play the statistic of our NSD datasets, Snips-NSD
and ATIS-NSD. Finally, we define two evaluation
metrics for the NSD task, Span F1 and Token F1.

3.1 Original Slot Filling Datasets
Snips2 is a custom intent engine dataset. It orig-
inally has 13,084 train utterances, 700 and 700
test utterances. ATIS3 contains audio recordings
of people making flight reservations. It originally
has 4,478 train utterances, 500 dev and 893 test
utterances. The full statistic is shown in Table 3.
Note that the vocabulary only contains words in
the training set, and test set words that do not exist
in the vocabulary are referred to OOV words. The
percentage of OOV words represents the portion of
OOV words in the test set.

2https://github.com/sonos/nlu-
benchmark/tree/master/2017-06-custom-intent-engines

3https://github.com/yvchen/JointSLU/tree/master/data

Snips ATIS
Vocabulary Size 11,241 722
Percentage of OOV words 5.95% 0.77%
Number of Slots 39 79
Training Set Size 13,084 4,478
Development Set Size 700 500
Testing Set Size 700 893

Table 3: Statistics of ATIS and Snips datasets.

3.2 Data Construction and Processing

For Snips and ATIS datasets, we keep some slot
classes in training as unknown and integrate them
back during testing, following (Fei and Liu, 2016;
Shu et al., 2017; Lin and Xu, 2019). We randomly
select part of slot types in Snips and ATIS as un-
known slots(5%, 15%, and 30% in this paper).
Note that the original train/val/test split is fixed.
Considering class imbalance, we perform weighted
sampling where the chosen probability is relevant
to the number of class examples similar to (Lin and
Xu, 2019). To avoid randomness of experiment
results, we report the average result over 10 runs.

After we choose the unknown slot types, a criti-
cal problem is how to handle sentences including
these unknown slot types in training set. For OOD
intent detection, we just need to remove these sen-
tences in training and validation set. However, for
Novel Slot Detection, a sentence perhaps contains
both in-domain slots and unknown slots, which
is nontrivial for tackling unknown slots at the to-
ken level. We need to balance the performance
of recognizing unknown slots and in-domain slots.
Therefore, we propose three different processing
strategies as follows: (1) Replace: We label the
unknown slot values with all O in the training set
while the original values remain unchanged. (2)
Mask: We label the unknown slot values with all
O and mask these slot values with a special token
MASK. (3) Remove: All the sentences containing
unknown slots are directly removed.

We display examples of the above three strate-
gies in Table 2. For the val and test set, we just
label the unknown slot values with all NS while
keeping the in-domain labeling fixed. Note that NS
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Snips-NSD-15% Train Val Test
number of in-domain slots 33 33 33
number of unknown slots 6 6 6
percentage of OOV words - - 8.51%
number of queries 9,329 700 700
number of queries
including unknown slots

0 192 202

number of slot values 23,176 1,794 1,790
number of unknown slot values 0 210 220

Table 4: The detailed statistics of Snips-NSD-15%.

tags only exist in the val and test set, not in the train-
ing set. Besides, we keep original in-domain slots
fixed to evaluate the performance of both NS and
in-domain slots. We aim to simulate the practical
scenario where we can hardly know what unknown
slots are. These three strategies all have its practi-
cal significance. Compared with others, Remove
is the most suitable strategies for real-world sce-
narios. In practical scenario, dialog systems first
train in the data set labeled by human annotators,
and then applied to the actual application. In the
process of interaction with the real users, novel
slot types appear gradually. Therefore, we consider
that the training set doesn’t contain potential novel
slots sentences. In other words, Remove is the
most suitable strategy for NSD in real applications.
What’s more, Section 5.3.1 demonstrates Remove
performs best while the others suffer from severe
model bias by O tags. Therefore, we adopt Remove
as the main strategy in this paper.

3.3 Statistic of New NSD Datasets

Table 4 shows the detailed statistics of Snips-NSD-
15% constructed by Remove strategy, where we
choose 15% classes in the training data as unknown
slots. 4 Combining Table 3 and Table 4, we can
find Remove strategy removes 28.70% of queries
in the original Snips training set, hence increases
the percentage of OOV word from 5.95% to 8.51%.
And unknown slot values account for 12.29% of
total slot values in the test set.

3.4 Metrics

The traditional slot filling task uses Span F1 5 for
evaluation. Span F1 considers the exact span match-
ing of an unknown slot span. However, we find in
Section 5.3.3 that this metric is too strict to NSD

4Since different proportions of unknown slots have differ-
ent statistics, here we only display the results of Snips-NSD-
15% for brevity.

5https://www.clips.uantwerpen.be/conl
l2000/chunking/conlleval.txt
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Figure 2: The overall architecture of our approach.

models. In the practical application, we only need
to coarsely mine parts of words of unknown slots,
then send these queries containing potential un-
known slot tokens to human annotators, which has
effectively reduced extensive labor and improved
efficiency. Therefore, we define a more reasonable
metric, Token F1 which focuses on the word-level
matching of a novel slot span. We also propose a
new metric, Restriction-Oriented Span Evaluation
(ROSE), for a fair comparison in Section 5.3.3.

4 Methodology

In this section, we introduce the NSD models pro-
posed in this paper and illustrate the differences
between the various parallel approaches during the
training and test stage.

4.1 Overall Framework

The overall structure of model is shown in Fig 2. In
the training stage, we either train a multiple-class
classifier or binary classifier using different train-
ing objectives. We use public BERT-large (Devlin
et al., 2019) embedding layer and BiLSTM-CRF
(Huang et al., 2015) for token level feature extrac-
tion. Then, in the test stage, we use the typical
neural multiple classifier to predict the in-domain
slot labels. Meanwhile, we use the detection algo-
rithm, MSP or GDA to figure out novel slot tokens.
Finally, we override the slot token labels which
are detected as NS. In terms of training objectives,
detection algorithms, and distance strategies, we
compare different variants as follows.
Training objective. For in-domain slots, we pro-
pose two training objectives. Multiple classifier
refers to the traditional slot filling objective setting,
which performs token-level multiple classifications
on the BIO tags (Ratinov and Roth, 2009) com-
bined with different slots. Binary classifier unifies
all non-O tags into one class, and the model makes

https://www.clips.uantwerpen.be/conll2000/chunking/conlleval.txt
https://www.clips.uantwerpen.be/conll2000/chunking/conlleval.txt
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Models
5% 15% 30%

IND NSD IND NSD IND NSD
detection method objective distance strategy Span F1 Span F1 Token F1 Span F1 Span F1 Token F1 Span F1 Span F1 Token F1

MSP
binary - 87.21 12.34 25.16 71.44 12.31 39.50 58.88 8.73 40.38

multiple - 88.05 14.04 30.50 79.71 20.97 40.02 78.52 25.26 46.91
binary+multiple - 89.59 23.58 37.55 83.72 24.70 45.32 79.08 30.66 52.10

GDA

binary difference 87.95 23.83 35.83 83.65 22.06 43.99 78.72 32.50 44.13
binary minimum 61.29 10.36 17.08 49.11 16.91 31.10 48.07 15.56 33.78

multiple difference 93.14 29.73 45.99 90.07 31.96 53.02 85.56 36.16 54.55
multiple minimum 93.10 31.67* 46.97* 90.18 32.19 53.75* 86.26* 38.64* 55.24*

Table 5: IND and NSD results with different proportions (5%, 15% and 30%) of classes are treated as unknown
slots on Snips-NSD. * indicates the significant improvement over all baselines (p < 0.05).

Models
5% 15% 30%

IND NSD IND NSD IND NSD
detection method objective distance strategy Span F1 Span F1 Token F1 Span F1 Span F1 Token F1 Span F1 Span F1 Token F1

MSP
binary - 92.04 19.73 29.63 91.74 23.40 33.89 80.49 21.88 39.17

multiple - 94.33 27.15 31.16 92.54 39.88 42.29 87.63 40.42 47.64
binary+multiple - 94.41 32.49 43.48 93.29 41.23 43.13 90.14 41.76 51.87

GDA

binary difference 93.69 27.02 34.21 92.13 30.51 36.30 88.73 30.91 45.64
binary minimum 93.57 15.90 20.96 90.98 24.53 27.26 88.21 26.40 39.83

multiple difference 95.20 47.78* 51.54* 93.92 50.92* 52.24* 92.02 51.26* 56.59*
multiple minimum 95.31* 41.74 45.91 93.88 43.78 46.18 91.67 45.44 52.37

Table 6: IND and NSD results with different proportions (5%, 15% and 30%) of classes are treated as unknown
slots on ATIS-NSD. * indicates the significant improvement over all baselines (p < 0.05).

a token-level binary classification of O or non-O
on the sequence. Note that in the test stage, for in-
domain prediction, we both use the multiple clas-
sifier. While, for novel slot detection, we use the
multiple classifier, or the binary classifier, or both
of them. In Table 5 and Table 6, binary+multiple
means the token will be labeled as NS only if both
classifiers predict it as NS.
Detection algorithm. MSP and GDA are detec-
tion algorithms in the test stage. MSP (Maxi-
mum Softmax Probability) (Hendrycks and Gim-
pel, 2017) applies a threshold on the maximum
softmax probability, if the maximum falls below
the threshold, the token will be predicted to be
a novel slot token. GDA (Gaussian Discriminant
Analysis) (Xu et al., 2020a) is a generative distance-
based classifier for out-of-domain detection with
Euclidean space. We treat tokens not belonging to
any in-domain slots (including O) as novel slot to-
kens for both methods. For example, with a binary
classifier, if the softmax probabilities belonging to
O or non-O are both lower than an MSP threshold,
then the token is labeled as NS.
Distance strategy. The GDA detection is based
on the distances between a target and each slot
representation cluster. In original GDA, when the
minimum distance is greater than a certain thresh-
old, it is predicted to be novel slots. We propose
a novel strategy named Difference, which uses the
maximum distance minus the minimum distance,
when the difference value of a target is less than
a threshold, it is predicted as novel slots. Both

of their thresholds are obtained by optimizing the
NSD metrics on the validation set.

5 Experiment and Analysis

5.1 Implementation Details

We use the public pre-trained Bert-large-uncased
model to embed tokens which has 24 layers, 1024
hidden states, 16 heads and 336M parameters. The
hidden size for the BiLSTM layer is set to 128.
Adam is used for optimization with an initial learn-
ing rate of 2e-5. The dropout value is fixed as 0.5,
and the batch size is 64. We train the model only
on in-domain labeled data. The training stage has
an early stopping setting with patience equal to
10. We use the best F1 scores on the validation
set to calculate the MSP and GDA thresholds adap-
tively. Each result of the experiments is tested for
10 times under the same setting and reports the av-
erage value. The training stage of our model lasts
about 28 minutes on single Tesla T4 GPU(16 GB
of memory).

5.2 Main Results

Table 5 and 6 show the experiment results with
seven different models on two benchmark slot
filling datasets Snips-NSD and ATIS-NSD con-
structed by Remove strategy. We both report NSD
and IND results using Span F1 and Token F1. We
compare these models from three perspectives, de-
tection method, objective and distance strategy in
the following. The analysis of effect of the propor-
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Strategy
5% 15% 30%

IND NSD IND NSD IND NSD
Span Span Token Span Span Token Span Span Token

Replace 94.52 1.93 5.27 94.33 0.66 2.29 94.02 0.27 0.82
Mask 90.08 23.10 37.91 86.52 25.07 45.92 83.37 32.14 50.68
Remove 93.10 31.67 46.97 90.18 32.19 53.75 86.26 38.64 55.24

Table 7: Comparison between different data
processing strategies on Snips-NSD using
GDA+Multiple+Minimum.
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Figure 3: Effect of the proportion of unknown slot
types.

tion of unknown slot types is described in 5.3.2.
Detection Method: MSP vs GDA. Under the
same setting of objective, GDA performs better
than MSP in both IND and NSD, especially in
NSD. We argue that GDA models the posterior
distribution on representation spaces of the fea-
ture extractor and avoids the issue of overconfident
predictions (Guo et al., 2017; Liang et al., 2017b,
2018). Besides, comparing Snips-NSD and ATIS-
NSD, NSD Token F1 scores on ATIS-NSD are
much higher than Snips-NSD but no significant
difference exists for NSD Span F1 scores. The
reason is that Snips-NSD has a higher average en-
tity length (1.83) than ATIS-NSD (1.29), making it
harder to detect the exact NS span.
Objective: Binary vs Multiple. Under all set-
tings, Multiple outperforms Binary with a large
margin on two datasets in both IND and NSD met-
rics. For MSP, combining Multiple and Binary get
higher F1 scores. Specifically, the Binary classifier
is used to calculate the confidence of a token be-
longing to non-O type, which can judge whether
the token belongs to entities and distinguish NS
from type O. On the other hand, we use the Mul-
tiple classifier to calculate the confidence for to-
kens that are of type NS, to distinguish NS from
all predefined non-O slot types. For GDA, we do
not combine Multiple and Binary because of poor
performance. Multiple achieves the best results
for all the IND and NSD F1 scores. We suppose
multi-class classification can better capture seman-
tic features than binary classification.
Distance Strategy: Minimum vs Difference. We

find under the same setting of Binary, Difference
strategy outperforms Minimum on both datasets
for NSD metrics. But under the same setting of
Multiple, there is no consistent superiority between
the two distance strategies. For example, Differ-
ence outperforms Minimum for NSD metrics on
ATIS-NSD, opposite to the results on Snips-NSD.
We argue different distance strategies are closely
related to objective settings and dataset complexity.
We will leave the theoretical analysis to the future.

5.3 Qualitative Analysis

5.3.1 Effect of Different Data Processing
Strategies

Table 7 displays IND and NSD metrics of three dif-
ferent dataset processing strategies on Snips-NSD
using the same model GDA+Multiple+Minimum.
In this section, we will dive into the analysis of
the effects of different data processing strategies.
Results show the Replace strategy gets poor per-
formance in NSD, which proves labeling unknown
slots as O tags will severely mislead the model.
The Mask and Remove strategies are more rea-
sonable since they remove unknown slots from
the training data. Their main difference is that
Mask only deletes token-level information, while
Remove even eliminates the contextual informa-
tion. For NSD in all datasets, Remove gains signif-
icantly better performance on both Token F1 and
Span F1 than Mask by 9.06%(5%), 7.83%(15%)
and 4.56%(30%) on Token F1, and 8.57%(5%),
7.12%(15%) and 6.5%(30%) on Span F1. We ar-
gue the remaining context is still misleading even if
the novel slot tokens are not directly trained in the
Mask strategy. Besides, Mask does not conform to
the real NSD scenario. Generally, Remove is the
most suitable strategy for NSD in real applications
and can achieve the best performance.

5.3.2 Effect of the Proportion of Unknown
Slot Types

Fig 3 displays the effect of the proportion of un-
known slot types using the Remove strategy in
GDA+Multiple+Minimum. Results show that with
the increase of the proportion of unknown slot
types, the NSD F1 scores get improvements while
IND F1 scores decrease. We suppose fewer in-
domain slot types help the model distinguish un-
known slots from IND slots, thus NSD F1 scores
get improvements. However, for in-domain slot
detection, since Remove deletes all the sentences
containing unknown slots in the training data, our
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Figure 4: Effect of varying degrees of restrictions

GDA+mul.+min. MSP+bin.+mul.
ROSE-mean 40.73 34.71
ROSE-100% 40.39 33.74
ROSE-50% 41.00 35.46

Table 8: ROSE metrics on Snips-NSD using
GDA+Multiple+Minimum and MSP+Binary+Multiple

models suffer from the lack of sufficient context to
recognize IND slots so IND F1 scores decrease.

5.3.3 New Metric: ROSE

The previous results have shown Span F1 is much
lower than the token F1. The reason is that Span
F1 is a strict metric, where the model needs to cor-
rectly predict all NS tokens and the correct bound-
ary. This is difficult for NSD models due to the
lack of supervised information. In fact, NSD mod-
els only need to mark some tokens in the span of
novel slots and send the total sequence containing
the NS tokens back to the humans. A small number
of token omissions or misjudgments are acceptable.
Therefore, to meet a reasonable NSD scenario, we
propose a new metric, restriction-oriented span
evaluation (ROSE), to evaluate the span prediction
performance under different restrictions. First, we
do not punish the situation where tokens prediction
exceeds the span. Then, we consider a span is cor-
rect when the number of correctly predicted tokens
is greater than a settable proportion p of the span
length. We take the average of the ROSE score and
the original span F1 to avoid the model obtaining
an outstanding result through over-long prediction.
The results using Snips with 15% of novel slots
are shown in Figure 4. As the degree of restriction
increases, the metrics tend to decline. It indicates
that the model can mostly identify more than half

Type Proportion(%) Span Length Token F1 Span F1

top 5

Object name 21.42 3.71 55.64 20.82
TimeRange 15.29 2.35 53.65 30.15
Entity name 23.14 3.09 48.56 22.83
Music item 14.86 1.05 46.23 34.59

Artist 15.29 2.05 45.26 26.36

bottom 5

City 8.57 1.32 18.72 15.85
Country 6.29 1.57 14.19 11.11

State 5.54 1.10 13.55 10.83
Best rating 6.14 1.00 11.04 11.04

Year 3.43 1.00 10.24 10.24

Table 9: Results of single unknown slot.

Type 1 Type 2 Token F1 Span F1
Object name - 55.64 20.82
TimeRange - 53.65 30.15
Party size number - 33.44 28.57
City - 18.72 15.85
State - 13.55 10.83
Object name TimeRange 53.88 23.37
Object name Party size number 52.81 22.35
Object name City 57.92 21.42
Object name State 56.32 19.27
TimeRange Party size number 71.27∗ 51.03∗

City State 29.33∗ 27.14∗

Table 10: Results of combining multiple unknown slots.
* denotes that NSD performance of the combination of
two unknown slots is significantly better than each sin-
gle slot.

of the tokens in spans. To make a comprehensive
evaluation, we defined the ROSE-mean, namely
the mean of ROSE-25%, ROSE-50%, ROSE-75%,
and ROSE-100%. We present results on part of
proposed models in Table 8.

5.3.4 Analysis of Single Unknown Slot

To analyze the relationship between NSD perfor-
mance and a single specific slot, we calculate the
token and span metrics treating each single slot
type as an unknown slot and show the results of
the top five and bottom five for Token F1 scores
in Table 9. We find that the slots with better per-
formance often account for a larger percentage of
the data set, such as Object name or Entity name.
They also tend to have a larger value space, such as
TimeRange, Music item, or Artist. These charac-
teristics allow the semantic representation of these
slots to be distributed over a large area rather than
clustered tightly together. We consider that this
distribution is more reasonable because in a real
application scenario, novel slots are diverse and its
distribution tends to be diffuse. Performance on
these types also proves that the NSD models we
propose can be better generalized to a reasonable
data setting.
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NSD error proportion(%) O Open vocabulary slots Other slots Sum
Prediction is NS 17.79 18.84 9.07 45.70
Target is NS 18.47 7.54 28.29 54.30
Sum 36.26 26.38 37.36 100.00

Table 11: Relative proportions of several types of er-
rors.

Error type NS Example

NS to O
movie name
(m name)

text: when will paris by night aired
true: O O B-m name I-m name I-m name O
predict: O O NS O NS O

NS to
open slot

album
text: play the insoc ep
true: O B-album I-album I-album
predict: O B-object name I-object name NS

NS to
other slot

artist
text: play kurt cobain ballad tunes
true: O B-artist I-artist B-music item O
predict: O B-genre I-genre B-music item O

O to NS artist
text: the workout playlist needs more chris cross
true: O B-playlist O O O B-artist I-artist
predict: O B-playlist O O NS NS NS

open slots
to NS

object type
text: tell me the actors of the saga awards
true: O O O B-object name O O B-object type O
predict: O O O NS O O NS O

other slots
to NS

city
text: what is the weather of east portal ks
true: O O O O O B-city I-city B-state
predict: O O O O O NS NS NS

Table 12: Error case from NSD prediction.

5.3.5 Analysis for Relationship of Multiple
Unknown Slots

In order to explore the effect of inter-slot relation-
ships on NSD, we conducted experiments in which
two types are mixed as novel slots. Some of the re-
sults are shown in Table 10. In the five types shown
in the table, Object name is an open vocabulary
slot with a wide range of values and contains many
OOV tokens, TimeRange and Party size number
often contain numbers, City and State are usually
similar in semantics and context. We found that
when the other types combined with Object name,
NSD performance is often maintained close to treat
Object name as a novel slot alone. The reason, on
the one hand, is that the proportion of other types in
the dataset is relatively small, so the overall impact
on the metrics is smaller. On the other hand, due to
the large semantic distribution range of the open vo-
cabulary slot, there is a latent inclusion relationship
for other types, so the mixing of a single type tends
to have a slight impact on the NSD performance.
We also found that the appropriate combination can
significantly improve the efficiency of NSD. Such
as TimeRange with Party size number, or City with
State. This indicates that when the novel slot is sim-
ilar to the in-domain slot, the model tends to predict
the novel slot as a similar slot, which leads to errors.
When both are treated as novel slots, these errors
can be mitigated.

6 Discussion

In this section, we empirically divide all the error
samples into three categories. Each type of prob-
lem contains two aspects, corresponding to NSD
precision and recall, respectively. We present the
relative proportions of several types of errors in
Table 11, which using Snips dataset with 5% novel
slots on GDA+multiple+minimum model. For each
error type, we present an example in Table 12 to
describe the characteristics and analyze the causes.
Then, we dive into identifying the key challenges
and finally proposed possible solutions for future
work.

6.1 Error Analysis

Tag O. Tag O is the largest and most widely dis-
tributed type in the dataset, and it generally refers to
the independent function tokens. Therefore, when
identifying, it is easy to be confused with other
types, and the confusion is more serious for novel
slots without supervised learning. We observed
that tokens with O label detected as novel slots usu-
ally exist near spans, and the function words in the
span labeled as a novel slot have a probability of
being predicted as O. We consider that this kind
of problem is related to the context. Although the
processing strategy of Remove can effectively re-
duce the misleading of O for the novel slots, tag
O will still be affected by context information of
other in-domain slots.
Open Vocabulary Slots. We observe that a large
number of novel slot tokens are mispredicted as
open vocabulary slots, while the reverse situation
is much less likely to happen. This indicates that
in Snips, open vocabulary slots tend to overlap
or contain most other slots semantically. Even in
traditional slot filling tasks, open vocabulary slots
are often confused with other slots. We demon-
strate this hypothesis in the analysis. Section 5.3.5
shows that NSD performs better when open vocab-
ulary slots are treated as novel slots, and Section
5.3.4 shows that there is no significant performance
change when open vocabulary slots are mixed with
some semantically concentrated slots. The reason
for this problem is that the definition of the dataset
is not reasonable. Slots with a large value range
can hardly help the personal assistant to give an
appropriate reply, and the supervised information
of these slots is usually incomplete.
Similar Slots. Except for the two cases mentioned
above, predicting novel slots as other in-domain
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slots is the most common type of error, in which
similar slots account for a large part of it. Due to
the overlap between vocabulary or shared similar
context, the model often tend to be overconfident
to predict similar slot labels, we analyze the phe-
nomenon in Table 10, when similar types is treated
as a new slot at the same time, NSD efficiency will
rise significantly. We employ a generative classifi-
cation method GDA, compared with the traditional
MSP method, to make full use of data features and
alleviate the problem.

6.2 Challenges
Based on the above analysis, we summarize the
current challenges faced by the NSD task:
Function tokens. Articles, prepositions, and so on
that act as connective words in a sequence. It is
usually labeled with type O, but also found in some
long-span slots, such as Movie name. It can lead
to confusion between O and novel slot when this
kind of slot is the target of NSD.
Insufficient context. Correct slot detection often
depends on the context, and this supervised infor-
mation is missing for novel slots. Models can only
conduct NSD to tokens using the original embed-
dings or representations trained in other contexts,
which can lead to bias in the semantic modeling of
the novel slot.
Dependencies between slots. There are some se-
mantic overlaps or inclusion relationships in the
slot definition of the current benchmark slot filling
datasets. As a result, the semantic features are not
sufficiently discriminative, and thus some outliers
tokens in in-domain slots are easily confused with
the novel slots.
Open vocabulary slots. Open vocabulary slots is
a special kind of slot, its definition is usually macro-
scopic and can be further divided, the value range
is broad. The representation distribution for Open
vocabulary slots tends to be diffuse and uneven,
which can be misleading to NSD.

6.3 Future Directions
For tag O, a possible solution is to use a binary
model to assist identification between O and non-O
function tokens, we provide a simple method in
this paper and leave further optimizing to future
work. Then, to decouple the dependencies between
slots, it is critical to learn more discriminative fea-
tures for in-domain data, using contrastive learning
or prototypical network is expected to help. Be-
sides, in the traditional slot filling task, the open

vocabulary slot problem has been researched for
a long time, and accumulate many achievements.
Adaptive combination and improvement of rele-
vant methods with NSD tasks is also an important
direction of our future research.

7 Related Work

OOV Recognition OOV aims to recognize unseen
slot values in training set for pre-defined slot types,
using character embedding (Liang et al., 2017a),
copy mechanism (Zhao and Feng, 2018), few/zero-
shot learning (Hu et al., 2019; Shah et al., 2019),
transfer learning (Chen and Moschitti, 2019; He
et al., 2020c) and background knowledge (Yang
and Mitchell, 2017; He et al., 2020d), etc. Our
proposed NSD task focuses on detecting unknown
slot types, not just unseen values.

OOD Intent Detection Lee et al. (2018); Lin
and Xu (2019); Xu et al. (2020a) aim to know when
a query falls outside the range of predefined sup-
ported intents. Generally, they first learn discrimi-
native intent representations via in-domain (IND)
data, then employs detecting algorithms, such as
Maximum Softmax Probability (MSP) (Hendrycks
and Gimpel, 2017), Local Outlier Factor (LOF)
(Lin and Xu, 2019), Gaussian Discriminant Analy-
sis (GDA) (Xu et al., 2020b) to compute the simi-
larity of features between OOD samples and IND
samples. Compared to our proposed NSD, the main
difference is that NSD detects unknown slot types
in the token level while OOD intent detection iden-
tifies sentence-level OOD intent queries.

8 Conclusion

In this paper, we defined a new task, Novel Slot De-
tection(NSD), then provide two public datasets and
establish a benchmark for it. Further, we analyze
the problems of NSD through multi-angle exper-
iments and extract the key challenges of the task.
We provide some strong models for these problems
and offer possible solutions for future work.
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Broader Impact

Dialog systems have demonstrated remarkable per-
formance across a wide range of applications, with
the promise of a significant positive impact on hu-
man production mode and lifeway. The first step of
the dialog system is to identify users’ key points. In
practical industrial scenario, users may make unrea-
sonable queries which fall outside of the scope of
the system-supported slot types. Previous dialogue
systems will ignore this problem, which will lead
to wrong operations and limit the system’s devel-
opment. In this paper, we firstly propose to detect
not only pre-defined slot types but also potential
unknown or out-of-domain slot types using MSP
and GDA methods. According to exhaustive ex-
periments and qualitative analysis, we also discuss
several major challenges in Novel Slot Detection
for future work. The effectiveness and robustness
of the model are significantly improved by adding
Novel Slot Detection, which takes a step towards
the ultimate goal of enabling the safe real-world
deployment of dialog systems in safety-critical do-
mains. The experimental results have been reported
on standard benchmark datasets for considerations
of reproducible research.
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